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Vincetoxicum versicolor (Bunge) Decne is the original plant species of the Chinese herbal medicine Cynanchi Atrati Radix et Rhizoma. The lack of information on the transcriptome and chloroplast genome of V. versicolor hinders its evolutionary and taxonomic studies. Here, the V. versicolor transcriptome and chloroplast genome were assembled and functionally annotated. In addition, the comparative chloroplast genome analysis was conducted between the genera Vincetoxicum and Cynanchum. A total of 49,801 transcripts were generated, and 20,943 unigenes were obtained from V. versicolor. One thousand thirty-two unigenes from V. versicolor were classified into 73 functional transcription factor families. The transcription factors bHLH and AP2/ERF were the most significantly abundant, indicating that they should be analyzed carefully in the V. versicolor ecological adaptation studies. The chloroplast genomes of Vincetoxicum and Cynanchum exhibited a typical quadripartite structure with highly conserved gene order and gene content. They shared an analogous codon bias pattern in which the codons of protein-coding genes had a preference for A/U endings. The natural selection pressure predominantly influenced the chloroplast genes. A total of 35 RNA editing sites were detected in the V. versicolor chloroplast genome by RNA sequencing (RNA-Seq) data, and one of them restored the start codon in the chloroplast ndhD of V. versicolor. Phylogenetic trees constructed with protein-coding genes supported the view that Vincetoxicum and Cynanchum were two distinct genera.
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INTRODUCTION

Apocynaceae is a large family of plants distributed globally, which contains around 4,500 species in approximately 370 genera (Endress et al., 2014; Fishbein et al., 2018). Vincetoxicum versicolor (also known as Cynanchum versicolor in Flora of China) belongs to the Apocynaceae family and is the original plant species of the Chinese herbal medicine Cynanchi Atrati Radix et Rhizoma (Chinese Pharmacopoeia Commission, 2015). However, the genus of this plant has not been unified due to the controversial phylogenetic relationship between the genera Vincetoxicum and Cynanchum, which may affect the Cynanchi Atrati Radix et Rhizoma application in the world. The phylogenetic relationship between Vincetoxicum and Cynanchum has been controversial since the first transfer of Vincetoxicum hirundinaria and several other Eurasian Vincetoxicum species to the genus Cynanchum by Persoon in 1805 (Persoon, 1805). Some researchers have suggested that Vincetoxicum should be grouped into the genus Cynanchum based on the corona structure similarity (Jiang and Li, 1977; Gilbert et al., 1996). On the other hand, these two genera were considered to be distinct, and Vincetoxicum was regarded as an independent genus based on molecular data and chemical substances (Qiu et al., 1989; Liede-Schumann, 2000). Besides, the second opinion is supported by studies based on some regions of the nuclear and chloroplast DNA (Yamashiro et al., 2004; Fishbein et al., 2018). Although Vincetoxicum is generally considered an independent genus in Apocynaceae taxonomy around the world (Goyder et al., 2012; Endress et al., 2014; Liede-Schumann et al., 2016; Liede-Schumann and Meve, 2018), the concept of Vincetoxicum as a section of the genus Cynanchum is still reflected in the taxonomy of modern flora in China (Feng et al., 2012; Li et al., 2012; Yang J. et al., 2018). Therefore, more evidence should be provided to promote the unification of the phylogenetic relationship between Vincetoxicum and Cynanchum.

Chloroplasts originated from ancient endosymbiotic cyanobacteria and are active metabolic centers that sustain life on Earth by converting solar energy into carbohydrates via the photosynthesis process and oxygen release (Leister, 2003; Daniell et al., 2016). Chloroplasts carry their own genomes and genetic systems. The typical angiosperm chloroplast genome has a quadripartite structure, with a genome size of 107–218 kb and gene content of 120–130 genes (Daniell et al., 2016; Kim et al., 2019). The chloroplast genome has the characteristics of uniparental inheritance, moderate nucleotide substitution rate, haploid status, and no homologous recombination (Shaw et al., 2005; Hansen et al., 2007; Yang et al., 2019b). These features make it a suitable tool for molecular identification of species and genetic diversity studies (Zhang et al., 2017; Chen et al., 2018). Moreover, the entire chloroplast genome contains more informative sites than chloroplast DNA fragments, which can provide a higher resolution of the phylogenetic relationship at multiple taxonomic levels (Yang X.-Y. et al., 2018). The development of next-generation sequencing technology has led to more and more angiosperm chloroplast genomes available, making comparative chloroplast genomics a convenient and efficient method for phylogenetic and evolutionary studies (Ge et al., 2018; Gu et al., 2019).

Next-generation sequencing not only greatly improves our ability to obtain genomic resources in non-model species but also facilitates the development of the RNA-Seq technique. RNA-Seq is an efficient technology for large scale transcriptome investigations, which provides a convenient way to obtain information from expressed genomic regions quickly and offers an opportunity to solve comparative transcriptomic-level problems for non-model organisms (Logacheva et al., 2011; Zhang et al., 2013). Transcriptome analysis provides an effective way for novel gene discovery (Emrich et al., 2007) and expression profile construction (Fox et al., 2014), as well as for molecular marker development (Zhang et al., 2013) and analysis of adaptive evolution (Jia et al., 2017). As a non-model species, V. versicolor lacks transcriptome analysis, delaying molecular studies at the transcriptional level.

RNA editing, which is identified primarily by the RNA-Seq technique, is a repair mechanism derived by species in response to abnormal DNA mutations during evolution. RNA editing is a post-transcriptional process in which the nucleotide in the transcript differs from the encoded DNA sequence by nucleotide insertion, deletion, or conversion (Takenaka et al., 2013). Most RNA editing events occur in internal codons, resulting in amino-acid substitutions. However, in some cases, the ACG codon is restored to the AUG start codon because of the C-to-U RNA editing, contributing to the conservation of the translation start signals at the gene level, which is essential for protein synthesis (Hirose and Sugiura, 1997). This editing-restored start codon has been reported in the chloroplast transcripts from maize (rpl2), tobacco (psbL), but especially in the ndhD transcript of several species, including Arabidopsis, Betula, tobacco, spinach, and snapdragon (Neckermann et al., 1994; Wang et al., 2018).

