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Background: Cervical cancer became the third most common cancer among women,

and genome characterization of cervical cancer patients has revealed the extensive

complexity of molecular alterations. However, identifying driver mutation and depicting

molecular classification in cervical cancer remain a challenge.

Methods: We performed an integrative multi-platform analysis of a cervical cancer

cohort from The Cancer Genome Atlas (TCGA) based on 284 clinical cases and identified

the driver genes and possible molecular classification of cervical cancer.

Results: Multi-platform integration showed that cervical cancer exhibited a wide

range of mutation. The top 10 mutated genes were TTN, PIK3CA, MUC4, KMT2C,

MUC16, KMT2D, SYNE1, FLG, DST, and EP300, with a mutation rate from 12 to 33%.

Applying GISTIC to detect copy number variation (CNV), the most frequent chromosome

arm-level CNVs included losses in 4p, 11p, and 11q and gains in 20q, 3q, and 1q.

Then, we performed unsupervised consensus clustering of tumor CNV profiles and

methylation profiles and detected four statistically significant expression subtypes. Finally,

by combining the multidimensional datasets, we identified 10 potential driver genes,

including GPR107, CHRNA5, ZBTB20, Rb1, NCAPH2, SCA1, SLC25A5, RBPMS,

DDX3X, and H2BFM.

Conclusions: This comprehensive analysis described the genetic characteristic of

cervical cancer and identified novel driver genes in cervical cancer. These results provide

insight into developing precision treatment in cervical cancer.

Keywords: cervical cancer, TCGA, multi-platform analysis, molecular classification, driver mutation

INTRODUCTION

As the most common gynecological malignancy, cervical cancer has been reported to have
about 570,000 new cases and 311,365 deaths in 2018 worldwide and has become the third
most common cancer among women (Bray et al., 2018). Persistent infection with oncogenic
types of human papillomavirus (HPV) is now considered the principal etiological agent in
cervical cancer (Moody and Laimins, 2010; Litwin et al., 2017). In fact, the majority of
HPV infections are transient and do not result in malignant transformation. Only a small
percentage of women experience persistent infection, which leads to genomic instability and
accumulation of somatic mutations, thus developing malignant cancers finally (Litwin et al., 2017).
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Although major achievements have been made in surgery,
chemotherapy, and radiotherapy in current decades, the
molecular biomarkers and potential treatment targets
remain necessarily.

Appreciable evidence implicates specific genomic alterations
involved in the initiation and progression of cervical cancer. The
genome characterization of a large number of cervical patients
has revealed the extensive complexity of molecular alterations,
such as somatic aberrations (Ojesina et al., 2014), copy number
alterations (CNAs) (Rao et al., 2004), DNA methylation (Verlaat
et al., 2017), and dysfunctional microRNA (miRNA) (Cheung
et al., 2012). Chen et al. (2013) performed the first genome-wide
association study (GWAS) of cervical cancer and identified three
independently acting loci (DAP, NR5A2, and MIR365-2 gene
regions) within the major histocompatibility complex (MHC)
region contributing to the risk of developing cervical cancer,
which support its role in high-riskHPV infection and persistence.
Ojesina et al. (2014) reported 115 cervical carcinoma–normal
paired samples’ whole-exome sequence analysis, 79 cases’
transcriptome sequence, and 14 tumor–normal pairs’ whole
genome sequence and detected significantly recurrent somatic
mutations in the mitogen-activated protein kinase 1 (MAPK1)
gene among squamous cell cervical cancers and provided
evidence of potential ERBB2 (also means HER2/neu) activation
by somatic mutation, amplification, and HPV integration to
combat cervical carcinoma. Despite these discoveries, attempts to
apply molecular-targeted agents for treatment of cervical cancer
have met with limited success thus far.

