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Analyzing host cells’ transcriptional response to severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) infection will help delineate biological processes underlying

viral pathogenesis. First, analysis of expression profiles of lung cell lines A549 and

Calu3 revealed upregulation of antiviral interferon signaling genes in response to all three

SARS-CoV-2, MERS-CoV, or influenza A virus (IAV) infections. However, perturbations in

expression of genes involved in inflammatory, mitochondrial, and autophagy processes

were specifically observed in SARS-CoV-2-infected cells. Next, a validation study in

infected human nasopharyngeal samples also revealed perturbations in autophagy

and mitochondrial processes. Specifically, mTOR expression, mitochondrial ribosomal,

mitochondrial complex I, lysosome acidification, and mitochondrial fission promoting

genes were concurrently downregulated in both infected cell lines and human samples.

SARS-CoV-2 infection impeded autophagic flux either by upregulating GSK3B in lung cell

lines or by downregulating autophagy genes, SNAP29, and lysosome acidification genes

in human samples, contributing to increased viral replication. Therefore, drugs targeting

lysosome acidification or autophagic flux could be tested as intervention strategies.

Finally, age-stratified SARS-CoV-2-positive human data revealed impaired upregulation

of chemokines, interferon-stimulated genes, and tripartite motif genes that are critical for

antiviral signaling. Together, this analysis has revealed specific aspects of autophagic and

mitochondrial function that are uniquely perturbed in SARS-CoV-2-infected host cells.

Keywords: COVID-19, SARS-CoV-2, transcriptomics, co-expression network analysis, inflammation

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-coronavirus and the cause
of the Coronavirus Disease 2019 (COVID-19) pandemic. Lack of effective treatment strategy and
vaccine makes SARS-CoV-2 infection a big threat to human health and well-being. Understanding
the cellular processes impacted in the host cells responding to a virus infection will be necessary to
understand the virus pathogenesis and to develop drug intervention strategies.
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COVID-19 presents as a wide range of clinical manifestations,
ranging from asymptomatic to respiratory failure or multiorgan
and systemic manifestations (Cascella et al., 2020; Ludwig
and Zarbock, 2020; Wang C. et al., 2020; Zhu et al.,
2020). This viral pneumonia outbreak caused by SARS-CoV-
2 was first identified in Wuhan, China, in December 2019
(Chan et al., 2020). Since then, the virus has continued to
spread globally, with a current transmissibility estimate (R0)
between 3 and 4 (Fung et al., 2020; Yuen et al., 2020).
Several drugs are currently under various phases of clinical
trials, and management strategies include supportive medical
care for existing cases and social distancing for prevention.
Understanding this novel pathogen and the host response
it elicits is crucial to combatting the emerging threat to
public health.

SARS-CoV-2 is the 7th and most recent addition to human
coronaviruses (hCoVs), which include four globally endemic
hCoVs that cause a substantial portion of upper respiratory
infections (229E, OC43, HKU1, and NL63), as well as two other
highly pathogenic strains that have also caused recent pandemics
[SARS-CoV and MERS-CoV (Fung et al., 2020; Raoult et al.,
2020) in 2002–2003 and 2012, respectively (De Wit et al.,
2016)]. All seven hCoVs are single-stranded, positive-sense RNA
viruses (Ludwig and Zarbock, 2020). They all have zoonotic
origins, with bats as the evolutionary reservoir host of five
viruses (229E, NL63, SARS-CoV, MERS-CoV, and SARS-CoV-
2). Although SARS-CoV-2 is phylogenetically similar to both
MERS-CoV, and SARS-CoV (Wu et al., 2020), there are biological
differences. Notably, although SARS-CoV-2 has a lower, but yet
undeterminedmortality rate, it is distinctly more contagious than
these other highly pathogenic hCoVs, causing vastly different
epidemiological dynamics.

The hCoVs differentially infect the human respiratory tract.
The low pathogenic hCoVs infect the upper respiratory tract,
and the highly pathogenic hCoVs infect the lower respiratory
tract (Channappanavar and Perlman, 2017). Consistent with
this, SARS-CoV, SARS-CoV-2, and MERS-CoV were shown
to differentially infect the lung alveolar cell subtypes in
cynomolgus macaques (Rockx et al., 2020) and SARS-CoV
elicited distinct immune response in different tissues (To
et al., 2004). Furthermore, cell tropism study of the SARS-
CoV and SARS-CoV-2 in different cell type cultures could
partially explain the symptomatic differences of these two virus
infections (Chu et al., 2020). Single cell (sc) transcriptomic data
of the COVID-19 lung tissue have been analyzed to identify
the subset of cells most prone to the SARS-CoV-2 infection
and the marker genes associated with the infected cells. One
such study intriguingly identified upregulation of the receptor-
angiotensin-converting enzyme 2 (ACE2) in the SARS-CoV-2-
infected type II pneumocyte population of the lung cells as a
potential mechanism facilitating virus infection (Ziegler et al.,
2020). Several studies have linked the expression of ACE2 and
TMPRSS2 with increased susceptibility to viral entry (Hoffmann
et al., 2020; Walls et al., 2020; Yan et al., 2020). In addition
to ACE2 and TMPRSS2, another study has shown that the
neuropilin-1 (NRP1) could act as a host cofactor and facilitate
viral entry (Daly et al., 2020).

One of the intriguing aspects of COVID-19 is that the
infection leads to a wide range of the symptoms. The
infected patients may be asymptomatic or may present mild
to severe symptoms, which likely arise from altered immune
response (Garcia, 2020). A dysregulated immune response is
caused by rapid viral replication, cytokine storms, delayed
interferon response, and macrophage infiltration and excessive
proinflammatory cytokines (Channappanavar and Perlman,
2017; Garcia, 2020). This immunopathogenesis mechanism is
supported by the observation of decreased viral loads occurring
with increased disease severity (De Wit et al., 2016). Severity
of illness for SARS-CoV-2 infections is likely impacted by both
the direct cytotoxic effects of the virus, and the effectiveness
of the complex host response (Mar et al., 2018; Astuti and
Ysrafil, 2020; Chen G. et al., 2020). However, efforts to
understand the molecular mechanisms driving different clinical
outcomes require further study to help develop appropriate drug
intervention strategies.

To delineate the host cell transcriptional response to the viral
infection and potentially identify genes and biological processes
(BPs) specifically impacted by SARS-CoV-2 infection, we have
utilized gene expression information from several datasets
from cell lines (Blanco-Melo et al., 2020), and from human
nasopharyngeal samples (Lieberman et al., 2020) classified into
young and old groups that were positive for high or low viral
loads (see Figure 1, study schema). To facilitate SARS-CoV-2
viral entry, A549 cells transduced with human ACE2 (hACE2)
infected with SARS-CoV-2 were utilized (see Methods). The
transformed A549 cells and Calu3 cells both revealed viral
reads when infected with SARS-CoV-2 (Blanco-Melo et al.,
2020). Viral infection in the transduced A549 cells and Calu3
cells presented in this dataset was confirmed by evaluating the
percent reads that aligned with the viral genome for each of the
infected samples and has been published (Blanco-Melo et al.,
2020). Analysis of gene expression profiles of cells infected with
either SARS-CoV-2, MERS-CoV, or influenza A virus (IAV)
comparisons revealed upregulation of interferon signaling genes.
However, the SARS-CoV-2 infection uniquely elicited differential
expression of genes involved in inflammation, autophagy, and
mitochondrial processes. To validate the findings from cell
lines, expression profile of the SARS-CoV-2-positive human
nasopharyngeal samples was analyzed. Consistent with the cell
line data, the differentially expressed (DE) genes from control
vs. infected human samples also annotated to inflammation,
autophagy, and mitochondrial processes. Notably, mTOR,
mitochondrial ribosomal, mitochondrial complex I, lysosome
acidification genes, and mitochondrial fission promoting genes
were downregulated in both cell line and human datasets.
Perturbation of the mitochondrial function and autophagy
could negatively impact the host cells’ immune response
against the viral infection leading to systemic inflammation
(Won et al., 2015; Jang et al., 2019). Decreased expression
of mitochondrial fission promoting genes may contribute to
hyperfused mitochondria and impaired interferon response
(Barbier et al., 2017; Das and Chakrabarti, 2020). In the cell
lines, the autophagy flux impeding GSK3B was upregulated.
In the infected human samples, several autophagy genes,
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p62 and SNAP29, were downregulated. Together, these gene
expression changes support the idea that the autophagic flux
is likely decreased in SARS-CoV-2-infected cells, which may
contribute to viral propagation. Therefore, drugs increasing
autophagic flux, or lysosome acidification, could be tested as
treatment strategies. Furthermore, the gene expression profile
of A549 cell line strongly correlated with the lung epithelial
lineage basal and ionocyte cell types from the lung single-
cell (sc) RNA-seq data. This correlation suggests that the
gene expression profile of A549 cells likely reflects lung cells’
response to the SARS-CoV-2 infection. Using the age-stratified
human nasopharyngeal expression data, we have also delineated
some age-specific changes in antiviral signaling, which may
provide more insight into the age-dependent differences in viral
pathogenicity. Therefore, from this analysis, we have identified
some key aspects of autophagy and mitochondrial processes that
are uniquely impacted in SARS-CoV-2 infection and are likely
representative of host cells’ response to the infection.

RESULTS

To perform an in-depth analysis of the host cells’ transcriptional
response to SARS-CoV-2 infection, several gene expression
datasets from different cell lines and human samples were used.
An overview of the datasets analyzed and compared are depicted
in Figure 1 (study schema).