Here, we de novo assembled the transcriptome and chloroplast genome of V. versicolor and performed a comparative chloroplast genome analysis between species of the genera Vincetoxicum and Cynanchum. The aims of this study were (1) to characterize the transcriptome and chloroplast genome of V. versicolor, (2) to explore the V. versicolor molecular evolution, and (3) to provide insights into the phylogenetic relationship between the genera Vincetoxicum and Cynanchum.



MATERIALS AND METHODS


Plant Materials Collection and DNA and RNA Extraction

The young fresh leaves of a single plant of V. versicolor were collected in August 2019 from Tianjin University of Traditional Chinese Medicine (117.06°E, 38.96°N), Tianjin City, China. The voucher specimens were deposited at Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China (voucher number 2019bsbq). The collected leaves were snap-frozen in liquid nitrogen and then stored at -80°C until DNA and RNA extraction. The total DNA was extracted using the extract Plant DNA kit (QIAGEN, Germany) following the manufacturer’s instructions. Total RNA was extracted using the QIAGEN RNeasy Plant Mini Kit (QIAGEN, Germany) following the manufacturer’s instructions. The purity and concentration of DNA and RNA were checked using NanoPhotometer®spectrophotometer (IMPLEN, CA, United States) and Qubit® DNA Assay Kit in Qubit® 2.0 Fluorometer (Life Technologies, CA, United States), respectively.



DNA and RNA Sequencing, Assembly, and Annotation of Chloroplast Genome and Transcriptome

The DNA-Seq library with an average insert size of 350 bp was constructed using the Truseq Nano DNA HT Sample Preparation Kit (Illumina United States). The strand-specific RNA-Seq library was constructed using the protocol described by Zhong et al. (2011). Then, the RNA-Seq library was sequenced on the Illumina HiSeqTM 2,500 platform. Subsequently, clean DNA and RNA data were obtained by removing adaptors and low-quality reads from the raw data. The V. versicolor chloroplast genome was de novo assembled using NOVOPlasty3.7.2 (Dierckxsens et al., 2017). To validate the reads coverage of the assembled chloroplast genome, clean data were mapped to the V. versicolor chloroplast genome using bowtie 2 (Langmead and Salzberg, 2012), and the average reads coverage was 2,418×. The V. versicolor chloroplast genome was annotated using GeSeq (Tillich et al., 2017), coupled with manual corrections for the start and stop codons. Finally, the V. versicolor chloroplast genome was deposited in the National Center for Biotechnology Information (NCBI) GenBank under accession number MT558564. For the transcriptome assembly, high-quality RNA-Seq data were de novo assembled into transcripts using Trinity (Grabherr et al., 2011) with min_kmer_cov set to two and other parameters set to default. The trinity-obtained contigs were then linked into transcripts. To remove redundant transcripts and obtain the primary representative of each gene locus, only the longest transcript in each cluster was selected as the unigene for subsequent analysis. Finally, the obtained unigenes were annotated using a BLAST search against the following databases, namely KOG (euKaryotic Ortholog Groups), GO (Gene Ontology), KO (KEGG Ortholog), Swiss-Prot (a manually annotated and reviewed protein sequence database), Nr (NCBI non-redundant protein sequences), Nt (NCBI non-redundant nucleotide sequences), and Pfam (protein family).



Annotation of Functional Genes, Prediction of Biochemical Pathways, and Detection of Transcription Factors

Gene Ontology functional analysis was implemented using blast2go tool (Götz et al., 2008). The KAAS software (Moriya et al., 2007) was used to predict the biochemical pathways of the V. versicolor unigenes based on the KO database. The transcription factors were detected using the iTAK program (Zheng et al., 2016).



Identification of RNA Editing Sites

RNA-Seq reads were mapped to the chloroplast genome of V. versicolor using bowtie 2 (Langmead and Salzberg, 2012). Then, samtools was applied to call single nucleotide polymorphisms to recognize editing sites in the V. versicolor chloroplast genome.



Codon Usage Calculation

The number of codons and the relative synonymous codon usage (RSCU) were calculated using Mega X (Kumar et al., 2018). The effective number of codons (ENc) values against GC content in the third position of synonymously variable codons (GC3s) values of protein-coding genes of chloroplast genome were calculated using CodonW v1.4.4 (Peden, 1999). Then, the relationships between ENc and GC3s were analyzed using the R script.



Phylogenetic Analyses

A total of 20 chloroplast genomes (Supplementary Table 1) of 18 Apocynaceae species and two Gentianaceae species available in GenBank were collected to reconstruct phylogenetic trees. Besides, another Vincetoxicum species (V. rossicum) was added to phylogenetic analysis. Although the full-length chloroplast genome of V. rossicum was not available, its raw reads were present in NCBI Sequence Read Archive under accession number SRR934046 (Straub et al., 2013). So, a draft chloroplast genome of V. rossicum was assembled using NOVOPlasty3.7.2. The draft chloroplast genome was incomplete and contained many degenerate bases in the intergenic regions, but its protein-coding genes were complete and could be used for phylogenetic analysis. The protein-coding genes from 21 chloroplast genomes were extracted, aligned separately, and recombined to construct a matrix using PhyloSuite_v1.1.15 (Zhang et al., 2020). The generated matrix was used to conduct the Bayesian inference (BI) and Maximum likelihood (ML) phylogenies. The BI phylogenies were inferred using MrBayes 3.2.6 (Ronquist et al., 2012) under JC + I + G model, which was determined from the ModelFinder (Kalyaanamoorthy et al., 2017). The ML phylogenies were inferred using IQ-TREE (Nguyen et al., 2015) under an edge-linked partition model for 5,000 ultrafast (Minh et al., 2013) bootstraps, as well as the Shimodaira–Hasegawa-like approximate likelihood-ratio test (Guindon et al., 2010).