During the development of cancer, a large number of somatic
mutations occur; however, only a handful of somatic mutations
are expected to initiate and promote tumor growth, so-called
driver mutations (Nehrt et al., 2012). Several driver mutations
have been identified as a subtype for specific cancer type or
as a target in therapy. Li et al. (2018a) identified 11 novel
driver genes through integrative analysis of 1,061 hepatocellular
carcinoma genomes and employed three MutSig algorithms,
non-negative matrix factorization, Kaplan–Meier survival and
Cox regression analyses, as well as logistic regression model and
discovered 11 novel driver genes and further validated AURKA,
a small molecule inhibitor, as a druggable target in this disease.
Ganly et al. (2018) identified the genomic characterization of
56 primary Hurthle cell carcinoma and elucidate the mutational
profile and driver mutations of these tumors. They also identified
the disease pathogenesis signaling pathway and the importance
of the receptor tyrosine kinase (RTK)/(It is encoded by ras
gene which acts as a oncogene) RAS/(it has Ser/Thr protein
kinase activity) RAF/MAPK and phosphoinositide 3-kinase
(PIK3)/AKT/mammalian target of rapamycin (mTOR) pathways
in Hurthle cell carcinoma, and further clinical trial demonstrated
multiple tyrosine kinase inhibitor sorafenib and the mTOR
inhibitor everolimus showed a significant response rate for these
agents (Ganly et al., 2018).

However, driver genes in cervical cancer remain to be
identified. In the current study, we integrated somatic mutation,
copy number variation (CNV), DNA methylation, and miRNA
profile; depicted a comprehensive genomic landscape of cervical
cancer; performed molecular classification; and finally identified
driver genes. Thus, developing novel targeted therapy against

specific somatic alterations finally improves current strategies to
combat cervical carcinomas.

MATERIALS AND METHODS

Data Resource
The mutant MAF file of cervical cancer was downloaded using
the R package TCGA biolinks (Colaprico et al., 2016), which
contains the mutation results of 297 samples. Screening the
various cancer type, single-nucleotide polymorphism (SNP)6
copy number segment 287 datasets, and 299 methylation
chip data of cervical cancer samples were downloaded from
FireBrowse (http://firebrowse.org/) with Cervical Squamous Cell
Carcinoma and Endocervical Adenocarcinoma (platform for
Illumina 450K chip). Besides, 304 messenger RNA (mRNA)
expression profile data and 307 miRNA expression profile
data of cervical cancer samples were downloaded from the
National Cancer Institute Genomic Data Commons Data
Portal (https://portal.gdc.cancer.gov/). Overall, we integrated
284 samples of multiple data features for further analysis,
including mutation location, CNV information, methylation
data, and mRNA and miRNA expression profile datasets. In
addition, cervical cancer fusion genes were downloaded from
the Tumor Fusion Gene Data Portal (https://tumorfusions.org/
PanCanFusV2/database).

Single-Nucleotide Polymorphism
Correlation and Copy Number Variation
Analysis
Driver gene analysis was performed by GenePattern (https://
cloud.genepattern.org/gp/pages/index.jsf) with corresponding
MutSigCV module (Reich et al., 2006). Maftools of R package
was used for mutation spectrum to identify mutations in tumor
samples. SomaticSignatures was applied for mutation detection
and plots the mutation spectrum and mutation characteristics
(Gehring et al., 2015; Mayakonda et al., 2018). The GISTIC
algorithm was used to detect the common CNV regions in
all samples with q-value <0.05, including chromosome arm
horizontal CNV and the smallest common region between
samples. For chromosomal mutation, a region ratio higher
than 0.98 was recognized as a chromosomal arm alternative
site. Tumor purity and ploidy analysis were performed based
on CNV results using R-package Absolute (https://software.
broadinstitute.org/cancer/cga/absolute_download).

Subgroup Identification and Molecular
Characteristics Analysis
Unsupervised clustering algorithmwas applied to cluster the data
from four different platforms (DNA copy, DNA methylation,
mRNA expression profile, miRNA expression profile), and
subpopulations were identified based on each data platform
analysis. The cluster-of-clusters analysis (CoCA) was used to
recluster the obtained classification results and integrated the
subgroup classification results from different data platforms
(Hoadley et al., 2014; Chen et al., 2016).

