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It is now clear that major malignancies are heterogeneous diseases associated with
diverse molecular properties and clinical outcomes, posing a great challenge for more
individualized therapy. In the last decade, cancer molecular subtyping studies were
mostly based on transcriptomic profiles, ignoring heterogeneity at other (epi-)genetic
levels of gene regulation. Integrating multiple types of (epi)genomic data generates a
more comprehensive landscape of biological processes, providing an opportunity to
better dissect cancer heterogeneity. Here, we propose sparse canonical correlation
analysis for cancer classification (SCCA-CC), which projects each type of single-omics
data onto a unified space for data fusion, followed by clustering and classification
analysis. Without loss of generality, as case studies, we integrated two types of omics
data, mRNA and miRNA profiles, for molecular classification of ovarian cancer (n = 462),
and breast cancer (n = 451). The two types of omics data were projected onto a
unified space using SCCA, followed by data fusion to identify cancer subtypes. The
subtypes we identified recapitulated subtypes previously recognized by other groups
(all P- values < 0.001), but display more significant clinical associations. Especially in
ovarian cancer, the four subtypes we identified were significantly associated with overall
survival, while the taxonomy previously established by TCGA did not (P- values: 0.039
vs. 0.12). The multi-omics classifiers we established can not only classify individual
types of data but also demonstrated higher accuracies on the fused data. Compared
with iCluster, SCCA-CC demonstrated its superiority by identifying subtypes of higher
coherence, clinical relevance, and time efficiency. In conclusion, we developed an
integrated bioinformatic framework SCCA-CC for cancer molecular subtyping. Using
two case studies in breast and ovarian cancer, we demonstrated its effectiveness in
identifying biologically meaningful and clinically relevant subtypes. SCCA-CC presented
a unique advantage in its ability to classify both single-omics data and multi-omics data,
which significantly extends the applicability to various data types, and making more
efficient use of published omics resources.
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cancer
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INTRODUCTION

It has been recognized that cancers are heterogeneous diseases
comprising multiple subtypes with distinct molecular properties
associated with discrepant clinical outcomes. In the last decade,
tremendous efforts have been made in identifying cancer
molecular subgroups (Zhao et al., 2019). Unlike traditional
cancer classification based on histopathological characteristics
or individual mutations, these studies employed unsupervised
classification to identify biologically coherent subgroups.
However, the pre-existing studies were mostly based on
single-omics data, especially transcriptomic data, ignoring
molecular heterogeneity occurring at other (epi-)genetic
levels of gene regulation such as copy number variation, and
DNA methylation. Recent advances in high-throughput
biotechnologies, especially next-generation sequencing
technologies, made it possible to generate (epi)genomic
profiles at a significantly reduced cost, providing an opportunity
for integrative analysis of multiple types of omics data. Genome-
wide, multi-omics profiles of tissue samples from large-scale
patient cohorts enabled a more comprehensive dissection
of cancer molecular heterogeneity. International consortia
such as the cancer genome atlas (TCGA) have assembled
multiple cancer data types from 1,000 patients, making
integrative methods essential for a better understanding of
cancer biology. However, due to the difference in data scale,
the complexity of dimensionality, effective integration of multi-
omics data for cancer subtyping remains a significant challenge
(Bersanelli et al., 2016).

To address the challenge, several computational models have
been proposed, which showed promising performance. For
instance, non-negative matrix factor (NMF) can be used to
project multi-omics data onto dimension-reduced space for
integration based on non-negative matrix decomposition (Zhang
et al., 2011, 2012). However, the prerequisite of non-negative
matrices needs to be satisfied, and proper normalization of the
input data is crucial. Joint and individual variation explained (or
JIVE) can also be used for integrative analysis of multi-omics data
by quantifying the joint variation between data types followed
by decomposition to reduce the dimensionality. The application
of JIVE to glioblastoma showed better characterizations of
different subtypes, but the robustness remains a concern due to
potential outliers affecting the factorization based on principal
component analysis (PCA) (Lock et al., 2013). iCluster (Shen
et al., 2009) and its extensions iClusterPlus (Kirk et al., 2012)
learned a joint latent variable model for integrative clustering
on multiple types of data. Despite the widely demonstrated
usefulness, the scalability of iCluster and its related methods
to a genome-wide scale was questionable (Shen et al., 2009).
Wang et al. (2014) developed a novel bioinformatic approach
named “similarity network fusion (SNF)”, which iteratively
fused similarity networks constructed from each type of
single-omics data into a similarity network by a nonlinear
combination method. SNF showed better performance than
single-omics methods in cancer subtyping, as demonstrated
in multiple case studies (Wang et al., 2014). However,
iCluster and SNF do not provide a classification framework,

and they both rely on a complete dataset of multi-omics
profiles for the clustering of new samples, which is often not
available, and significantly limiting their general applicability
(Wang et al., 2014).