RESULTS AND DISCUSSION


Transcriptome Features

Illumina pair-end sequencing produced 52,502,062 raw reads for V. versicolor, and 51,764,112 clean reads were obtained after removing adaptors and low-quality data (Table 1). The base quality value Q20 and Q30 reached 97.51 and 93.01%, respectively, which indicated that the produced data could be used for further analysis. A total of 49,801 transcripts were generated in V. versicolor, of which 20,943 unigenes (N50 = 2,128 bp, average length = 1,491 bp) were identified. Most transcripts and unigenes were 1,001–2,000 bp, and the number of transcripts and unigenes over 2,000 bp were 14,787 and 5,443, respectively (Supplementary Figure 1). There were 16,895 unigenes (80.60%) for V. versicolor with at least one significant match to the databases discussed earlier and 3,177 unigenes (15.17%) with all significant matches to the databases mentioned earlier (Table 1).


TABLE 1. Summary of statistics for the transcriptomes of V. versicolor.
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Gene Ontology and Biochemical Pathways Prediction

The GO concept aims to use a common vocabulary to annotate homologous genes and protein sequences in various organisms in a flexible and dynamic way. Thus, scientists can query and retrieve genes and protein sequences based on their shared biology (Ashburner et al., 2000). The functional classification of unigenes in the GO database was assigned into three categories: biological processes, cellular components, and molecular functions (Figure 1). A total of 12,369 unigenes were assigned to the GO classification groups. In the “Biological processes” group, “Cellular process” (7,374) was the most abundant term. Regarding “Cellular components,” “Cell” (4,159), and “Cell part” (4,159) were the dominant items. In the “Molecular functions” category, “Binding” (7,101) was the largest cluster. Interestingly, the most abundant terms in the corresponding GO categories in V. versicolor were highly similar to other angiosperm transcriptomes, such as Raphanus (Mei et al., 2016), Glycyrrhiza (Jiang et al., 2020), and Dipteronia (Zhou et al., 2016). These data suggested that these gene groups are highly expressed and have functional importance in angiosperms.


[image: image]

FIGURE 1. Functional classification of unigenes of V. versicolor in GO database. GO terms were annotated according to three main categories “biological processes,” “cellular components,” and “molecular functions.”


The KO database is an integrated database resource composed of genes, protein, small molecules, reactions, pathways, diseases, drugs, organisms, and viruses, as well as more conceptual objects, aiming to assign functional meanings to genes and genomes, both at the molecular and higher levels (Kanehisa et al., 2017). For the biochemical pathways prediction in the KO database, a total of 6,705 unigenes were assigned to the KO pathways (Figure 2). The cluster for “Translation” (799) represented the largest group, followed by “Carbohydrate metabolism” (542) and “Folding, sorting and degradation” (477), which indicated that these pathways might be crucial for the V. versicolor development.
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FIGURE 2. Annotation of unigenes of V. versicolor in KO database. “A” presents “Cellular processes,” “B” presents “Environmental information processing,” “C” presents “Genetic information processing,” “D” presents “Metabolism,” and “E” presents “Organismal Systems.”




Detection of Transcription Factors

Transcription factors play pivotal roles in complex biological processes under multiple environmental signals by regulating the gene transcription through binding to specific DNA sequences in the target gene promoters (Honys and Twell, 2004). Transcription factors are generally classified into different families based on their DNA-binding domains (Jin et al., 2014). A total of 1,032 unigenes V. versicolor were classified into 73 functional families (Table 2). Among these families, bHLH transcription factors were the most abundant (57), followed by AP2/ERF (56). It is worth paying attention to these two transcription factor families in the ecological adaptation studies of V. versicolor, as they play essential roles in resistance to abiotic stress in plants (Chinnusamy et al., 2003; Yang et al., 2016; Tripathi et al., 2017).


TABLE 2. Transcription factor families and corresponding unigenes number identified in V. versicolor.
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Chloroplast Genome Features

The complete chloroplast genome of V. versicolor was 159,907 bp in length, including a pair of 24,971-bp IRs separated by 19,456-bp SSC and 90,509-bp LSC regions (Figure 3). This quadripartite structure was a typical feature of the chloroplast genome of most angiosperms (Yu et al., 2019, 2020; Tan et al., 2020). The AT content of the V. versicolor chloroplast genome was 62.2%, whereas the AT contents of the LSC, SSC, and IR regions were 63.9, 68.8, and 56.8%, respectively. These data showed that the chloroplast genome exhibited an obvious AT preference and such preference was most evident in the SSC region. The chloroplast genome of V. versicolor contained 133 genes, of which 88 were protein-coding genes, 37 were tRNA genes, and 8 were rRNA genes (Table 3). Among these genes, 19 were duplicated in the IR regions, including eight protein-coding genes (rpl2, rpl23, ycf2, ndhB, rps7, rps12, ycf15, and ycf1), seven tRNA genes (trnR-ACG, trnL-CAA, trnV-GAC, trnI-CAU, trnI-GAU, trnA-UGC, and trnN-GUU), and four rRNA genes (rrn23, rrn16, rrn5, and rrn4.5). There were 21 genes with introns, and 19 of which (atpF, petB, petD, ndhA, ndhB × 2, rpoC1, rps16, rpl16, rpl2 × 2, trnK-UUU, trnL-UAA, trnG-GCC, trnV-UAC, trnA-UGC × 2, trnI-GAU × 2) contained one intron, while two genes (clpP, ycf3) contained two introns. Although the chloroplast genome sizes of V. versicolor, Vincetoxicum shaanxiense (NCBI accession number MH210646), Cynanchum wilfordii (NC_029459), and Cynanchum auriculatum (NC_029460) ranged from 159,907 to 161,241 bp, the gene order, gene content, intron content, and AT content of these genomes were similar (Table 3 and Supplementary Table 2).
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FIGURE 3. Chloroplast genome map of V. versicolor. Genes inside the circle are transcribed clockwise, whereas those on the outside are transcribed counterclockwise. Genes belonging to different functional groups are color-coded. Darker gray in the inner circle represents the GC content, whereas the lighter gray represents the AT content.