Chi-statistical tests were performed on each subgroup
and clinical features, including tumor stage, differentiation
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grade, HPV infection, and the association relationship
between each subgroup and clinical features. Furthermore,
we applied the R package Seurat (https://satijalab.org/seurat/)
FindAllMarkers to preform characteristic marker screening
of subpopulations including mRNA, miRNA, and methylation
profiles. Subpopulation genemutation characterization:Maftools
was applied for each subgroup mutation type (C > T, T > C,
C > A, T > G, C > G, T > A, converting Ti, translating Tv).
Statistical analysis was performed to compare the differences
in the types of mutations between subgroups and used for
the identification of co-mutation/exclusion mutation genes
and mutation signature analysis. In addition, comparing the
difference features between subgroups, APOBEC (apolipoprotein
B mRNA editing enzyme, catalytic polypeptide-like) enrichment
analysis was performed to count the TCW (W refers to G or T)
and non-TCWmutation ratio. Genes with significant differences
in the proportion of mutations in each subpopulation were
screened for further analysis.

Subgroup CNV characteristics: each subgroup was checked
for the copy number changes of all chromosomes, counting

the samples with copy number changes for each chromosome
segment in each subgroup and performing chi-square test. The
identified region is filtered by significantly different copy number
changes for chromosome segments in each subgroup.

Statistical Analysis
Two-tailed Student’s t-test was used to compare the means of
two groups. One-way ANOVA analysis of variance with Tukey–
Kramer post-hoc test was used for analyzing data when means
from more than two groups were compared. P < 0.05 was
considered to be statistically significant. All the statistical analysis
was performed with SPSS 17.0 statistical software.

RESULTS

Patient Cohort and Molecular Analysis
Strategy
To identify and characterize cervical cancer genome alterations,
tissue specimens were analyzed by multiple genomic assays,
including whole-exome sequencing formutations, SNP arrays for

FIGURE 1 | A summary of the genes mutated in 284 cervical cancer samples. (A) Variant classification; (B) Varian type; (C) SNV class; (D) Variants per sample; (E)

Variant classification summary; (F) Top 10 mutated genes.
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copy number analysis, mRNA sequencing, miRNA sequencing,
and DNA methylation arrays (Supplementary Table 1). Totally,
284 cases were available for the multiplatform, and the
clinical characteristics of the included patients are presented in
Supplementary Table 2. The mean age at initial diagnosis of
cervical cancer was 46 years, with a range of 20–88 years. Among
them, 233 patients (81.7%) were squamous cervical cancer, 46
were adenocarcinoma, and five were adenosquamous carcinoma.
After a median follow-up period of 636 days, 221 patients
suffered death.

Mutation Landscape of Cervical Cancer
Massively parallel sequencing was performed to detect somatic
mutations on tumor samples from the cohort of cervical cancer
patients. Here, 233 patient samples (82.04%) have been detected
to have somatic mutations, and a total number of 83,386 somatic
mutations were obtained, including 50,644 missense mutations.
SNV occurs predominantly in cervical cancer, with C > T being
the most common type of mutation. Figure 1 showed a summary
of the genes mutated in cervical cancer. The top 10 mutated
genes were TTN, PIK3CA, MUC4, KMT2C, MUC16, KMT2D,
SYNE1, FLG, DST, and EP300, with a mutation rate from 12 to
33% (Figures 1F, 2A,B).

We then described the mutation spectrum and mutational
signatures among cervical cancers and identified 96 types
of mutation signatures (Figure 2C). Mutational signatures of

cervical cancer were enriched in deficiency of DNA mismatch
repair (COSMIC Signature 6; cosine similarity: 0.895), APOBEC-
cytidine deaminase (COSMIC Signature 2; cosine similarity:
0.846), and spontaneous deamination of 5-methyl cytosine
(COSMIC Signature 1; cosine similarity: 0.951) (Figure 2D).

Copy Number Variation of Cervical Cancer
Applying GISTIC to detect CNV, the most frequent chromosome
arm-level CNVs included losses in 4p, 11p, and 11q and gains in
20q, 3q, and 1q (Figure 3A). Besides, 25 focal deletion peaks and
21 focal amplification peaks were detected (Figure 3B). Among
them, the most significant amplification region was 3q26.31 and
11q22.1, while the most marked deletion region was 11q24.2
and 2q37.2 (Figure 3B). We used ABSOLUTE to estimate tumor
purity and tumor ploidy. As described in Figure 3C, tumor
purity was in range in 0.21–1 and the ploidy was 1.70–9.87,
suggesting genomic disorder was a common phenomenon in the
development of cervical cancer.