To overcome the above-mentioned challenges, we propose to
fuse different types of omics data for clustering and classification
of tumor samples by canonical correlation analysis (CCA)
(Hotelling, 1936), a classical statistical analysis method used
in multi-views biometric identification. The CCA algorithm
measured the correlation between two sets of multi-dimensional
data and projected onto a unified space in which the
transformed vectors are maximally correlated. However, the
classical CCA could not be easily applied to analyze high-
throughput data in which the number of variables is much
larger than the number of samples. PCA was commonly used
to reduce dimensions but may discard important information
of correlation and discrimination for 1,000 of variables (Witten
et al., 2009). Sparse CCA solved the problem by employing
singular value decomposition, seeking sparsity in both sets of
variables simultaneously (Witten et al., 2009). The efficiency
of SCCA (Sparse CCA) had been demonstrated in simulated
genomic data in previous studies (Witten et al., 2009),
providing a rationale for us to employ SCCA for cancer
subtyping analysis.

In this study, we propose to project single-omics data
onto a unified space by SCCA for data fusion, followed by
clustering analysis on the fused data to identify cancer subtypes
(Figure 1A). The trained projection matrices, combined with a
trained classifier, can be subsequently used to either single-omics
or multi-omics classifications (Figure 1B). Using two case
studies in ovarian cancer and breast cancer, we demonstrated
the usefulness of sparse canonical correlation analysis for
cancer classification (SCCA-CC) in cancer classification
using multi-omics profiles in the TCGA database1 as well
as single-omics datasets from other independent datasets.
Furthermore, we demonstrated that SCCA-CC is superior
to other popular methods such as iCluster in the coherence
and clinical relevance of identified cancer subtypes, and the
running time consumed.

MATERIALS AND METHODS

Data Collection and Curation
We collected mRNA and miRNA expression profiles for 462
ovarian cancer patients and 451 breast cancer patients from
the TCGA database. Single-omics (mRNA or miRNA) datasets
were collected from gene expression omnibus (GEO). More
specifically, we downloaded one mRNA dataset (Tothill dataset,
GSE9891, and n = 285) (Tothill et al., 2008), and three miRNA
datasets: OC133 (GSE73582, n = 133), OC179 (GSE73581,
n = 179), and Bagnoli (GSE25204, n = 130) datasets (Bagnoli
et al., 2016) in the ovarian cancer case study. In the breast cancer
study, we downloaded the GSE22220 series (Buffa et al., 2011),
which includes a mRNA dataset (GSE22219, n = 216) and a

1https://cancergenome.nih.gov/
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FIGURE 1 | Cancer subtyping and classification using SCCA-CC. (A) A schematic figure illustrating the three major steps for multi-omics cancer subtyping. A toy
example is used to illustrate the projection of mRNA and miRNA expression data of the same set of patient samples onto lower-dimensional unified space by sparse
canonical correlation analysis (SCCA), followed by data fusion and unsupervised classification. (B) A schematic figure illustrating the versatile classifier can not only
classify fused multi-omics data, but also individual single-omics data.

miRNA dataset (GSE22216, n = 210), of which 207 samples have
both types of data.