TABLE 3. Summary statistics of chloroplast genomes of Vincetoxicum and Cynanthum species.
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Detection of Chloroplast RNA Editing Sites

The RNA editing sites in the V. versicolor chloroplast genome were identified based on RNA-Seq data. The type and position of the editing sites are shown in Table 4. All RNA editing sites identified were C-to-U. A total of 35 RNA editing sites were detected in the V. versicolor chloroplast genome, of which 33 were located in the protein-coding region, and the remaining two were located in the tRNA region (trnN-GUU). All identified RNA editing sites occurred at the first and second positions of the codon, resulting in amino acid changes at the transcription level. Among these changes, the change from serine (S) to leucine (L) was the most abundant.


TABLE 4. RNA editing sites in the V. versicolor chloroplast genome detected by RNA-Seq data.

[image: Table 4]We found an interesting phenomenon when checking the annotated genes, in which the chloroplast ndhD of V. versicolor did not seem to have a start codon at the genome level (the sequence was validated by a polymerase chain reaction and Sanger sequencing data). A further comparison of the chloroplast ndhD between species of the genera Vincetoxicum and Cynanchum showed that only the C. auriculatum ndhD started with the standard AUG. In contrast, the ndhD of V. versicolor, V. shaanxiense, and C. wilfordii exhibited ACG instead of AUG at the corresponding codon position (Figure 4). Therefore, we speculated that RNA editing restored the start codon AUG in V. versicolor, V. shaanxiense, and C. wilfordii, as observed in Arabidopsis, tobacco, spinach, Betula, and snapdragon (Neckermann et al., 1994; Wang et al., 2018). Examination of V. versicolor transcripts revealed seven RNA editing sites in ndhD, one of which appeared on the ndhD first codon, causing the codon change from ACG to AUG (this editing site was validated by a reverse transcription-polymerase chain reaction, Supplementary Figure 2). This confirmation of the editing-restored ndhD start codon in V. versicolor strongly supported our hypothesis despite lacking the transcripts from the other two species.
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FIGURE 4. Comparison of chloroplast ndhD in Vincetoxicum and Cynanchum species. Red dotted box represents the amino acid changes at the transcription level. “Start” represents the start codon, whereas “T,” “S,” “L,” and “F” represent threonine, serine, leucine, and phenylalanine, respectively.


To further verify whether the editing-restored ndhD start codon was a common phenomenon in Apocynaceae, the ndhD of 17 Apocynaceae species was compared (Supplementary Table 3). The results showed that almost all of the examined Apocynaceae species exhibited ACG in the first ndhD codon (except for C. auriculatum), suggesting that the editing-restored ndhD start codon was prevalent in Apocynaceae. This kind of editing-restored ndhD start codon had also been reported in other angiosperms, especially in dicots (López-Serrano et al., 2001; Tsudzuki et al., 2001). In Apocynaceae, only C. auriculatum showed the appropriate AUG start codon in ndhD, suggesting that the mutation in this species corrected the start codon of ndhD at the genomic level after the interspecific differentiation in Cynanchum, as implied by previous studies on Liliaceae and Aloaceae (López-Serrano et al., 2001).



Codon Usage Analyses

As an important evolutionary feature, the codon usage pattern has been widely investigated in plant chloroplast genomes (Gao et al., 2018; Somaratne et al., 2019; Yang et al., 2019a). To explore the codon usage pattern in the chloroplast genomes of the Vincetoxicum and Cynanchum species, we calculated the number of codons and RSCU of protein-coding genes in the four chloroplast genomes using Mega X (Supplementary Table 4). The 88 shared protein-coding genes were encoded by 26729, 26671, 26716, and 26586 codons in the chloroplast genomes of V. versicolor, V. shaanxiense, C. wilfordii, and C. auriculatum, respectively. AAA encoding lysine was the most commonly used codon in the chloroplast genome of V. versicolor, whereas AUU encoding isoleucine was the most abundant codon in the chloroplast genomes of V. shaanxiense, C. wilfordii, and C. auriculatum. In the four chloroplast genomes, the A/U content in the third codon position was 68.70–69.11%, showing the preference for A/U-ending codons. Codon bias contributes to the efficiency of gene expression and, therefore, is generated and maintained by selection pressure (Hershberg and Petrov, 2008). The bias toward A/U in the third codon position is commonly observed in the angiosperm chloroplast genomes (Cui et al., 2019; Mehmood et al., 2020). This reflects the strong selection pressure that affects the codon usage of the chloroplast genome, thus regulating the chloroplast gene expressions. Additionally, except for UUG, all preferred synonymous codons (RSCU > 1) ended with A/U. The usage of the initial codon AUG and tryptophan UGG had no bias (RSCU = 1), as observed in other angiosperms (Li et al., 2019).

The plot of the ENc values against the GC3 values is a useful indicator to explore the factors that affect the codon usage. The predicted values are in the expected curve when the codon usage of a gene is constrained only by the G + C mutation bias. Moreover, the predicted values are much lower than the expected curve when natural selection played a major role in optimizing codon usage bias (Wright, 1990). The four chloroplast genomes shared the analogous codon bias pattern (Figure 5). A small number of protein-coding genes followed the standard curve, suggesting that the codon bias of these genes was caused mainly by the nucleotide composition bias in the third codon position. In particular, more than half of the genes were below the curve, indicating that natural selection predominantly influenced these genes. The photosynthesis-related genes represent most of them, revealing their importance so that strong selection pressure is necessary to keep these genes conserved. However, not all photosynthesis-related genes were below the curve. These photosynthesis-related genes exhibited discrete distribution, which implies that other factors such as gene expression level can also affect codon bias (Hershberg and Petrov, 2008).
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FIGURE 5. ENc plotted against GC3s based on protein-coding genes of chloroplast genomes of Vincetoxicum and Cynanchum species. (A) V. versicolor; (B) V. shaanxiense; (C) C. wilfordii; (D) C. auriculatum.