Interferon Autophagy and Mitochondrial
Processes Are Impacted in A549 Cells
Infected With SARS-CoV-2
SARS-CoV-2 (High Viral Titer) vs. Mock
Differential gene expression analysis of hACE2 receptor-
transduced A549 lung epithelial cell line that was either
mock-infected or infected with SARS-CoV-2 at higher viral
titer (2MOI) [see Methods (Blanco-Melo et al., 2020)] identified
∼8,000 DE genes. The volcano plot profiles both upregulated
and downregulated genes in the SARS-CoV-2-infected cells
(Supplementary Figure 1A, Supplementary Table 3: Sheet
1). Pathway enrichment analysis of the DE genes showed
enrichment in a wide range of BPs (Supplementary Figure 1B,
Supplementary Table 4: Sheet 1). These DE genes were classified
into upregulated or downregulated following SARS-CoV-
2 infection and analyzed by pathway enrichment analysis.
Upregulated DE genes annotated to a wide range of pathways,
notably including the interferon signaling, NFkB/cytokine
signaling processes, and proteasomal degradation (Figure 2A,
Supplementary Table 4: Sheet 2). Heatmaps highlight the
upregulation of genes in interferon and cytokine processes,
and perturbation of genes in the autophagy pathways
(Figures 2B–D, respectively). DE genes downregulated
in the SARS-CoV-2-infected cells annotated to pathways
primarily involving cell cycle and mitochondrial processes
(Figure 2E, Supplementary Table 4: Sheet 3). A heatmap
shows that the expression of the genes in mitochondria-related
processes, electron transport chain, and respiration was mostly
downregulated in SARS-CoV-2-infected cells (Figure 2F).

SARS-CoV-2: Low Viral Titer vs. High Viral Titer
Differential gene expression analysis of hACE2-transduced
A549 cells infected with mock and a 10-fold lower viral titer
of SARS-CoV-2 [see Methods (Blanco-Melo et al., 2020)] was
also performed. The resulting DE genes could be compared to
the DE genes from mock vs. SARS-CoV-2 infection at higher
viral titer (Figure 2). Given the exposure of cells to a lower viral
titer, the number of DE genes from this comparison was smaller
(4,494 genes) vs. the comparison of high titer SARS-CoV-2
against mock (∼8,000 genes) (Supplementary Figure 1C,
Supplementary Table 3: Sheet 2). Analysis of the 4,494 DE genes
showed significant enrichment in inflammation, autophagy
and mitochondrial processes (Supplementary Figure 1D,
Supplementary Table 4: Sheet 4). To further assess the extent
of overlap BPs between low MOI and high MOI A549 cell
datasets, the pathway enrichment results were graphically
summarized and presented in a single map. This pathway
summary map overlays the pathway enrichment results of
mock vs. high titer SARS-CoV-2-infected cells on top of
the mock vs. low virus titer infected cells to show processes
exclusively (single-color nodes) or commonly (double-color
nodes) enriched between the two datasets. This analysis
confirmed that perturbation in autophagy, inflammation, and
mitochondrial processes were enriched by DE genes from
both datasets (i.e., high and low MOI infected A549 cells)
(Figure 2G).

Correlation of Expression Profiles Between Cell Lines

and Lung Cell Types
The results presented in the section above and in subsequent
sections used gene expression profiles of A549 (that were
transduced with hACE2) and Calu3 lung cell lines. How close
these cell lines are to lung cells was assessed by evaluating
the correlation of the gene expression profiles of cell lines
with lung cells using the scRNA-seq information from lung.
First, using the scRNA-seq data, cell-type expression profile
was computed as the mean expression across cells within
each cell type. The top 1,000 genes with the highest variance
among the 57 cell-type expression profiles were selected as
highly variable genes, which were presumably informative for
differentiating the 57 cell types. Next, the expression profiles
of lung cell lines were compared with the expression profile
of (hACE2-transduced) A549 and Calu3 cell lines. Correlation
between the highly variable genes from lung scRNA-seq data
and either A549 or Calu3 cells was calculated and plotted
(Supplementary Figure 1E). This analysis revealed that the
hACE2-transduced A549 cell gene expression strongly correlated
with the basal and ionocyte lung cell subpopulations, which both
represent lung epithelial cell lineage (Morrisey, 2018; Schiller
et al., 2019). These data suggest that the A549 cells’ response
to SARS-CoV-2 infection likely reflects lung cells’ response to
the same infection. The Calu3 cells showed a similar pattern
but a lower correlation with the lung cell types analyzed
(Supplementary Figure 1E).

The correlation analysis (presented above) suggests that
the BPs impacted in SARS-CoV-2-infected A549 cells is
likely impacted in the SARS-CoV-2-infected lung epithelial
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FIGURE 1 | Study schema. A schema highlighting the various datasets used in the study and the downstream analysis performed for each dataset is shown as a flow

chart. The datasets utilized in this study are divided into two groups: Blue boxes highlight the cell lines used in the study. The viruses used for infection are indicated

between gray horizontal lines. The green box represents the human nasopharyngeal datasets and the age and viral load criteria used to classify these samples. For

each pair of infected and control samples, DE analysis was performed to identify DE genes and pathway enrichment analysis was performed to reveal the biological

processes to which the DE genes annotated to (shown in the flow chart). From the cell line data, the DE genes and pathway enrichment results were compared to

identify BPs that were either uniquely perturbed in SARS-CoV-2 infection or were commonly perturbed in all viral infection (blue lines with arrowhead leading to the

blue box). For validating the findings from the cell line data, the DE results from infected human nasopharyngeal samples were analyzed. Specifically, the DE results

from the A549 dataset (highlighted in orange box) was compared with the DE results from old age control vs. high viral load positive human nasopharyngeal samples

(highlighted in orange box). This comparison will help identify concordant gene expression changes and BPs impacted in both datasets (gray line with arrowhead

leading to orange box). Finally, using the age-stratified human nasopharyngeal datasets, age-specific gene expression changes were delineated (green boxes). DE,

differential expression; BPs, biological processes; MOI, multiplicity of infection.

cells too. However, given the limitations of analyzing lung
cell line data, gene expression analysis of lung samples
from patients with severe or mild COVID-19 will help
test if these processes are differently impacted depending
on the severity of the disease. Together, these results
support that SARS-CoV-2 infection impacts the expression
of genes involved in the cytokine signaling, autophagy,
and mitochondria/respiration.

Comparing SARS-CoV-2 Infection in

hACE2-Transduced A549 and Calu3 Cell Lines
A number of studies have been published that focused on
identifying receptors used by SARS-CoV-2 to delineate viral
entry mechanisms. Several of these studies have identified
Angiotensin-Converting Enzyme 2 (ACE2) as the receptor
that interacts with the SARS-CoV-2 spike protein to mediate
viral entry (Li et al., 2007; Shang et al., 2020). Furthermore,
TMPRSS2 and TMPRSS4, which are two membrane-bound
serine proteases, were found to facilitate viral entry into
the cells (Iwata-Yoshikawa et al., 2019; Hoffmann et al.,
2020; Zang et al., 2020). Analysis of the gene expression

datasets of A549 and Calu3 cells revealed that ACE2 and
TMPRSS2 genes are highly expressed in the latter and showed
robust gene expression changes in response to SARS-CoV-
2 infection (Supplementary Table 3: Sheet 3). To facilitate
SARS-CoV-2 infection, A549 cells were transduced with
hACE2 vector (Blanco-Melo et al., 2020). The gene expression
profile of SARS-CoV-2-infected A549 and Calu3 cells was
compared and the correlation of gene expression between
infected A549 and Calu3 cells was determined. We found
significant correlation (R = 0.68, p < 2.2e−16) between
gene expression of SARS-CoV-2-infected A549 and Calu3
cells (Supplementary Figure 2A). Furthermore, 65% of DE
genes from mock vs. SARS-CoV-2 in Calu3 comparison
overlapped with DE genes from the respective A549 comparison
(Supplementary Figure 2B). Finally, we plotted a pathway
enrichment summary map by using the pathway enrichment
results from mock vs. SARS-CoV-2 comparison in A549
and Calu3 cells (Supplementary Figure 2C). Overlaying the
pathway analysis results from A549 over Calu3 revealed an
overlap of a wide range of BPs including the interferon,
neutrophils, mitochondrial, and autophagy processes between
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FIGURE 2 | SARS-CoV-2 infection of hACE2 transduced lung epithelial A549 cells impacts expression of genes in interferon, cytokine, and autophagic processes. (A)

Top 25 pathways from the pathway enrichment analysis of genes upregulated in the SARS-CoV-2-infected A549 cell is presented as a horizontal bar plot, where the x

axis represents the –log10-transformed q-value and the color of the horizontal bar is scaled blue to red representing low to high q-values, respectively. (B) Heatmap

highlighting the expression of genes in the interferon processes in mock and infected cells. The red and green color bands represent up- and downregulated genes,

respectively. This heatmap shows that cytokine-related genes were predominantly upregulated in infected cells. (C) Heatmap highlighting the expression of genes in

the cytokine processes in mock and infected cells. The red and green color bands represent up- and downregulated genes, respectively. This heatmap shows that

interferon-related genes were predominantly upregulated in infected cells. (D) Heatmap highlighting the expression of genes in the autophagy-related processes in

mock and infected cells. The red and green color bands represent up- and downregulated genes, respectively. This heatmap shows that autophagy-related genes

were perturbed in infected cells. (E) Top 25 pathways from the pathway enrichment analysis of gene upregulated in SARS-CoV-2 infection is presented as a horizontal

bar plot, where the x axis represents the –log10-transformed q-value and the color of the horizontal bar is scaled blue to red representing low to high q-values,

respectively. (F) Heatmap highlighting the expression of genes in the mitochondrial organization and translation in mock and infected cells. The red and green color

bands represent up- and downregulated genes, respectively. This heatmap shows that mitochondrial process-related genes were predominantly downregulated in

infected cells. (G) Pathway enrichment summary map for mock vs. SARS-CoV-2 at high MOI (blue nodes) and low MOI (red nodes) comparisons. Each node

represents a pathway/biological process (BP). The node size is proportional to the number of DE genes overlapping with the BP. The nodes that share genes are

connected with edges. Single color nodes are pathways that are distinctly enriched by DE genes from one comparison. Two colored nodes are pathways enriched by