Penalized Canonical Correlation Analysis
and Data Fusion
Canonical correlation analysis was proposed in 1936, which
was aimed to use fewer combinatorial variables to reflect
the correlation between the original two variable groups

(Hotelling, 1936). The measurement of the correlation between
the two groups of variables makes it possible to fuse different
biometrics. CCA projected the two groups of variables onto a
unified space in which the transformed vectors were maximally
correlated. As the classical CCA could not handle high-
dimensional data with small sample size, sparse CCA introduced
convex penalty functions to overcome the challenge (Witten
et al., 2009). Given two sets of zero-mean random vectors, A =
[a1, a2, ..., an] ∈ RDa×n, B = [b1, b2, ..., bn] ∈ RDb×n, we can
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obtain the objective projection matrices Pa ∈ RDa×m and Pb ∈
RDb×m corresponding to A and B, respectively by SCCA to
maximize the correlation coefficient ρ:

ρ =
PTaAB

TPb√
(PTaAATPa)(PTb BB

TPb)

Feature-level fusion meant the aggregation of features obtained
from various methods of feature extraction. As the features were
compressed and extracted to some extent compared with the raw
data, the complexity is much lower, and the computation is much
more efficient. Much more importantly, feature-level fusion
is more tolerant to specific data types, enabling the effective
fusion of various omics data. Sparse CCA was implemented
using the “CCA” function in R package “PMA”, which performs
sparse CCA using the penalized matrix decomposition. Lasso
penalty was used to obtain the corresponding canonical vector
to enforce sparsity by setting the parameters “typex” and “typez”
to “standard”. The sparsity was determined by the penalties
applied to the input matrix. The penalties were set to the default
value of 0.3 in the analyses. The number of canonical vectors
was determined by the lower number of dimensions of the
preprocessed mRNA and miRNA data as mentioned in Methods
by the parameter “K”. The other parameters were kept by default
in the function.

After projecting two types of omics data to the same space,
AP
= PTaA, AP

∈ Rm×n and BP = PTb B,BP ∈ Rm×n, we can
subsequently fuse them by a weighted averaging strategy:

Z = αAP
+ (1− α)BP = αPTaA+ (1− α)PTb B

where, α ∈ [0, 1] represents the fusion coefficient. In our case
studies, we set an equal weight (fusion coefficient) for each type
of omics data, and the fused data Z is used for the following
consensus clustering analysis.

Clustering and Classification Analysis
To identify molecular subtypes, we performed unsupervised
classification on the fused TCGA data in the unified space.
To ensure robustness, we employed the widely adopted
consensus clustering method (Monti et al., 2003), with 500
iterations and 0.9 subsampling ratio, to assess the clustering
stability. The consensus clustering was implemented by
the “ConsensusClusterPlus” function of the R package
“ConsensusClusterPlus” with k-means clustering algorithm
using Euclidean distance (Monti et al., 2003). The fused
TCGA data, together with the subtyping labels, were used
to train a classifier. More specifically, we explored various
classification methods such as random forests (RF) (R package
“randomForest”) (Breiman, 2001), support vector machine
(SVM) (R package “e1071”) (Cortes and Vapnik, 1995), k-nearest
neighbors algorithm (KNN) (R package “class”) (Venables and
Ripley, 2021), minimum distance algorithm (Min-Dis), and
Bayesian classifier (R package “e1071”) (Cortes and Vapnik,
1995), and selected the one yielding the lowest error rate for
the following analysis. More specifically, in the RF classification
analysis of ovarian cancer, the number of trees was set to 1,000

and the other parameters were set by default. In the SVM
classification analysis of breast carcinoma (BRCA), we used the
radial basis kernel and set the cost of constraints violation to 10.

Statistical Analysis
Statistical analysis was conducted with R software (version
3.6.12). SigClust (Huang et al., 2015), a statistical method for
testing the significance of clustering results, was used to evaluate
the subtypes we identified. Differential gene expression analysis
was performed by comparing each subtype with the others
using the R package “limma” (Ritchie et al., 2015). Biological
characterizations of cancer subtypes were based on gene set
enrichment analysis (GSEA) using R package “HTSanalyzeR2”
(Wang et al., 2011). Cox regression analyses were performed by
R package “survival”3. A p- value of less than 0.05 was considered
statistically significant in all tests.