Phylogenetic Analysis

Complete chloroplast genomes can provide abundant genetic information for understanding the phylogenetic relationships at various taxonomic levels (Huang et al., 2019; Yang et al., 2019b). To explore the phylogenetic relationship between the genera Vincetoxicum and Cynanchum in the Apocynaceae family, the phylogenetic analysis was conducted based on protein-coding genes of chloroplast genomes of 19 Apocynaceae species (Figure 6). ML and BI trees had a highly similar typology at most branches, except that the position of Vincetoxicum hainanense between ML and BI trees was inconsistent. In the ML and BI trees, four Vincetoxicum species (V. versicolor, V. shaanxiense, V. hainanense, and V. rossicum) were clustered into a monophyletic branch (bootstrap proportions = 100, posterior probabilities = 1), whereas two Cynanchum species formed another monophyletic branch (bootstrap proportions = 100, posterior probabilities = 1). Phylogeny between Vincetoxicum and Cynanchum was described as {Cynanchum + [Vincetoxicum + (Asclepias + Calotropis)]}, which strongly supports the previous view (Liede-Schumann, 2000; Yamashiro et al., 2004; Alessandro et al., 2007) that there was no close phylogenetic relationship between the genera Vincetoxicum and Cynanchum.
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FIGURE 6. ML and BI phylogenetic trees of Apocynaceae based on 88 protein-coding genes in the chloroplast genome. Numbers below the lines represented ML bootstrap proportions and BI posterior probabilities. Halenia corniculata and Swertia leducii were set as the outgroups. (A) ML tree; (B) BI tree.




CONCLUSION

This study was the first effort to characterize the transcriptome and chloroplast genome of V. versicolor. A total of 49,801 transcripts were generated, and 20,943 unigenes were obtained from V. versicolor. The GO classification showed that “Cellular process,” “Cell,” “Cell part,” and “Binding” were the most abundant terms in the corresponding categories. KO pathway prediction indicated that the “Translation” cluster represented the largest group. A total of 1,032 unigenes from V. versicolor were classified into 73 functional transcription factor families. The bHLH and AP2/ERF transcription factors were significantly abundant, suggesting that they should be carefully evaluated in the V. versicolor ecological adaptation studies. The comparative analysis showed that the Vincetoxicum and Cynanchum chloroplast genomes were highly conserved in terms of gene order, gene content, and AT content. They shared an analogous codon bias pattern in which their protein-coding genes exhibited a preference for A/U-ending codons. More than half of the chloroplast genes were predominantly influenced by natural selection pressure, and photosynthesis-related genes accounted for most of them. The RNA-Seq data revealed 35 editing sites in the chloroplast genome of V. versicolor, and one of which restored the ndhD start codon in V. versicolor. Phylogenetic analysis based on ML and BI trees strongly supported the view that Vincetoxicum and Cynanchum were two distinct genera. Thus, Vincetoxicum should be regarded as an independent genus in the Apocynaceae family. Overall, this study provided valuable insights into the evolution and phylogeny of V. versicolor.
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V. shaa e ACTTTTTTTCCTIGGTTAACAATAATTCGTAGTTTTGCCAATATC TGCAGGTICCTTAATTITTCTTTCTCCCCCATAGGGGAAATAGGGCCGT GTAT ACTATATGTATATGTATTTTAGAACTACTTCTAACGGTGTATACATTCTGTTATCATTTCCAACCGGACGATCCGTTAATCCAAC TATTGGAGGA
ACGA.TTTTTTTCCTTGGTTAACAATAATTGTAG TTTTGCCAATATCTGCAGGTICCTTAATTTTCTTTC L\,L,k.k.k.ﬂTAGGGGAAATAGGG.ZGTTCG.TGGTATAC.A TA T@TA TATGTATTTTAGAAC THIC TTCTAACGG TGTATACATTC TGTTATCATT CCGTTAATCC GGAGGA

ANGABTTTTTTTCC TTGGTTAACAATAATTG TAGTTTTGCCAATATC TGCAGG TTCC TTAA TTTTC THITC TCCCCCATAGGGGAAA TAGGG‘:G TTCGBTGG TA TACHA TA TMITA TA TG TATTTTAGAAC THIC TTCTAACGG TG TA TACA TTC TG TTA TCA TTTCCAACCGGA'}A TCCG TTAATCCAAC TATTGGAGGA