DE genes from both comparisons. The label above each black circle summarizes the gene ontology (GO) terms of similar BPs present inside the circle. Notable

groups of BPs associated with antigen processing, autophagy and mitochondria that were predominantly enriched by DE genes from Mock vs. SARS-CoV-2 (high

MOI) comparison and are highlighted in red. BP associated interferon and UPR processes were also predominantly enriched by DE genes from Mock vs. SARS-CoV-2

(high MOI) comparison. MOI, multiplicity of infection; DE, differentially expressed; UPR, unfolded protein response.

the two datasets (Supplementary Figure 2C). Together, these
results show that, upon ACE2 expression, the gene expression
changes in infected A549 cells is highly correlated with infected
Calu3 cells.

Network Analysis Identified
Protein–Protein Interaction Subnetworks of
Genes Involved in Interferon, Inflammation,
and Mitochondrial Translation
SARS-CoV-2 vs. Mock: Network Analysis
To further understand the potential BPs in play during
SARS-CoV-2 infection, we performed a consensus weighted
gene coexpression network analysis (WGCNA) (Langfelder and

Horvath, 2008) on combined, batch-corrected (see Methods),
gene expression values of mock and SARS-CoV-2 infected
at low and high titer cells, to identify clusters/modules of
correlated gene. WGCNA identified more than 47 coexpression
modules. The overlap of genes in each of these modules with
significant DE genes from mock vs. SARS-CoV-2 infected
at high titer is presented in the cluster dendrogram where
each correlated module is represented by a color, and their
overlap with DE genes is shown in horizontal bars (Figure 3A,
Supplementary Table 1).

First, pathway enrichment analysis of the correlated DE
genes in the blue module showed significant annotation
to the mitochondria, immunity, and mRNA/transcription
processes (Figure 3B, Supplementary Table 4: Sheet 5). Using
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FIGURE 3 | Consensus network analysis of hACE2-transduced mock and SARS-CoV-2-infected (high and low MOI) A549 cells. (A) Cluster dendrogram showing

correlated genes grouped into clusters marked by different colors on the horizontal block labeled “Consensus Module Colors.” The DE genes in each cluster is marked

as a black vertical line in the horizontal block labeled “DE genes.” The up- and downregulated genes are shown as red and blue vertical lines in a block labeled

“Upregulated/downregulated genes,” respectively. (B) Top pathways from the pathway enrichment analysis of correlated DE genes in the blue module is presented as

a horizontal bar plot, where the x axis represents the –log10-transformed q-value and the color of the horizontal bar is scaled blue to red representing low to high

q-values, respectively. (C) Protein–protein interaction (PPI) subnetworks in the blue module is presented where each node represents a gene and the border color of

the nodes indicate upregulation (red) and downregulation (blue) in SARS-CoV-2-infected A549 cells (high MOI) compared to mock-infected cells. The edge between

the nodes indicate interaction based on the GeneMANIA database information. The network shows a highly connected interactome of interferon-stimulated genes

(ISGs) that are coordinately upregulated in infected cells. (D) Another PPI subnetwork identified in the blue module shows several highly interconnected mitochondrial

ribosomal (MRP) and complex I (NDUF) genes. Each node represents a gene and the border color of the nodes indicate upregulation (red color) and downregulation

(blue) in SARS-CoV-2-infected A549 cells (high MOI) compared to mock-infected cells. Additional interactome of MYD88 TRAF3 and TLR3 genes that were

coordinately upregulated in infected cells can be seen (top left). (E) NDUFV1 transcript level reported as fold change in beta-coronavirus-infected HCT-8 cells

compared to control (no infection) HCT-8 cells. Student’s t-test p-value = 2E-07. (F) Top pathways from the pathway enrichment analysis of correlated DE genes in

the turquoise module is presented as a horizontal bar plot, where the x axis represents the –log10-transformed q-value and the color of the horizontal bar is scaled

blue to red representing low to high q-values, respectively. (G) MRPL20 and MRPL43 transcript levels reported as fold change in beta-coronavirus-infected HCT-8

cells compared to control (no infection) HCT-8 cells. Student’s t-test p-value = 8E-08 and 0.007. (H) A PPI subnetwork of correlated DE genes in the turquoise

module shows a well-connected interactome of genes encoding mitochondrial ribosomal proteins, mitochondrial coiled-coil-helix-coiled-coil-helix domain proteins,

and cytochrome oxidase. Each node represents a gene and the border color of the nodes indicates upregulation (red color) and downregulation (blue) in

SARS-CoV-2-infected cells (high MOI) compared to mock-infected cells. DE, differentially expressed; MOI, multiplicity of infection.

the GeneMANIA (Franz et al., 2018) database, protein–
protein interaction (PPI) subnetworks for the DE genes in
this module/cluster were identified. This analysis identified
two PPI subnetworks of genes involved in interferon signaling
(Figure 3C), TLR3 and MYD88 (Figure 3D), and mitochondrial
translation and complex I genes (Figure 3D). Consistent with
the expression level of complex I genes in the RNA-seq
data, the mRNA level of NDUFV1 was down in beta-
coronavirus-infected HCT-8 cells whenmeasured by quantitative
real-time polymerase chain reaction (qRT-PCR) (Figure 3E).
Together, from these data, we concluded that the interferon
signaling and inflammation genes were upregulated, and

mitochondrial genes were downregulated in SARS-CoV-2-
infected cells.

Next, pathway enrichment analysis of DE genes from
the turquoise module revealed significant annotation to
viral gene expression and apoptosis processes (Figure 3F,
Supplementary Table 4: Sheet 6). Using GeneMANIA database,
a PPI subnetwork of genes encoding the mitochondrial
ribosomal proteins that were mostly downregulated in SARS-
CoV-2-infected cells was also identified (Figure 3G). Consistent
with the RNA-seq data, mRNA levels of the mitochondrial
ribosomal genes MRPL20 and MRPL43 were downregulated
in beta-coronavirus-infected HCT-8 cells when measured by
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qRT-PCR (Figure 3H). Together, these data suggest that SARS-
CoV-2 infection results in a coordinated change in the interferon
signaling, inflammation, and mitochondrial processes.

Gene Expression Changes Associated With
SARS-CoV-2 Infection Is Distinct From IAV
Infection With Minor Overlaps
SARS-CoV-2 vs. IAV
To compare the expression profile of SARS-CoV-2-infected
cells with other virus-infected cells, DE analysis of mock- vs.
IAV-infected cells was performed and the up- and downregulated
genes are presented in a volcano plot (Supplementary Figure 3A,
Supplementary Table 3: Sheet 4). The pathway analysis of the
DE genes from this comparison showed enrichment in
protein translation, localization, and anti-viral responses
(Supplementary Figure 3B, Supplementary Table 4:
Sheet 7). Additionally, genes upregulated in the IAV-
infected cells annotated to pathways for virus response,
protein trafficking, and unfolded protein response (UPR)
(Figure 4A, Supplementary Table 4: Sheet 8). Genes that were
downregulated in IAV-infected cells enriched in vacuole- and
lysosome-related processes (Figure 4B, Supplementary Table 4:
Sheet 9). Interestingly, few DE genes from the mock vs. SARS-
CoV-2 overlapped with the DE genes from mock vs. IAV
comparison (Supplementary Figure 3C).

A pathway enrichment summary map was created by
overlaying the pathway enrichment results of the mock
vs. IAV comparison on top of the mock vs. SARS-CoV-
2 comparison. Consistent with the DE genes comparison
(Supplementary Figure 3C), the enrichment map also
highlighted little overlap of pathways between the two
comparisons. DE genes from both comparisons commonly
enriched in a subset of pathways associated with protein
trafficking (Figure 4C). Furthermore, only a subset of the
interferon pathway genes and a few chemokine genes that were
upregulated in SARS-CoV-2-infected cells were also upregulated
in IAV-infected cells, while the autophagy and inflammation
genes remained mostly unchanged in the latter. Therefore,
upregulation of cytokine/inflammation, changes in autophagy,
and downregulation of the mitochondrial processes were
uniquely observed in SARS-CoV-2-infected cells. Upregulation
of DE genes involved in the cytokine/inflammation processes
is consistent with cytokine storm observed in severe cases of
COVID-19 patients. Since these observations were made by
analyzing the gene expression changes in a lung cell line, future
studies profiling gene expression changes in severe COVID-19
patients’ lung samples will be needed to confirm these findings.