Molecular Classification
To derive a molecular classification for cervical cancer, we
performed unsupervised consensus clustering of tumor CNV
profiles, methylation profile, mRNA profile, and miRNA profile,
respectively, finally detecting four statistically significant
expression subtypes. Firstly, hierarchical clustering was
performed according to CNV profile, resulting in 284 samples

FIGURE 2 | Mutation distribution in cervical cancer patients. (A,B) Frequency of specific mutation genes. (C,D) Mutation signature analysis.
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FIGURE 3 | Copy number variation (CNV) of cervical cancer. (A) Chromatin amplification and deletion. (B) Genome-wide distribution of chromatin amp and del. (C)

Purity and ploidy of cervical cancer.

divided into two subtypes (Figure 4A). Then, gene methylation
data of 284 cervical tumor tissues were clustered, and cases
were divided into a higher cluster and lower cluster based
on the clustering results (Figure 4B). However, the effect of
clustering was not obvious based on mRNA or miRNA profile.
Therefore, unsupervised clustering of all samples based on
CNV profile and methylation profile was further performed
for molecular classification. Finally, unsupervised clustering
defined four subtypes that had diverse CNV and methylation
events using COCA approach. Cluster 1 was enriched for
CNV and poor in methylation. Cluster 2 was enriched for
methylation and poor in CNV. Cluster 3 was poor in both CNV
and methylation. Cluster 4 was enriched for both CNV and
methylation (Figures 4C,D).

We then analyzed the correlation between each subgroup
and clinical characteristic, including pathology, differentiation,
TNM stage, HPV integration, and survival status. As shown in
Figure 5, with respect to pathology, squamous cell carcinoma,
adenosquamous carcinoma, and adenocarcinoma had significant
differences in the distribution of four subpopulations, especially,
Cluster 3 is almost squamous cell carcinoma. In addition,

comparing the distribution of HPV integration samples,
HPV integration was significantly different among the four
subpopulations, with the highest proportion of HPV integration
samples in Cluster 2. We then analyzed gene mutation in these
four clusters (Figure 5), 81 gene mutations showed differences
across clusters. Of note, mutation samples were more frequent
in Cluster 3 than in other clusters, further suggesting Cluster
3 has special molecular mutation characteristics. Distinguishing
the characteristic genes of each subgroup, we calculated the
differentially expressed genes, miRNAs, and methylation of each
subgroup. Several specific high expression genes were identified
in cluster 2, and one specific high expression gene (MAL) was
identified in cluster 1. However, there was no specific high
expression gene in clusters 3 and 4. These results indicated that
cluster 2 was significantly different from other subgroups in gene
expression and had its special molecular features. In clusters
2 and 3, 182 and 138 special methylation sites were detected,
commenting on 130 and 96 genes, respectively. Functional
enrichment analysis showed these genes were involved in bone
morphogenesis and skeletal development (Figure 5). In Cluster
4, 104 special methylation sites were detected, commenting on
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FIGURE 4 | (A) Copy number variation (CNV) landscape in cervical cancer. Hierarchical clustering of CNV data, with the heatmap showing beta values ordered by

CNV clusters. (B) DNA methylation landscape in cervical cancer. Unsupervised clustering of DNA methylation data, with the heatmap showing beta values ordered by

DNA methylation clusters. (C,D) Cluster-of-clusters analysis (CoCA) clustering for subgroup identification.

92 genes. Functional enrichment analysis showed these genes
were involved in Rap1 pathway, hypoxia-inducible factor (HIF)-1
pathway, and cell adhesion (Figure 5).

Moreover, after analyzing the mutation types among the
four subtypes, the results showed that all these four subtypes
were mainly C > T mutation and the conversion ratio
was generally higher than the transversion ratio (Figure 6A).
Mutually exclusive or co-occurring events were determined by
Fisher exact test, and there weremore co-mutated genes in cluster
3 and no exclusive mutations were detected in all subpopulations
(Figure 6B). APOBEC enrichment analysis showed that the
majority samples were APOBEC enriched samples (Figure 6C).
Further signature analysis showed that signatures 1, 2, and 13
were involved in clusters 1, 2, and 4, and signatures 6 and 10 were
involved in cluster 3 (Figure 6D).