21' 0 22'0 2 :.50 2?0 2?0 2?0 220 2@0 29'0 390 31 0 320 330 340 350 360 370 380 390 400
V. versicolor TTATAAATGGATCCGCCTTTTTGATTTCCATTGGAGATTGGGAA TAGATGGACTTTC TATAGGACCCATTTTAC TAACGGGATTCATCACC CTTTA lLbL—:L PTGGEC iuJ.LAC'ICGAGATTCTCGATTATTTCATTTCCTGATGTTAGCAATGTACAGTGG'ICAAATAGGALLALLL1&,Ai\. J.\,ULAACC
RNA transcnpt TTATAAATGGATCCGCCTTTTTGATTTCCATTGGAGATTGGGAATAGATGGAC TTTC TATAGGACCCATTTTAC TAACGGGATTCATCACCACCTTAGC TACTTTATCGGCT TGTTACTCGAGATTCTCGATTATTTCATTTCC TGATGTTAGCAA TG TACAGTGG TCAAATAGGATTATTTTC TTC TCGCAACC
V. shaanxiense TTATAAATGGATCCGCCTTTTTGATTTCCATTGGAGA TTGGGAA TAGA TGGAC TTTC TA TAGGACCCATTTTAC TAACGGGA TTCA TCACCACCTTAGC TACTTTA TCGGC TTGGCC TG TTAC TCGAGATTC TCGATTATTTCA TTTCC TGATG TTAGCAA TG TACAG TGG TCAAATAGGATTATTTTC TTC TCGCAACC
C. wilfordii TTATAAATGGATCCGCCTTTTTGATTTCCATTGGAGATTGGGAATAGATGGAC TTTC TATAGGACCCATTTTAC TAACGGGATTCATCACCACCTTAGCTACTTTATCGGC TTGGCC TGTTAC TCGAGATTC TCGATTATTTCATTTCC TGATGTTAGCAATG TACAG TGGTCAAATAGGATTATTTTC TTC TCGCAACC
C. auriculatum TTATAAATGGATCCGCCTTTTTGA TEITCCATTGGAGA TTGGGAA TAGATGGAC TTTC TA TAGGACCCATTTTAC TAACGGGA TTCATCACCACCTTAGC TACTTTATCGGC TTGGCC TG TTAC TCGAGATTC TCGATTATTTCATTTCC TGA TG TTAGCAA TG TACAG TGG TCAAATAGGATTATTTTC TTC TCGCAACC

41I 0 42|0 4?0 4?0 4|50 46.0 4?0 41'30 49|0 5?0 5‘|| 0 5‘20 5?0 5‘}0 5?0 5?0 5.70 5?0 5?0 S‘ —_ L
V. versicolor TTTTACTTTTTTTTATCATG TGGGAG TTAGAATTAATTCCCGTTTATC TACTTCTATCCA TG TGGGGGGGAAAGAAACG TC TG TAC TCGGC TACAAARATTTATTTTG TACACAGCAGGGGGC TCCATTTTTC TCC TAATGGGAGTTC TGGGTATAGGTTTA TC TGG TTC TAATCAACCAACATTAAGTTTTGAAAC
RNAtrananpt d TTTATCATG TGGGAGTTAGAATTAATTCCCGTTTATCTACTTCTATCCA TG TGGGGGGGAAAGAAACG TC TG TAC TCGGC TACAAAATTTATTTTG TACACAGCAGGGGGC TCCATTTTTC TCC TAATGGGAGTTC TIGGGTATAGGTTTATC TGG TTC TAATCAACCAACA TTAAGTTTTGAAACME_‘
V. shaanxiense TTTTACTTTTTTTTA TCATG TGGG TTAGAATTAATTCCCGTTTATC TACTTCTATCCA TG AGAAACGTCTGTAC TCGGC TACAAAATTTATTTTG TACACAGCAGGGGGC TCCATTTTTC TCC TAATGGGAGTTC TGGGTATAGGTTTA TC TGG TTC TAATCAACCAACATTAAGTTTTGAAACA TCA
C. wilfordii TTTTECTTTTTTTTA TCATG TGGGAG TTAGAATTAATTCCCGTTTATC TAC TTCTA TCCA TG TGGGGGGGAAAGAAACG TC TG TAC TCGGC TACMRAATT TATTTTG TACACAGCAGGHMGGC TCCATTTTTC TCC TAA TGGGAG TTC TGGG TATAGG TTTA TEITGG TTC TAATCAACCAACATTAAG TTTTGAAACA TCA
C. auriculatum T TTTATCATGTGGGAGTTAGAATTAATTCCCGTTTATC TACTTCTA TCCA TG TGGGGGGGAAAGAAACG TC TG TAC TCGGC TACMRAATT TATTTTG TACACAGCEBGGHAGGC TCCATTTTTC TCC TAA TGGGAG TTC TGGG TATAGG TTTA THITGG TTC TAATCAACCAACA TTAAG TTTTGAAACA TCA

C aunculatum

LI EACTTTLY

EEENEY (VR A

610 620 630 640 650 660 670 5— [, 680 690 700 710 720 730 740 750 760 770 780 790 800
V. versicolor ACAAATCAGTCGTATCCTT J.u;.u.,J.u-xuaAATAATATTTTATATTGGATTTTTTATTGC TTTTGCTGTCAAAFI‘CG-FCGATTAT CCCCTACATACGTGGTTACCGGA A AGAAGCACATTACAGTACTIGTATGC TTCTAGC TGGAATCTTATTAAAAATGGGAGCGTATGGACTGGCTCGCATCAATATAGA
RNAtranscrlpt ACAAI-\TCAGTCGTA TCCTTTGTTC TTAGAARATAATATTTTATATTGGATTTTTTA TTGC TTTTGCTGTCAAA;;[IGECGATTATACCCCTACATACGTGGTTACCGGA"‘“ A AGAAGCACATTACAGTAC TTG TA TGC TTC TAGC TGGAA TC TTA TTAAAAA TGGGAGCG TATGGAC TGGC TCGCATCAATA TAGA
V. shaanxiense ACAAA TCAG TCG TATCC TTTG TTC TTAGAAATAATATTTTATATTGGATTTTTTATTGC TTTTGC TG TCAAA TCGCCGATTA TACCCC TACATACG TGG T TACCGGA TA A AGAAGCACATTACAGTAC TTG TA TGC TTC TAGC TGGAA TC TTA TTAAAAA TGGGAGCG TA TGGAC TGGC TCGCA TCAA TA TAGA
C. wilfordji GCAAATCAGTCGTATCC TTTGGITC TTAGAAATAATATTTTATATTGGATTTTTTATTGC TTTTGC TG TCAAATCGCCGATTA TACCHIC TACATACG TGG T TACCHGA AGCACATTACAGTAC TTG TA TGC TTC TAGC TGGAA TC TTA TTAAAAA TGGGAGCG TATGGAC TGGC TCGCA TCAA TA TAGA
C. auriculatum @CAAATCAGTCG TATCC TTTGEITC TTAGAAATAATATTTTATATTGGATTTTTTATTGC TTTTGC TG TCAAATCGCCGATTA TACCHMIC TACA TACG TGG T TACCHGA TACCCR AGAAGCACATTACAGTACTTGTATGC TTC TAGC TGGAATC TTA TTAAAAATGGGAGCGTATGGAC TGGC TCGCATCAA TATAGA