SARS-CoV-2-Infected Cells Share Some
Gene Expression Signature With
MERS-CoV-Infected Cells With Few
Exceptions
SARS-CoV-2 vs. MERS-CoV
Comparison of gene expression profiles revealed that SARS-
CoV-2-infected cells are distinct from those of IAV-infected
cells (Figure 4). Although these are both viruses, they are

not phylogenetically close. Therefore, we next compared
the gene expression profiles of SARS-CoV-2- and MERS-
CoV-infected cells, since both are hCoVs. DE analysis of
the mock- vs. SARS-CoV-2-infected Calu3 lung carcinoma
cells identified several up- and downregulated genes
(Supplementary Figure 4A, Supplementary Table 3: Sheet
3). Pathway enrichment analysis showed annotation of the
DE genes to cell cycle, inflammation, and apoptosis processes
(Supplementary Figure 4B, Supplementary Table 4: Sheet 10).
A pathway enrichment summary map for mock vs. SARS-CoV-2
and mock vs. MERS-CoV comparisons was generated to assess
the extent of overlap of pathways between the two datasets
(Figure 5A). Notably, the DE genes from both comparisons
enriched in the mitochondria, autophagy, cell cycle, and
UPR processes. However, DE genes from mock vs. SARS-
CoV-2 comparison predominantly enriched in inflammation,
cytokine signaling, and immunity-related processes (Figure 5A).
Consistently, genes upregulated in the SARS-CoV-2-infected
Calu3 cells enriched in inflammation and nuclear factor kappaB
(NFkB) processes (Figure 5B, Supplementary Table 4: Sheet
11), while upregulated genes from both hCoV-infected cells
annotated to protein trafficking and small GTPase signaling
(Figures 5B,C, Supplementary Table 4: Sheets 11 and 12). On
the other hand, genes downregulated in both comparisons
commonly annotated to mitochondrial processes (Figures 5D,E,
Supplementary Table 4: Sheets 13 and 14). These findings
suggest that perturbation of autophagy and mitochondrial genes
are common gene expression signatures associated with hCoV
infection, but the SARS-CoV-2 virus almost exclusively impacts
the cytokine/inflammatory processes in the lung cells. It is likely
that perturbation of mitochondrial processes and autophagy may
lead to a dysfunctional immune response (Won et al., 2015; Jang
et al., 2019). Further studies will be required to understand if
and how these processes may contribute to inflammation during
SARS-CoV-2 infection.

Validation of Findings From Cell Line Data
in SARS-CoV-2-Positive Human Samples
Comparing SARS-CoV-2-Positive vs. -Negative

Human Nasopharyngeal Expression Profile With A549

Dataset
The gene expression profiling of the A549 and Calu3 cell line
data revealed that perturbations in inflammatory, autophagy, and
mitochondrial processes were unique to coronavirus infections.
To validate the findings from SARS-CoV-2-infected lung cell
lines, we analyzed the gene expression profiles of SARS-
CoV-2-positive human nasopharyngeal samples. DE analysis
of SARS-CoV-2-positive vs. -negative samples revealed up-
and downregulated genes (Supplementary Table 3: Sheet 5).
Concurrent with the cell line data, the pathway enrichment
analysis of the DE genes revealed significant annotation
to inflammation, autophagy, and mitochondrial processes
(Supplementary Figure 5A, Supplementary Table 4: Sheet 15).
Approximately 60% of the DE genes from the SARS-CoV-
2-infected human samples comparison overlapped with the
infected A549 cell data (Supplementary Figure 5B). Of this,
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FIGURE 4 | SARS-CoV-2 infection of A549 lung epithelial cells results in distinct gene expression changes that are not seen in IAV infection. (A) Top 25 pathways from

the pathway enrichment analysis of DE genes upregulated in IAV-infected cells is presented as a horizontal bar plot, where the x axis represents the

–log10-transformed q-value and the color of the horizontal bar is scaled blue to red representing low to high q-values, respectively. (B) Top 25 pathways from the

pathway enrichment analysis of DE genes downregulated in IAV-infected cells is presented as a horizontal bar plot, where the x axis represents the

–log10-transformed q-value and the color of the horizontal bar is scaled blue to red representing low to high q-values, respectively. (C) Pathway enrichment summary

map for mock vs. SARS-CoV-2 (blue nodes) and mock vs. IAV (red nodes) comparisons. Each node represents a pathway/biological process (BP). The node size is

proportional to the number of DE genes overlapping with the BP. The nodes that share genes are connected with edges. The label above each black circle

summarizes the gene ontology (GO) terms of similar BPs present inside the circle. Single-color nodes are pathways that are distinctly enriched by DE genes from one

comparison. Two-colored nodes are pathways enriched by DE genes from both comparisons. Notable groups of BPs associated with NFkB, ROS, autophagy and

mitochondria are highlighted in red. DE genes from Mock vs. SARS-CoV-2 comparison exclusively enriched in highlighted BPs.

∼50% of the DE genes were concurrently downregulated in both
datasets (i.e., human samples and A549 cells) and significantly
annotated to the autophagy, immunity, and mitochondrial
processes (Supplementary Figure 5C). Since age (Wang D. et al.,
2020) and viral load (Liu et al., 2020) can determine the severity
of the COVID-19 outcome, the human samples were further
classified into young (<40 years) and old (>60 years) with low or
high viral load positive samples. Consistent with the SAR-CoV-2-
positive vs. -negative human data, the DE genes from the control
vs. high viral load in both old and young subjects significantly
annotated to inflammation, autophagy, and mitochondrial
processes [Figure 6A (old subject), Supplementary Table 3:
Sheets 7 and Sheet 9, and Supplementary Table 4: Sheets 16
and 17]. When the pathway enrichment result from the old
human subjects (that were high viral load positive) was overlaid
on the pathway enrichment results from A549 cells, transduced
hACE2 infected with high MOI of SARS-CoV-2, autophagy,
NFkB, oxidative stress, and mitochondrial processes were
commonly perturbed in both datasets (Figure 6B). Together,
these observations suggest that across cell types, SARS-CoV-2
infection alters the cells’ autophagy and mitochondrial processes

and that perturbations in these processes may impede an effective
immune response leading to severe outcomes.

Delineating the Age and Viral Load Impact on

SARS-CoV-2 Response in Human Nasopharyngeal

Samples
The human nasopharyngeal samples were classified into young
and old samples with low or high viral load to delineate either
age specific or viral load specific gene expression changes in
response to infection. The analysis in control vs. infected (with
either low or high viral load) young or old samples helped identify
DE genes that significantly annotated to autophagy, neutrophils,
and mitochondrial processes (Supplementary Table 3: Sheets 6–
9), which is consistent with the pathway enrichment results from
SARS-CoV-2-infected A549 cell line data (Figure 2). However,
in-depth gene expression analysis of the human data revealed
some concurrent gene expression changes between cell line
and human datasets, and some sample specific changes. Genes
encoding the mTOR (Figure 6C), mitochondrial ribosomal
genes, mitochondrial complex I genes, and lysosome acidification
genes were downregulated in all of the SARS-CoV-2-positive
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FIGURE 5 | SARS-CoV-2 and MERS-CoV infection have some common and some distinct gene expression signatures. (A) Pathway enrichment summary map for

mock vs. SARS-CoV-2 (blue nodes) and mock vs. MERS-CoV (red nodes) comparisons in Calu 3 cells. Each node represents a pathway/biological process (BP). The

node size is proportional to the number of DE genes overlapping with the BP. The nodes that share genes are connected with edges. The label above each black

circle summarizes the gene ontology (GO) terms of similar BPs present inside the circle. Single-color nodes are pathways that are distinctly enriched by DE genes from

one comparison. Two-colored nodes are pathways enriched by DE genes from both comparisons. Notable groups of BPs associated with immunity, ROS, autophagy,

and mitochondria are highlighted in red. These notable groups of BPs were commonly enriched by DE genes from both SARS-CoV-2 and MERS-CoV comparisons.

The DE genes from mock vs. SARS-CoV-2 comparison predominantly enriched in inflammation and immunity-related processes. (B) Top 25 pathways from the

pathway enrichment analysis of DE genes upregulated in SARS-CoV-2-infected Calu3 cells is presented as a horizontal bar plot, where the x axis represents the

–log10-transformed q-value and the color of the horizontal bar is scaled blue to red representing low to high q-values, respectively. (C) Top 25 pathways from the

pathway enrichment analysis of DE genes upregulated in MERS-CoV-infected Calu3 cells is presented as a horizontal bar plot, where the x axis represents the

–log10-transformed q-value and the color of the horizontal bar is scaled blue to red representing low to high q-values, respectively. (D) Top 25 pathways from the

pathway enrichment analysis of DE genes downregulated in SARS-CoV-2-infected Calu3 cells are presented as a horizontal bar plot, where the x axis represents the

–log10-transformed q-value and the color of the horizontal bar is scaled blue to red representing low to high q-values, respectively. (E) Top 25 pathways from the

pathway enrichment analysis of DE genes downregulated in MERS-CoV-infected Calu3 cells is presented as a horizontal bar plot, where the x axis represents the

–log10-transformed q-value and the color of the horizontal bar is scaled blue to red representing low to high q-values, respectively. DE: differentially expressed.

human samples as well as in SARS-CoV-2-infected A549
cells (Supplementary Table 3: Sheet 1). Additionally, autophagy
initiation, nucleation genes, p62 (SQSTM1), SNAP29, and
MITF were specifically downregulated in SARS-CoV-2-positive
human samples, which indicates decreased autophagic flux in
infected samples (Figure 6C and Supplementary Figure 6D).
Furthermore, antioxidant encoding SOD1 (Fukai and Ushio-
Fukai, 2011) gene, the oxidative stress sensor PARK7 (DJ-1)
(Wang et al., 2016), and mitochondria fission promoting SOCS6
(Lin et al., 2013) were also downregulated in infected human
samples (Figure 6C). Finally, several cytokine/inflammation
process genes were downregulated in infected human samples,
which was opposite to the upregulation of these genes in SARS-
CoV-2-infected A549 cells (Supplementary Table 3: Sheet 1).