With respect to CNV, seven deletion regions and 22
amplification regions were identified, showing significant
differences across clusters. Both CNV samples and CNV values
in clusters 2 and 3 were less compared with those of clusters 1
and 4 (Figure 7A), suggesting that the main factor promoting
tumor in clusters 2 and 3 was not CNV but mutation. Tumor
purity and tumor ploidy were analyzed by using ABSOLUTE.
As described in Figure 7B, tumor purity showed no difference

among subgroups, whereas tumor ploidy showed a difference
between cluster 1 (mean= 3.75) and cluster 3 (mean= 3.32) and
between cluster 2 (mean = 3.80) and cluster 3 (mean = 3.32).
With respect to fusion gene detection, 5UTR-3UTR was only in
cluster 2 (Figure 7C), and CDS-3UTR was only in clusters 1 and
4. Thus, fusion genes varied in different clusters.

Identification of Drive Mutation
As it is both clinically important and challenging to distinguish
high-risk cervical cancer patients with poor progression and
prognosis, we sought to identify molecular features associated
with poor prognosis. Combining the above multidimensional
datasets, a series of genes associated with poor prognosis was
identified, including 77 genes in cluster 1, 17 genes in cluster
2, 92 genes in cluster 3, and 20 genes in cluster 4. Further
Mut2sigC analysis finally identified a total of 10 unique driver
genes, including GPR107, CHRNA5, ZBTB20, Rb1, NCAPH2,
SCA1, SLC25A5, RBPMS, DDX3X, and H2BFM.

DISCUSSION

Previous studies have implicated somatic mutations in PIK3CA,
TP53, STK11, EP300, FBXW7, and HLA-B in the pathogenesis of
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FIGURE 5 | The cluster-of-clusters analysis separated 276 cervical cancers into four clusters. Upper covariate tracks show (A) clinical characteristics; (B) mutations in

top 10 different mutated genes across four clusters; and (C) copy number variation (CNV) in 1p, 1q, 3q, 3p, 12p, 19q, and 20p. (D) The heatmap shows methylation

in cervical cancers.

cervical carcinomas (Ojesina et al., 2014; Bager et al., 2015). As
expected, in the current study, recurrent mutations in PIK3CA,
EP300, and FBXW7 were presented in 32, 12, and 7% cervical
patients, respectively, consistent with similar findings in previous
reports (Ojesina et al., 2014). In addition, we found significantly
recurrent mutations in TTN (33%), MUC4 (31%), and MUC16
(19%), here reported for the first time, to our knowledge,
in cervical carcinomas. The most frequently mutated gene in
the current study is titin (TTN). The 364 exon TTN gene
encodes TTN, the largest known protein, playing key structural,
developmental, mechanical, and regulatory roles in cardiac and
skeletal muscles (Gerull et al., 2002; Chauveau et al., 2014).
Missense mutation of TTN was detected in 85% lung squamous
cell carcinoma and predicted a favorable prognosis of these
diseases (Cheng et al., 2019). More recently, TTN mutation was
reported to predict an increased tumor mutational burden, a
beneficial response to immune checkpoint blockade treatment,
and a long survival among pan-solid tumors, including cervical
cancer (Jia et al., 2019). MUC4, a transmembrane glycoprotein,
was involved in many different biological processes such as
cell proliferation, cell death, invasion, and metastasis (Singh

et al., 2007). MUC4 was activated during the process of cervical
squamous dysplastic transformation (Lopez-Ferrer et al., 2001),
aberrantly expressed in cervical cancer (Munro et al., 2009),
and associated with lymph node metastasis (Munro et al.,
2009). Abrogation of MUC4 expression reduces invasion and
the mesenchymal properties of cervical cancer cells (Xu et al.,
2017). We observed MUC16 mutation in our dataset, similar
to recent reports in gastric cancers (Li et al., 2018b). Therefore,
the recurrent site-specific TTN and MUC4 mutations and the
known role of these genes in cancer suggest the possibility that
mutant TTN and MUC4 may exert oncogenic activity in cervical
cancer. Further validation of these results is required in the
future, especially the predictive role of TTN in cervical cancer
immunotherapy response.