810 820 830 840 850 860 870 S— 880 890 900 910 920 930 940 950 960 970 980 990 1,000

V. versicolor  aTTATTATC TCA TGCCCATTATC TA TTTTCCCC T
RNA transcript A TTA TTA TC TCA TGCCCATTATC TATTTTCCCC T
V. shaanxiensea TTa TTA TC TCA TGCCCATTA TC TA TTTTCCCC T
¢ X
1

TGGT u:\G TGC TAGTAGGCGCAATCCAAATAATTTA ’i‘GCAGC T"i‘EAE'CA TC TC TTGéCCAACGGAATTTAAAAAAAZIXGAATAGCC TATTCTTCTGTATC TCATATGGGTTTCC TAA'i‘TA TCGGAA T‘lTGG TTC TA TAAC TGA TACAGéAC TCAACGG;&GC TC TTTTAé
TGGTTAGTGC TAGTAGGCGCAATCCAAATAATTTATGCAGC TCTCTTGGCCAACGGAATTTAAAAAAAAGAATAGCCTATTCTICTGTATCTCATATGGGTTTICCTAATTATCGGAATTGG TTC TATAAC TGATACAGGAC TCAACGGAGC TCTTTTAC
TGGTTAGTGC TAGTAGGCGCAATCCAAATAATTTATGCAGC TTCAACATC TC TTGGCCAACGGAAT TTAAAAAAAAGAATAGCCTATTCTICTGTATCTCATATGGGTTTCC TAATTATCGGAA TTGG TTC TATAAC TGATACAGGAC TTTTAC
TGG TTAG TGIITAG TAGGCGCAATCCAAA TAATTTA TGCAGC TTCAACA TC TC TTGGE@CAACGGAAT TTAAAAAAAAGAATAGCC TA TTC TTC TG TATC TCA TA TGGG TTTCC TAA TTA TCGGAA TTGG TTC TA TAAC TGATACAGGAC TCAA TTAC
TGG TTAG TGHITAG CCAAATAATTTA TGCAGC TTCAACATC TC TTGGECAACGGAAT TTAAAAAAAAGAATAGCC TATTC TTC TG TATC TCA TA TGGGETTCC TAA TTATCGGAA TTGG TTC TA TAAC TGATACAGGAC TCAACGGAGC TC TTTTAC
1,0|10 1'0|20 1,q30 1,q40 1,q50 1'0.60 1'0.70 1,0.80 1,0|90 1,1]00 1’1|10 1,1|20 1‘1|30 1’1.40 1‘1.50 1'1-60 1'1.70 1,180 1,190 1,2|()0
V. versicolor AAATAATCTC TCATGGATTTATTGG TGC TGCACTTTTTTTCT ACAACTTA TGA TCGA TTCTTTATC TTGACGAAA TGGGCGGAATGGC TATCACAATGCCAAAAATATTCACCATGTTTAGTAGC TTTGCAATGGCTTCCCTTGCATTACCGGGTATGAGTGGC TTTG TTGC TGAATTGATAG TA
RNAtrans_cript AAATAATCTC TCATGGATTTATTGGTGC TGCACTTTTTTTCT ACAACTTATGATCGAACACGCCTTCTTTATC TTGACGAAATGGGCGGAATGGC TATCACAATGCCAAAAATATTCACCATGTTTAGTAGC TTTGCAATGGC TTCCCT GGTATGAGTGGCTTTG TTGC TGAATTGATAGTA
V.Shaanx[_enseAAATAATCTCTCATGGATTTALL\:&: TGC TGCACTTT AACTTATGATCGAACACGC( TTTATC TTGACGAAATGGGCGGAATGGCTATCACAATGCCAAAAATATTCACCATGTTTAGTAGC TTTGCAATGGCTTCCC TTGCATTACCGGGTATGAGTGGC TTTG TTGC TGAATTGATAGTA
T
1

C. wilfordii ATTATTAMKC TCATGCCCATTATC TATTTTCCCC
C. auriculatum aTTa TTA@ TCA TGCCCATTATC TATTTTCCCC

C. wilfordii AAATAATCTCTCATGGATTTATTGGTGC TGCACTTTTTTTC TTGGCAGGGACAAC TTA TGA TEIGAACACGCCTTC TTTATC TTGACGAARA TGGGCGGAA THIGC TATCACAA TGCCAAAAATATTCACCATG TTTAGTAGC TTTGCAA TGGC TTCHIC TTGCATTACCGGG TA TGAG TGGC TTTG TTGC TGAA TTGATAG TA
C. auriculatum naa TAATC TC TCA TGGA TTTA TTGG TGC TGCAC TTTTTTTC TTGGCAGGGACAAC TTA TGA THGA TGACGAAA TGGGCGGAATHEGC TATCACAA TGCCAAAAATATTCACCATG TTTAGTAGC TTTGCAA TGGC TTCCC TTGCA TTACCGGG TA TGAG TGGC TTTG TTGC TGAA TTGATAG TA