There were several age- and viral load-dependent gene
expression changes observed in the human nasopharyngeal
samples, which are described below. Several interferon pathway
genes were upregulated in high viral infected young and old
samples. However, the upregulation of these genes in high

viral load positive old samples was muted compared to the
corresponding young samples (Supplementary Figure 6A). The
difference in interferon genes induction was most prominent
in low viral load positive samples, as unlike the young samples
where most of these genes were upregulated, in old samples,
these interferon genes were significantly downregulated
(Supplementary Figure 6A). Similarly, ADAP2 [which is
an interferon-stimulated gene (ISG)], antiviral tripartite
motif family E3 ligase TRIM38, chemokine CCL4 and its
receptor CCR5, and WARS1 encoding the Tryptophanyl-tRNA
Synthetase were all robustly down in old, low viral dose positive
samples compared to the age-matched control (Figure 6C).
In response to the high viral titer infection, both CCL4 and
CXCR5 were upregulated more robustly in young subjects
compared to old subjects. Consistent with the expression in
the nasopharyngeal samples, robust upregulation of CCL4 and
CXCR5 mRNAs was also observed in HCT-8 cells infected with
the beta-coronavirus compared to the control cells by qRT-PCR
(Figure 6D). Upregulation of chemokine signaling may be a
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FIGURE 6 | Gene expression profiling of human nasopharyngeal samples. (A) Top 25 pathways from the pathway enrichment analysis of DE genes from control vs.

high viral load positive old age human samples is presented as a horizontal bar plot, where the x axis represents the –log10-transformed q-value and the color of the

horizontal bar is scaled blue to red representing low to high q-values, respectively. (B) Pathway enrichment summary map for control vs. high viral load positive human

samples (blue nodes) and mock vs. SASR-CoV-2 (red nodes) comparisons in hACE2-transduced A549 cells. Each node represents a pathway/biological process

(BP). The node size is proportional to the number of DE genes overlapping with the BP. The nodes that share genes are connected with edges. The label above each

black circle summarizes the gene ontology (GO) terms of similar BPs present inside the circle. Single-color nodes are pathways that are distinctly enriched by DE

genes from one comparison. Two-colored nodes are pathways enriched by DE genes from both comparisons. Notable groups of BPs associated with immunity,

autophagy, and mitochondria are highlighted in red. These notable groups of BPs were commonly enriched by DE genes from both comparisons. (C) Heatmap of the

mean expression values of the indicated genes in young and old human samples that were negative (control) or positive with either high or low viral loads of

SARS-CoV-2 virus. The indicated genes are broadly grouped into four different processes using a vertical bar present on the right side of the heatmap. The orange

and blue color bands represent upregulated and downregulated genes, respectively. (D) CCL4 and CXCR5 chemokine and receptor transcript levels reported as fold

change in beta-coronavirus-infected HCT-8 cells compared to control (no infection) HCT-8 cells. Student’s t-test p-value = 3E-04 and 1.7E-05.

common host cell response to coronaviruses. Together, these
data suggest age-specific differences in host transcriptional
response to SARS-CoV-2 infection. However, further analysis of
the infected lung samples from old and young patients will be
required to test if these differences may be causing more severe
outcomes in older patients.

Gene Expression Analysis of a Severe
COVID-19 Lung Sample Shows
Exaggerated Immune/Inflammation
Response
Healthy vs. COVID-19 Lung Biopsy Samples
The gene expression analysis of the SAR-CoV-2-infected
A549 and Calu3 cell lines revealed upregulation of the
cytokine/inflammatory processes. However, this observation
was inconsistent with the human nasopharyngeal expression
profile where inflammatory process genes were downregulated.
This difference could arise due to disparate cell type being

compared, or that severe inflammatory symptoms may arise
in severe case of COVID-19. Since the human nasopharyngeal
data did not include clinical symptoms indicating the severity
of COVID-19 in the samples whose sequence were analyzed,
we could not stratify the samples based on disease severity.
However, to test if the cytokine/inflammatory processes were
also impacted in COVID-19 lungs, RNA-seq data from the
healthy and COVID-19 lung biopsy were analyzed. It should be
noted that COVID-19 lung biopsies were technical replicates and
therefore statistical significance of this analysis is limiting. Future
studies involving bigger sample size will be required to confirm
these observations. Nevertheless, the gene expression profile of
a SARS-CoV-2-infected lung was distinct from healthy lungs
with up- and downregulated genes highlighted in the volcano
plot (Supplementary Figure 7A, Supplementary Table 3:
Sheet 10). The pathway enrichment summary map and the
plot showed that the DE genes predominantly annotated
to the inflammation, ROS, and leukocyte/monocyte-related
pathways (Supplementary Figure 7B). Furthermore, the
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DE genes upregulated in the COVID-19 lungs enriched
in the anti-viral response processes, cytokine secretion,
immune cell proliferation/migration, and inflammation
(Supplementary Figure 7C, Supplementary Table 4: Sheet 18).
The downregulated genes were significantly enriched in protein
trafficking, RNA metabolism, and oxygen-sensing processes
(Supplementary Figure 7D, Supplementary Table 4: Sheet 19).
It is likely that perturbations in the oxygen-sensing processes are
reflective of the severe respiratory distress often seen in severe
COVID-19 patients due to reduced oxygenation ability of the
failing lungs.

DISCUSSION

Highly pathogenic hCoVs are known to infect the lower
respiratory airways and cause severe acute respiratory syndrome
(SARS) (Channappanavar and Perlman, 2017). The recently
discovered SARS-CoV-2 virus is the cause of COVID-19
(Tammaro et al., 2020). The clinical manifestations of this virus
infection include fever, cough, fatigue, respiratory distress, and
cardiac injury (Chen N. et al., 2020; Guan et al., 2020; Huang
et al., 2020). While some patients with COVID-19 suffered
from mild symptoms, other patients had increasingly life-
threatening symptoms (Guan et al., 2020). Age and underlying
medical conditions such as diabetes and hypertension are likely
to determine the severity of the symptoms (Wang D. et al.,
2020). Analyzing the gene expression profiles of host cells
infected with SARS-CoV-2 will be necessary to decipher the
subcellular functions perturbed by this virus and to inform drug
development strategies.

Here, we present an in-depth differential expression analysis
of A549 and Calu3 cell lines, comparing mock to infection
with either SARS-CoV-2, IAV, or MERS-CoV. Since A549 cells
lacked expression of ACE2, TMPRSS2, or TMPRSS4 that is
required for SARS-CoV-2 viral entry into the cells (Iwata-
Yoshikawa et al., 2019; Hoffmann et al., 2020; Zang et al.,
2020), A549 cells transduced with hACE2 were used. Upon
SARS-CoV-2 infection at low and high MOI, viral transcripts
were detected in these cells indicating infection (Blanco-Melo
et al., 2020). Concurrently, we also observed strong correlation
between SARS-CoV-2-infected Calu3 and hACE2-transduced
A549 cells, suggesting that SARS-CoV-2 infection of the lung cell
lines results in similar gene expression profile. Furthermore, we
report that (i) SARS-CoV-2 infection impacted the expression of
genes in inflammation, cell cycle, reactive oxygen species (ROS),
autophagy, and mitochondrial processes, which were absent in
IAV-infected cells; (ii) while perturbation in autophagy and
mitochondrial processes is common in hCoV infections (SARS-
CoV-2 and MERS-CoV), we found that increased expression
of the inflammatory/cytokine signaling genes was exclusively
observed in SARS-CoV-2-infected lung cells; (iii) coexpression
network analysis helped identify a cluster of genes involved
in inflammation and mitochondrial translation process that
were either coordinately up- or downregulated in SARS-
CoV-2-infected cells, respectively. Together, these data suggest
that perturbation in the autophagy, mitochondrial processes

in SARS-CoV-2-infected lung cells could hinder an effective
immune response (Won et al., 2015; Jang et al., 2019) and
increase inflammation, which is often seen in severe COVID-
19 patients suffering from cytokine storm (Channappanavar and
Perlman, 2017; Mehta et al., 2020). Since these conclusions were
made using the data from virus-infected lung cell lines, the
correlation between these cells’ expression profiles and marker
gene expression from different lung cell types were determined.
While the A549 cells showed robust correlation with lung
epithelial lineage basal and ionocyte cells, Calu3 cells showed
a similar pattern but lower correlation with these cell types.
Therefore, the processes delineated in SARS-CoV-2 A549 cells
likely represent the lung epithelial cells response to SARS-
CoV-2 infection. To further substantiate the cell line findings,
the gene expression profiles of SARS-CoV-2-positive human
nasopharyngeal samples were used for validation. Analysis of
control vs. SARS-CoV-2-positive samples helped identify DE
genes that significantly annotated to the autophagy, NFkB,
oxidative stress, and mitochondrial processes. Using the patient
information available from this dataset, the samples were
grouped into young (<40 years) and old (>60 years) that were
either positive with low or high viral load. Comparing the gene
expression and pathway enrichment results of old age samples
with that of A549 high MOI data revealed a wide range of BPs
that were commonly perturbed in both datasets. Therefore, this
analysis has delineated several BPs, discussed in more detail
below, that are impacted in the SARS-CoV-2-infected host cells.