Pathway analyses revealed that the most significantly mutated
gene set in cervical cancer involved a deficiency of DNA
mismatch repair, APOBEC-cytidine deaminase, and spontaneous
deamination of 5-methyl cytosine. Previous study has described
deficient DNAmismatch repair as a common phenomenon in the
process of cervical cancer development (Nijhuis et al., 2007; Feng
et al., 2018). APOBEC-cytosine deaminase activity has recently
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FIGURE 6 | Differentiation between clusters including (A) mutation, (B) co-mutated genes, (C) APOBEC enriched samples, and (D) mutation signature analysis.

emerged as a significant mutagenic factor in human cancer.
APOBEC activity served as a key driver of PIK3CA mutagenesis
and HPV-induced transformation in head and neck squamous
cell carcinomas (Henderson et al., 2014). Moreover, APOBEC
cytidine deaminase mutagenesis pattern has been detected in
human cervical cancer (Roberts et al., 2013). Our current
results further support the concept that deficient DNAmismatch
repair and APOBEC-mediated mutagenesis were carcinogenic in
the cervix.

CNV is a very common phenomenon and contributes to
gene transcript expression in cervical cancer (Dellas et al., 2003;
Narayan et al., 2007; Yan et al., 2017). In our genome-wide CNV
analysis, the most prevalent gains are detected at the 3q26.31
and 11q22.1, while the most frequent deletions are at 11q24.2
and 2q37.2, consistent with previous reports (Rao et al., 2004;
Narayan et al., 2007). These observations further suggest genomic
disorder was a common phenomenon in the development of
cervical cancer.

Molecular classification may prove more clinically impactful
compared to traditional histopathological classifications in terms
of treatment predictions and predicting patient prognosis.
Based on the above comprehensive genetic alterations, using
a “cluster-of-clusters” analytic approach, we identified four
major genomic subtypes of cervical cancer. Cluster 2 was
enriched in methylation and poor in CNV. HPV integration
was most enriched in cluster 2 with lots of overexpressed
genes. Rb-1 was detected as the driver mutation in this
subgroup, suggesting that HPV integration unregulated lots
of genes via methylation, especially the driver gene Rb-1,
abrogated cell cycle arrest, and stimulated proliferation in
cervical cancer. More recently, cervical cancer with Rb1mutation
is reported to be more sensitive to cisplatin through PI3K/AKT
pathway. Cluster 3 was characterized by poor CNV and poor
methylation, most of which were squamous carcinoma. In
this subgroup, co-mutations were common events. NCAPH2,
SCA1, and SLC25A5 were identified as driver mutations.
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FIGURE 7 | Differentiation between clusters including (A) copy number variation (CNV) counts, (B) tumor purity and tumor ploidy, and (C) fusion gene types.

Cluster 4 was enriched both for CNV and methylation. In
this subgroup, RBPMS,DDX3X和H2BFM were identified as
driver mutations.

Our study represents the first integrated multidimensional
molecular and computational investigation of somatic mutations
in cervical cancer, which strongly complements previous gene-
and pathway-focused studies. Cervical cancer is a heterogenous
disease likely driven by multiple genomic disorders. We
tried to elucidate the driver gene(s) and potential molecular
subtypes of cervical cancer by using a public database. In the
current study, we integrated multi-omics data including somatic
mutation, CNV, DNA methylation, and miRNA profile, depicted
a comprehensive genomic landscape of cervical cancer, and
then performedmolecular classification, finally identifying driver
genes, such as GPR107, ZBTB20, NCAPH2, and SLC25A5. These
results contribute to the identification of clinically important
biomarkers and potential treatment targets. However, this paper
also has some limitations. Firstly, majority samples of selected
cohorts were confirmed as squamous cancers, limited numbers
of different histologic types and para-cancer tissues working as
control, which might bring bias into the classification process.
As for the unsupervised classification, we used COCA, a two-
step approach, to build binary matrix from multiple omics,
and then returned a global clustering structure. The algorithm
COCAwas first introduced in TCGA network (2012), combining
and summarizing the clustering structures, even if the original
datasets (level 1/2) are unavailable to the public. Yet, we should

notice that the first step combination of such clustering structures
from each dataset is unweighted, which might make the output
of the algorithm sensitive to the inclusion of poor-quality
datasets. Therefore, biologic functions of these driver genes
in cervical cancer remain to be verified, which is now under
further exploration.
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