ITTCTTTATC

1,210 1,220 1,230 1,240 1,250 1,260 1,270 1,280 1,290 S—L S—L 1,320 1,330 1,340 1,350 1,360 1,370 1,380 1,390 1,400
V. versicolor TTT TT'IGGAATAATTACTAGTCACAAATTTTTTTTAATGCCAAAAATACTAATTACTTTTG TAATGGCAATTGGAATCATATTAAC TCCTATTTA "I‘TATCTATéTCA!;GTCJ—\GATGTTTTATGGATATAAGCTTTTTAACGTTCCAAACTCTTA1111111ua11\, AGTTATTTC TTTCAATTTC
RNAtranscrlpt TTTTTTGGAATAATTACTAGTCACAAATTTTTTTTAATGCCAAAAATACTAATTACTTTTG TAATGGCAATTGGAATCATATTAACTCCTATTTA .A}I‘TATCTAT GTCAGATGTTTTATGGATATAAGCTTTTTAACGTTCCAAACTCTTATTTTTTTGA TTC TGGA AGAGTTATTTC TTTCAATTTC
V. shaanxienseTTTTTTGGAA TAATTAC TAG TCACAAATTTTTTTTAA TGCCAAAAATAC TAATTAC TTTTG TAA TGGCAATTGGAA TCA TA TTAAC TC

)

CTATTTATTCATTATCTATGTCACGTCAGATGTTTTATGGATATAAGCTTTTTAACGTTCCAAACTCTTATTTTTTTGA TTC TGGA ATTTC TTTCAATTTC

C. wilfordii TTTTTTGGAATAATTAC TAG TCACAAATETTTTT TAATGCCAAAAATACTAATTAMTTTTG TAATGGCAATTGGAATCATATTAAC TCCTATTTATTCAT TATC TATG TCACG TCAGATGTTTTA TGGA TATAAGCTTTTTAACG TTCCAAACTCTTATTTTTT TGATTC TGGACCGCGAGAG TTATTTC TTTCBATTTC

C. auriculatum TTTTTTGGAA TAATTAC TAG TCACAAATEITTTTTTAA TGCCAAAAATAC TAA TTAMT T THG TAA TGGCAATTGGAATCATATTAAC TCCTATTTATTCA T TATC TA TG TCACG TCAGATG TTTTATGGA TATAAGCTTTTTAACG TTCCAAACTC TTATTTTTT TGA TTC TGGACCGCGAGAG TTATTTC TTTCBATTIC

1 410 1 420 1 430 1 440 1 450 1 460 1 4 0 1 480 5 S—F 1,500 1,506

V. versicolor CCTC TTTTTACCCGTACTGGGTATTGGTA TG IHLL,L,UUALLLl,UlLK«LLJ.k,ﬁ\,TATCGGTTGACAAGGTTGAAGTTATACTATCTAAﬁt‘fTTTTCTAAAT AG

RNAtranscrlpt CCTC TTTTTACCCG TAC TGGG TA TTGG TA TG TACCCGGA TTTCG TTC TTTCAC TA TCGG TTGACAAGG TTGAAG TTA TAC TA TC TAA TTLTTTTC TAAAT  AG
anXxensecc TC TTTTTACCCG TAC TGGGTATTGG TA TG TACCCGGATTTCGTTC TTTCAC TATCGG TTGACAAGG TTGAAGTTATACTATC TAATTCTTTTTC TAAA T AG

C. W”fgfdﬂ CCTCTTTTTACCHMG TACTGGGTATTGGTATGTACCCGGATTTCGTTC TTTCAC TATCGG TTGACAAGG TTGAAGTTATACTATC TAATTCTTTTTC TAAA T

C. auriculatum cc tc TTTTTACCEG TACTGGG TATTGGTATG TACCCHMGATTICGTTC TTTCAC TATCGG TTGACAAGG TTGAAGTTATACTATC TAATTCTTTTTC TAAA T-\.

W
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Gene Genome Gene Codon Editing Codon Amino
name position position position type change acid
change

matK 2,257 1,195
atpA 10,941 914
11,064 791
11,082 773
atpl 15,016 620
rps2 16,340 248
16,454 134
rpoC2 21,942 2,840

1 C=U CGG=>UGG R=>W
2 C=>U UCA=>UUA S=>L
2 C=>U CCC=>CUC P=>L
2 C=>U UCA=>UUA S=>L
2 C=>U UCA=>UUA S=>L
2 C=>U UCA=>UUA S=>L
2 C=>U ACA=>AUA T=>I
2 C=U UCU=>UUU §S=>F
rpoB 28,538 2,426 2 C=>U UCA=>UUA S=>L
30,398 566 2 C=>U UCG=>UUG S=>L

30,413 551 2 C=>U UCA=>UUA S=>L

30,491 473 2 C=>U UCA=>UUA S=>L

rpsi14 42,255 149 2 C=>U CCA=>CUA P=L
42,324 80 2 C=>U UCA=>UUA S=>L

accD 64,582 1,214 2 C=>U UCG=>UUG S=>L
psal 65,640 71 2 C=U UCU=>UuU §S=>F
65,645 76 1 C=U CAU=>UAU H=Y
pPSbE 70,280 214 1 C=U CCU=>UCU P=>8
petB 82,349 611 2 C=>U CCA=>CUA P=L
2

2

/

pl23 92,256 71 C=U UCU=>UUU S=>L
92,274 89 C=>U UCA=>UUA S=>F
trnN- 113,909 39 C=U / /
GUU
ndhF 117,658 290 2 C=>U UCA=>UUA S=1L
ndhD 121,200 1,490 2 C=U UCU=>UUU S=>F
121,380 1,310 2 C=>U UCA=>UUA S=>L
121,392 1,298 2 C=>U UCA=>UUA S=>L
121,812 878 2 C=>U UCA=>UUA S=L
122,016 674 2 C=U UCG=>UUG S=>L
122,091 599 2 C=>U UCA=>UUA S=L
122,688 2 2 C=U ACG=>AUG T=>M
ndhG 123,911 347 2 C=>U CCA=>CUA P=>L
nahA 125,380 1,079 2 C=U UCC=>UUC S=>F
trnN- 136,508 39 Vi C=U / /
GUU
rpl23 158,143 7 2 C=U UCU=>UUU S=>L
158,161 89 2 C=>U UCA=>UUA S=>F

o«

“Genome position,” “gene position,” and “codon position” refer to the positions of
RNA editing in the chloroplast genome, genes, and codons, respectively.
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