Some complement genes (C1S and C1R) were specifically
upregulated in high viral titer SARS-CoV-2-infected cell lines.
Consistently, the C1q/TNF-related protein 6, a glycoprotein
that regulates complement activation, was downregulated in
both SARS-CoV-2-infected cells and human samples. This
gene is implicated in arthritis, and intra-articular injection of
the recombinant C1qTNF6 protein was shown as an effective
strategy in improving arthritis and inflammation in C1qtnf6–/–
mice (Murayama et al., 2015). An elevated complement
response could likely lead to excessive inflammation, which
was also observed in MERS-CoV infection of the hDPP4-
transgenic mouse model (Jiang et al., 2018). Additionally,
several past studies have highlighted the interplay between the
complement and coagulation systems (Skoglund et al., 2010;
Oikonomopoulou et al., 2012). It is likely that the increased
thrombosis in COVID-19 patients (Bikdeli et al., 2020) is a
result of excessive complement activation. Further assessment of
complement activation in COVID-19 patients will be required to
confirm this. Together, these observations suggest that inhibition
of the complement system as potential treatment strategies could
be tested.

Infection of A549 cells with SARS-CoV-2 at higher viral
titer perturbed autophagy; upregulated genes in the interferon,
cytokine, nuclear factor kappaB (NFkB), and reactive oxygen
species (ROS) processes; and downregulated genes in the
mitochondrial and electron transport chain processes.
Consistently, analysis of DE genes in one of the correlated
clusters from WGCNA showed significant enrichment in the
interferon signaling processes. Additionally, GeneMANIA
analysis of the correlated DE genes in two modules revealed
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PPI subnetworks of genes involved in ISGs and NFkB, which
were both mostly upregulated in the infected cells. In addition
to the ISGs, the JAK-STAT signal transduction genes, which
play critical role in type I cytokine (such as IL6) signaling and
inflammation (Leonard and O’shea, 1998; O’brown et al., 2015;
Banerjee et al., 2017), were also upregulated in the SARS-CoV-
2-infected A549 cells (Figure 4C). IL6, a pleotropic cytokine,
was shown to be elevated in critically ill COVID-19 patients
(Chen X. et al., 2020). Consistently, IL6 was upregulated in
the SARS-CoV-2-infected cells. IL6 acts via the JAK-STAT
signaling through SOCS3 protein kinase (also upregulated in
SARS-CoV-2-infected cells) to activate the immune response
(Brocke-Heidrich et al., 2004). Excessive IL6 causes excessive
inflammation as seen in arthritis (Srirangan and Choy, 2010).
However, the inflammatory/cytokine gene expression profile
in the virus-infected human nasopharyngeal samples was
distinct from the cell line data. In the infected nasopharyngeal
samples, most of the cytokine/inflammatory process genes were
significantly downregulated compared to the control. These
discordant inflammatory gene expression profiles between two
datasets may be due to different cell types being compared
(A549 is a lung cell line, and human nasopharyngeal samples are
predominantly squamous epithelial cells), or the upregulation of
cytokine/inflammatory processes genes in SARS-CoV-2-infected
A549 cells may represent a severe COVID-19 infection state.
Due to lack of clinical information describing the disease state
of subjects whose nasopharyngeal samples were analyzed,
we could not test this possibility in the nasopharyngeal
dataset. However, analysis of the COVID-19 lung biopsy
samples revealed significant upregulation of genes enriched in
cytokine/inflammatory processes. Therefore, upregulation of IL6
and NFkB genes may contribute to the inflammatory symptoms
observed in severe COVID-19 patients (Channappanavar
and Perlman, 2017; Mehta et al., 2020). These data support a
central role for cytokine signaling in COVID-19 pathogenesis.
Treatment strategies aimed at mitigating the cytokine effects or
complement system could be tested in treatment of COVID-19.
One such clinical trial aimed at mitigating the IL6 effects is
already underway (NCT04322773). Furthermore, another study
showed decreased mortality in patients treated with tocilizumab,
which blocks IL6 (Somers et al., 2020).

Analysis of young (<40 years) and old (>60 years)
nasopharyngeal samples also revealed some age-specific changes
in the gene expression profile. Notably, the ISGs (IFIT1, IFIT2,
and IFIT3) were upregulated in both low and high viral load
SARS-CoV-2-positive young samples. Upregulation of these
genes in high viral load infected old age samples were, however,
less robust. Furthermore, in the low viral load positive old
samples, most of the interferon genes (except IFIT3) were
downregulated. In addition to the interferon genes, ADAP2,
which is an ISG (Shu et al., 2015), TRIM5, which is a retroviral
restriction factor (De Silva and Wu, 2011), tripartite motif
TRIM22, and TRIM38 were significantly downregulated in low
viral load positive old samples compared to age-matched control.
The latter two genes are involved in innate immunity and in
restricting viral infections (Barr et al., 2008; Lian and Sun,
2017). Moreover, the Tryptophanyl-tRNA Synthetase encoding

WARS1, which stimulates immunity against viral infection
(Lee et al., 2019), chemokines CXCL11, CCL4, and CCL4
receptor CCR5 were also significantly downregulated in low viral
load positive old samples compared to age-matched control.
Chemokine CXCL10 expression was unchanged in the low viral
load positive old samples. All these chemokines and the receptor
were upregulated in the low viral load positive young samples.
Consistent with this, qRT-PCR analysis of the CCL4 and CXCR5
transcript levels in beta-coronavirus-infected HCT-8 cells also
showed a robust upregulation of these genes in infected cells.
It should be noted that upregulation of CXCL10, CXCL11, and
IFIT2 in the nasopharyngeal samples has been proposed to
accurately predict the presence of respiratory virus infection
(Landry and Foxman, 2018). Lack of induction of these genes in
old age infected subjects may indicate an inability of the host cells
to detect viral entry. This, in combination with downregulation
of genes involved in antiviral immunity, likely contributes to
severe disease outcomes, which is consistent with severe COVID-
19 manifestations in older patients. However, more studies using
the lung biopsy samples of SARS-CoV-2-infected young and old
age patients will be required to confirm these findings.

What processes may be causing/contributing to defective
immune response in the SARS-CoV-2-infected cells? Autophagy-
and mitochondria-related processes were two other prominent
categories of the BPs that were exclusively impacted in the hCoV-
infected cells.

Gene expression analysis of SARS-CoV-2-infected A549 and
Calu3 cells revealed differential expression of genes involved in
autophagic processes. In contrast, most of the DE genes from
human nasopharyngeal sample comparison that annotated to
autophagy processes were downregulated. SARS-CoV-2-infected
A549 and Calu3 cell lines and human nasopharyngeal samples
expressed significantly low levels of mTOR and LAMTOR
genes. The regulatory associated protein of mTOR (RAPTOR)
expression was also significantly decreased in all SARS-CoV-
2-infected samples. mTOR inhibits autophagy (Kapuy et al.,
2014; Rabanal-Ruiz and Korolchuk, 2018). Consistent with
the mTOR function, the autophagy inducing microphthalamia-
associated transcription factors (MiTF/TFE) and unc-51-like
autophagy activating kinase 1 (ULK1) were upregulated in the
infected A549 cells. Concurrent with these data, inhibition of
mTORC1 in SARS-CoV-2-infected human bronchial epithelial
cells NCI-H1299 and monkey kidney cells (VeroFM) has also
been reported (Gassen et al., 2020). These observations suggest
that downregulation of mTORmay result in autophagy induction
upon SARS-CoV-2 infection in A549 cells. However, contrary
to the expression profiles of infected A549 cells, the autophagy
initiation and nucleation genes were downregulated in infected
human nasopharyngeal cells compared to control samples. It
is worth noting that a past study in mouse embryonic cells
showed that coronavirus infection induced autophagy and
that coronavirus mouse hepatitis virus (MHV) replication was
impaired in atg5–/– cells (Prentice et al., 2004). While the gene
expression data from SARS-CoV-2-infected cell lines and human
samples indicate changes in autophagy gene expression, very
little can be inferred about the changes to the autophagic flux,
which is the capacity of the cells to degrade the autophagosome
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by fusing with the lysosomes. Studies have shown that dengue
and enteroviral infections inhibit autophagic flux in host cells
by decreasing p62 or cleaving SNAP29, respectively, to facilitate
infection (Metz et al., 2015; Mohamud et al., 2018). Consistent
with this observation, we found that the autophagic flux inducing
p62 (SQSTM1) and SNAP29 gene expression level were down in
SARS-CoV-2-positive human samples. Moreover, inhibition of S-
phase kinase-associated protein 2 (SKP2) as E3 ligase decreased
Beclin1 (BECN1) degradation and increased autophagic flux,
which, in turn, decreased MERS-CoV (Gassen et al., 2019; Yang
and Shen, 2020). However, SKP2 expression in both SARS-
CoV-2-infected cell lines and human samples was significantly
low. Nevertheless, drugs known to increase autophagic flux
has been shown to impede SARS-CoV-2 infection (Gassen
et al., 2020; Gorshkov et al., 2020). It is likely that autophagic
flux is decreased in human samples by downregulation of
p62 and SNAP29 and in SARS-CoV-2-infected A549 cells
potentially through upregulation of glycogen synthase kinase
3 beta (GSK3B), which has been shown to impair lysosome
acidification (Weikel et al., 2016). Consistently, GSK3B inhibition
has been shown to increase autophagy flux in mice liver and
human pancreatic cancer cells (Marchand et al., 2015; Ren et al.,
2016). Additionally, several lysosome acidification genes were
concordantly downregulated in both SARS-CoV-2-infected A549
cells and human samples. Since impaired lysosome acidification
has been associated with impaired autophagic flux (Yim and
Mizushima, 2020), drugs targeting lysosome reacidification or
increasing autophagic flux could potentially be tested as a
therapeutic intervention to SARS-CoV-2 infection. Another
independent study also showed that beta-coronavirus deacidifies
lysosomes as a mechanism to facilitate viral infection and egress
from the host cells (Ghosh et al., 2020). Together, these findings
suggest that autophagy and regulation of autophagic flux may
be central to SARS-CoV-2 infection and that their differential
regulation may be key to the control of the infection.

In addition to changes in expression of genes involved
in autophagic processes, several genes involved in the
mitochondrial processes were downregulated in SARS-CoV-2-
infected A549 cells and human samples. This is consistent with
our current understanding that viruses either induce or inhibit
various mitochondrial processes as part of their replication and
dissemination efforts (Anand and Tikoo, 2013). Infection of cells
with SARS-CoV-2 at higher viral titer downregulated the genes
in the mitochondrial processes. Consistently, WGCNA of SARS-
CoV-2-infected A549 datasets also identified a DE gene cluster
that annotated to the mitochondrial organization and translation
processes. Subsequent GeneMANIA analysis identified a PPI
subnetwork of genes involved in mitochondrial translation,
which were coordinately downregulated in SARS-CoV-2-
infected cells. Since mitochondrial import and translation are
interlinked (Mokranjac and Neupert, 2010; Sanchez-Caballero
et al., 2016), we found that several mitochondrial complex
I and translocase genes were downregulated in the SARS-
CoV-2-infected cells. Given the extensive crosstalk between
autophagy and mitochondrial function (Graef and Nunnari,
2011; Rambold and Lippincott-Schwartz, 2011), it is likely
that perturbations in autophagy and mitochondrial processes

observed in SARS-CoV-2-infected cells are interlinked. It is
worth noting that the mTORC1 complex, which comprises the
mTOR and RAPTOR, stimulates synthesis of mitochondrial
ribosomal, complex I proteins (Morita et al., 2013, 2015) and
mitochondrial fission process 1 (MTFP1) (Morita et al., 2017).
Consistently, we found decreased expression of mitochondrial
ribosomal and complex I genes, which is likely a result of
decreased mTOR and RAPTOR expression in SARS-CoV-2-
infected cells. Additionally, decreased expression of MTFP1
that may impede mitochondrial fission resulting in hyperfused
mitochondria (Tondera et al., 2005) was specifically observed in
SARS-CoV-2-infected A549 cells. While MTFP1 gene expression
was undetectable in human nasopharyngeal samples, another
mitochondrial fission promoting SOCS6 (Lin et al., 2013) was
downregulated in these infected samples. Past studies have
shown that hyperfused or elongated mitochondria in dengue-
and SARS-infected cells can suppress interferon signaling and
innate immunity (Shi et al., 2014; Barbier et al., 2017; Das and
Chakrabarti, 2020). Furthermore, reduced complex I expression
has been found in many cancer cells and is shown to affect the
oxidative phosphorylation, which also impacts the immune cell
function (Simonnet et al., 2003; Bonora et al., 2006; Baracca et al.,
2010; Won et al., 2015; Angajala et al., 2018). Together, these data
highlight that SARS-CoV-2-infected cells have decreased mTOR
expression and perturbation in autophagy and mitochondrial
processes, which, in turn, could properly impede the immune
response to infection. Further studies will, however, be required
to delineate which of these perturbations are the direct result of
SARS-CoV-2 infection and/or contribute to pathogenesis/severe
clinical manifestations.

SUMMARY

In summary, we have presented a detailed DE and coexpression
network analysis of the RNA-seq data from SARS-CoV-2-
infected A549 cells. Using the gene expression profiles of A549
and Calu3 cells infected with IAV or MERS-CoV, we concluded
that perturbations in cytokine signaling and inflammation
processes, downregulation of genes in the mitochondrial
processes, and perturbation of autophagy were uniquely observed
in novel coronavirus-infected cells. To validate the findings from
the cell line data, gene expression analysis of control and SARS-
CoV-2-positive human nasopharyngeal samples was performed.
Consistent with the cell line data, DE genes from human
data also significantly annotated to inflammation, autophagy,
and mitochondrial processes. It is likely that perturbation of
autophagy and mitochondrial processes may impede an effective
immune response leading to severe outcomes. Furthermore,
age-stratified human nasopharyngeal was used to analyze gene
expression changes in control vs. high viral load positive
old age (>60 years) samples. This analysis also revealed
several BPs that were concordantly impacted in both cell line
and human datasets, with few differences. Specifically, genes
encoding mTOR were downregulated in infected cells, which
likely caused downregulation of mitochondrial ribosomal genes
in both cell line and human datasets. Additionally, genes
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encoding mitochondrial complex I and lysosome acidification
were also concurrently downregulated in infected cells from
both datasets. Several inflammation process genes and autophagy
genes were discordantly regulated in both datasets. It is likely
that the autophagic flux is impeded in infected cells lines
and human samples due to increased expression of GSK3B
gene or downregulation of p62 and SNAP29, respectively,
which may further promote viral propagation. These data
suggest that drugs that enhance autophagic flux or increase
lysosome acidification could be tested as intervention strategies.
Increased expression of inflammation process genes in A549
cells is likely due to these cells representing a severe COVID-
19 infection state. Consistently, we found upregulation of
inflammatory process genes in expression profiles of the COVID-
19 lung biopsy sample. These data support a central role for
cytokine/inflammation processes in COVID-19 pathogenesis.
Finally, using the age-stratified expression profiles of infected
human nasopharyngeal samples, we identified muted or
downregulation of several chemokines, ISGs, and tripartite motif
genes that are critical for innate immunity and antiviral signaling.
It is likely that defective antiviral response in old age patients in
combination with perturbations in autophagy and mitochondrial
processes could result in severe COVID-19 disease state often
seen in older population. In summary, using gene expression data
of SARS-CoV-2-infected cells, we show that viral infection of host
cells results in perturbations in specific aspects of autophagy and
mitochondrial processes. Future studies focusing on how these
perturbations either contribute to viral propagation or impede
an effective immune response will be required to gain more
understanding of the viral pathogenesis.

MATERIALS AND METHODS

Data Collection
Raw gene count matrix for bulk RNA-seq was obtained from
GEO (accession number GSE147507) (Blanco-Melo et al., 2020).
The data contained gene expression count matrix of two lung
carcinoma cell lines A549 (Lieber et al., 1976; Holownia et al.,
2016) and Calu3 (Shen et al., 1994; Martens et al., 2018). In this
dataset, the A549 treatment conditions included mock, infection
with IAV (N = 2 per group), and infection with SARS-CoV-
2 at 2 (high titer, N = 3 per group) and 0.2 (low titer, N =

3 per group) multiplicity of infection (MOI), after transduction
with a vector expressing human ACE2 (hACE2) (N = 3 per
group). The adenovirus Ad-GFP-h-ACE2 from Vector Biolabs
was used for transduction of A549 cells at 500 MOI (Blanco-
Melo et al., 2020). Subsequently, cells were infected with SARS-
CoV-2 [Isolate USA-WA1/2020 (NR-52281)] at 0.2 or 2 MOI as
indicated (Blanco-Melo et al., 2020). From this dataset, the raw
gene count matrix for two healthy human lung biopsy samples
and one COVID-19 sample (two technical replicates) and Calu3
cells infected with SARS-CoV-2 at 2 MOI (N = 3 per group)
were also analyzed. Since the A549 cells infected with SARS-
CoV-2 at high and low MOI were used in the network analysis,
and DE genes from A549 and Calu3 comparisons were used,
a boxplot of the normalized counts showed that all samples
were comparable with no outlier (data not shown). Additionally,

gene expression data in FPKM were downloaded from GEO
(accession number GSE139516) (Zhang et al., 2020) for the
Calu3 cell line infected with MERS-CoV and mock (N = 3 per
group). Differential expression analysis was performed on mock-
and MERS-CoV-infected cells for 24 h. Human lung single-cell
RNA-seq (scRNA-seq) data with 57 annotated cell types were
downloaded from Synapse (accession syn21041850) (Travaglini
et al., 2020). For validation study, human nasopharyngeal gene
expression matrix was obtained from GEO (accession number
GSE152075) (Lieberman et al., 2020). Using patient age and viral
load information, the samples were further classified into young
(<40 years) and old age (>60 years) that were either negative or
positive with low or high viral loads.

Data Analysis
RNA-Seq Analysis and Network Analysis
Differential expression analysis was performed using limma-
voom and limma trends (Law et al., 2014; Ritchie et al., 2015).
Genes with adjusted p < 0.05 were considered DE. The DE
genes were tested for pathway enrichment using clusterProfiler
and pathways with q-values (i.e., p-values corrected for multiple
comparison) < 0.05 were considered significant (Yu et al., 2012).
To perform the consensus WGCNA (Langfelder and Horvath,
2008), first the pooled control and hACE2-transduced SARS-
CoV-2-infected A549 cells at low and high titer expression data
were batch corrected using combat (from the sva R package)
(Leek et al., 2012), and the low expressing genes with count
< 5 in four out of six samples were removed. The batch-
corrected normalized count was analyzed using the WGCNA R
package (Langfelder and Horvath, 2008) with default parameters.
A total of 50 coexpressing modules were identified, of which DE
genes in correlated modules > 50 genes in size were selected
for downstream analysis. For subnetwork analysis, GeneMANIA
database (Mostafavi et al., 2008) was used to identify potential
PPI between the DE genes from the correlated modules. The PPI
networks were then overlaid with the fold-change information
using Cytoscape (Shannon et al., 2003). Prior to DE analysis
of the human nasopharyngeal gene expression data (Lieberman
et al., 2020), the gene count matrix was subset to only include
the SARS-CoV-2-positive and -negative samples that were either
<40 years (young) or >60 years (old) and exclude samples
that were positive with medium load viral titer. Using the
sva R package and batch information, the count matrix was
batch corrected across three experimental groups: control (or
negative), low viral load, and high viral load in both young
and old groups. DE analysis of this dataset was performed as
described above. DE analysis was also performed on batch-
corrected negative (control) vs. SARS-CoV-2-positive human
nasopharyngeal samples.

Code Availability
The differential gene expression and pathway enrichment results
for all the comparisons are included in the supplement. All
the R codes used to analyze the data and make figures
can be found at https://github.com/NHLBI-BCB/COVID-19_
Transcriptomics. There is no restriction on data access.
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Generating Pathway Enrichment Summary Map
The pathway enrichment summary map was generated
using the indicated pathway enrichment results presented in
Supplementary Table 4. To compare the pathway enrichment
results from two different comparisons, the “Description,”
“q-value,” and “GeneID” information from each pathway
enrichment table were used to compute similarity of the
pathways and overlap of genes between the pathways.
Using this information, the enrichment Map (Merico et al.,
2010) app in Cytoscape creates a graphical network, where
the nodes represent a pathway. If the genes annotated to
pathway is shared with another pathway (which arises
due to genes usually getting annotated to more than one
pathway), an edge is drawn between the pathway nodes
to show this information. Additionally, if DE genes from
two different comparisons were significantly annotated to
the same pathway/node, that node is highlighted with two
colors. The common terms in the pathway description were
then used to annotate/label a group of nodes using the
Enrichment Map (Merico et al., 2010) and AutoAnnotate
(Kucera et al., 2016) apps in Cytoscape. R (Foundation for
Statistical Computing, Vienna, Austria. URL https://www.
R-project.org/) was used for data visualization. The datasets
supporting the results of this article are also available from
Figshare (https://doi.org/10.6084/m9.figshare.12272351.v8)
(Mehdi, 2020).

Single-Cell RNA-Seq Analysis
Analysis of human lung single-cell RNA-seq (scRNA-
seq) data with 57 annotated cell types was performed in
R (v3.6) using Seurat (v3.1.1) (Stuart et al., 2019). The
UMI (Unique Molecular Identifier) count matrix was
filtered for genes expressed in < 3 cells and normalized
using SCTransform implemented in Seurat. DE genes were
computed for 57 cell types using FindAllMarkers implemented
in Seurat with default parameters. The UMAP plot was
plotted using the top 50 principal components computed
from the expression of highly variable genes selected
by SCTransform.

Quantitative Real-Time Polymerase Chain Reaction

(qRT-PCR) Analysis
HCT-8 cell line (CCL-244) and the RNA of HCT-8 cells
(VR-1558D) infected with OC43, a beta-coronavirus 1
strain, were purchased from ATCC. The control HCT-8
RNA was isolated after culturing the cells in RPMI medium
supplemented with 10% fetal bovine serum (Gibco). The
total RNA was isolated using the miRNeasy isolation Kit
(Qiagen). The cDNA was synthesized using SuperScriptIII
(Invitrogen). The transcripts were measured using FastStart
Essential DNA Green Master (Roche). The 18s transcript
measurements were used as control. All the primers were
ordered from Qiagen QuantiTect assay. Four technical
replicates are reported. p-values from Student’s t-test
are reported.
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Supplementary Figure 1 | (A) Volcano plot showing DE genes that were up (red

color dots) and down regulated (blue color dots) in hACE2 transduced A549 cells

infected with SARS-CoV-2 (high MOI). (B) Top 25 pathways from the pathway

enrichment analysis of the DE genes from the mock vs. SARSCoV-2 (high MOI)

comparison is presented as a horizontal bar plot, where x axis represents the

log10 transformed q-value and the color of the horizontal bar is scaled blue to red

representing low to high q-values, respectively. (C) Volcano plot showing DE

genes that were up (red color dots) and down regulated (blue color dots) in

SARS-CoV-2 (low MOI) infected A549 cells that were transduced with hACE2. (D)

Top 25 pathways from the pathway enrichment analysis of the DE genes from the

mock vs. SARS-CoV-2 (low MOI) comparison is presented as a horizontal bar

plot, where x axis represents the –log10 transformed q-value and the color of the

horizontal bar is scaled blue to red representing low to high q-values, respectively.

DE, differentially expressed; MOI, multiplicity of infection. (E) Plot showing

correlation between marker genes from different lung subpopulations (on x-axis)

and hACE2 transduced A549 and Calu3 cells lines (color coded independent

samples with legend at the bottom of the plot).

Supplementary Figure 2 | (A) Correlation plot between mean gene expression

from SARS-CoV-2 infected hACE2 transduced A549 (x axis) and Calu3 (y axis)

cells. (B) Venn diagram showing overlap between DE genes from mock vs.

SARS-CoV-2 A549 and Calu3 cell comparisons. (C) Pathway enrichment

summary map for mock vs. SARS-CoV-2 comparisons in Calu3 (blue nodes) and

hACE2 transduced A549 (red nodes) cells. Each node represents a
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pathway/biological process (BP). The node size is proportional to the number of

DE genes overlapping with the BP. The nodes that share genes are connected

with edges. The black circle outlines group the gene ontology (GO) terms of similar

BPs. Single color nodes are pathways that are distinctly enriched by DE genes

from one comparison. Two colored nodes are pathways enriched by DE genes

from both comparisons. The DE genes from both comparisons enriched in

inflammation, ROS, mitochondria, and autophagy processes.

Supplementary Figure 3 | (A) Volcano plot showing DE genes that were up (red

color dots) and down regulated (blue color dots) in IAV infected A549 cells. (B)

Top 25 pathways from the pathway enrichment analysis of the DE genes from the

mock vs. IAV comparison is presented as a horizontal bar plot, where x axis

represents the –log10 transformed q-value and the color of the horizontal bar is

scaled blue to red representing low to high q-values, respectively. (C) Venn

diagram showing DE genes overlap between mock vs. SARS-CoV-2 (High MOI)

and mock vs. IAV comparisons. DE, differentially expressed; MOI, multiplicity

of infection.

Supplementary Figure 4 | (A) Volcano plot showing DE genes that were up (red

color dots) and down regulated (blue color dots) in SARS-CoV-2 infected Calu3

cells. (B) Top 25 pathways from the pathway enrichment analysis of the DE genes

from the mock vs. SARS-CoV-2 comparison in Calu3 is presented as a horizontal

bar plot, where x axis represents the –log10 transformed q-value and the color of

the horizontal bar is scaled blue to red representing low to high

q-values, respectively.

Supplementary Figure 5 | (A) Top 25 pathways from the pathway enrichment

analysis of the DE genes from the positive (infected) vs. negative human

nasopharyngeal samples comparison is presented as a horizontal bar plot, where

x axis represents the –log10 transformed q-value and the color of the horizontal

bar is scaled blue to red representing low to high q-values, respectively. (B) Venn

diagram showing DE genes overlap between control vs. high viral load old age

human samples and mock vs. SARS-CoV-2 infected A549 cells comparisons. (C)

Pathway enrichment result of common DE genes indicates in figure (B), that were

concordantly downregulated in both datasets is presented as a horizontal bar plot,

where x axis represents the –log10 transformed q-value and the color of the

horizontal bar is scaled blue to red representing low to high q-values, respectively.

DE, differentially expressed.

Supplementary Figure 6 | Heatmap of the mean expression values of the

indicated genes in young and old human samples that were negative (control) or

positive with either high or low viral loads of SARS-CoV-2 virus is presents. (A)

Heatmap of interferon signaling genes. (B) Heatmap of mitochondrial ribosomal

genes. (C) Heatmap of mitochondrial complex I genes. (D) Heatmap of lysosome

acidification genes. The orange and blue color bands represent upregulated and

downregulated genes, respectively.

Supplementary Figure 7 | DE genes from COVID-19 lung compared to healthy

lungs show robust upregulation of immunity, cytokines, and inflammatory

processes. (A) Volcano plot showing DE genes that were up (red color dots) and

down regulated (blue color dots) in COVID-19 lung biopsy samples compared to

healthy samples. (B) Pathway enrichment summary map for healthy vs. COVID-19

lungs (technical replicates) (blue nodes). Each node represents a

pathway/biological process (BP). The node size is proportional to the number of

DE genes overlapping with the BP. The nodes that share genes are connected

with edges. The black circle summarizes the gene ontology (GO) terms of similar

BPs. The DE genes from healthy vs. COVID-19 lung comparison predominantly

enriched in inflammation and immunity related processes. (C) Pathway enrichment

result of DE genes upregulated in COVID-19 lung vs. healthy lung biopsy samples

is presented as a horizontal bar plot, where x axis represents the –log10

transformed q-value and the color of the horizontal bar is scaled blue to red

representing low to high q-values, respectively. (D) Pathway enrichment result of

DE genes downregulated in COVID-19 lung vs. healthy lung biopsy samples is

presented as a horizontal bar plot, where x axis represents the log10 transformed

q-value and the color of the horizontal bar is scaled blue to red representing low to

high q-values, respectively.

Supplementary Table 1 | Consensus module name and size (gene numbers) and

its overlap with significant genes.

Supplementary Table 2 | List of marker genes of lung cell types from single cell

RNA-seq data.

Supplementary Table 3 | Gene Differential Expression (GDE) Analysis results in

COVID-19 transcriptomics comparisons.

Supplementary Table 4 | Pathway Enrichment analysis results of GDE genes in

COVID-19 transcriptomics comparisons.
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