RESULTS

Molecular Subtyping of Ovarian Cancer
Using SCCA-CC
Ovarian cancer is one of the most lethal malignancies in women.
Although most ovarian cancer patients can be cured during the
early stage, more than 80% of ovarian cancers are diagnosed at
advanced stages. Similar to other major malignancies, ovarian
cancer has been recognized as a molecularly heterogeneous
disease underlying the diverse clinical outcomes. Recently,
Tothill et al. (2008) performed unsupervised classification of
gene expression profiles for 285 high-grade serous ovarian
cancer (HGSOC) samples, resulting in the identification of four
distinct subtypes: immunoreactive, differentiated, proliferative,
and mesenchymal subgroups. TCGA network recapitulated these
subtypes based on transcriptomic profiles of more than 500
OvCa cases (Cancer Genome Atlas Research Network, 2011).
More recently, it was found that compared to other subtypes,
the mesenchymal subtype displayed higher invasiveness and
was associated with poor overall survival (Konecny et al.,
2014). Despite the well-established taxonomy, the subtyping
studies were based on transcriptomic profiles, ignoring potential
heterogeneity at other levels of gene regulations. Furthermore,
the classifiers based on gene expression signatures cannot be
applied to other types of omics data, greatly limiting the
applicability of these classification systems.

Unsupervised Classification of the Fused Multi-Omics
Data Identified More Clinically Relevant Subtypes
In total, we obtained matched mRNA and miRNA expression
profiles from 462 ovarian cancer samples in the TCGA cohort.
To eliminate the impacts of magnitude scale and ensure the
comparability of data, within each type of omics data we
performed z-score normalization and filtered out genes or
miRNAs with low between-sample variations (median absolute
deviation, or MAD < 0.75). The preprocessed mRNA and

2http://www.Rproject.org
3https://github.com/therneau/survival
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FIGURE 2 | Multi-omics subtyping of ovarian cancer using sparse canonical correlation analysis for cancer classification (SCCA-CC). (A) A heatmap showing the
statistical significance of the differences between the identified OC subtypes. The color depth is proportionate to the -log10(P- values) derived from SigClust. (B) A
heatmap illustrating the association between ovarian cancer subtypes identified by SCCA-CC and the cancer genome atlas (TCGA). The heatmap is colored in
proportion to the -log10(P- values) derived from hypergeometric tests. (C,D) Kaplan-Meier plots showing the association of the subtypes identified by panel
(C) TCGA and (D) SCCA-CC, respectively. P- values were calculated based on log–rank tests. (E–H) GSEA plots illustrating the representative pathways
dysregulated in each molecular subtype identified by SCCA-CC. (I) A bar plot comparing the classification performance of the five classifiers on mRNA data, miRNA
data, and the fused data, respectively. P- values were calculated based on Wilcoxon signed–rank tests. *** indicates P < 0.001. (J,K) Kaplan-Meier plots illustrating
the association between the four subtypes identified by SCCA-CC with overall survival in this panel (J) the Tothill mRNA dataset and (K) the merged miRNA data. P-
values were calculated based on log–rank tests.

miRNA data were subsequently projected onto a unified space
using SCCA, followed by data fusion based on a weighted
averaging strategy (α = 0.5) (Figure 1A). Using the fused data, we
performed consensus clustering and observed that subdivision
into four clusters generated the most robust classification
(Supplementary Figure 1), suggesting the existence of four

major ovarian cancer subtypes (OC1-4). Using SigClust (Huang
et al., 2015), a statistical method for testing the significance
of clustering results, and we found that indeed the differences
between subtypes were statistically significant (all P < 0.001,
Figure 2A). To interpret the four OC subtypes we identified,
we compared our clustering result with the TCGA taxonomy
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(Cancer Genome Atlas Research Network, 2011; Supplementary
Figure 2). Interestingly, we found that each OC subtype identified
by SCCA-CC was significantly associated with one of the subtypes
identified by TCGA (Figure 2B, all P < 0.001, hypergeometric
tests; P < 0.001, McNemar–Bowker test), suggesting that SCCA-
CC recapitulated the four subtypes previously defined, i.e.,
proliferative, immunoreactive, differentiated, and mesenchymal
(Tothill et al., 2008). Notably, the four OC subtypes we identified
are significantly associated with overall survival (Figure 2D,
P = 0.039, log–rank test), while the four TCGA subtypes did not
(Figure 2C, P = 0.12, log–rank test), supporting our hypothesis
that incorporating different types of omics data may identify
more clinically relevant subtypes than single-omics approaches.

To further elucidate the OC subtypes, we performed
differential gene expression analysis by comparing each
subtype with the others and then identified subtype-specific
biological functions based on GSEA (Supplementary Table 1).
We confirmed that OC1 is differentiated-like, featured with
dysregulated cell differentiation signatures; OC2 is mesenchymal-
like, displaying upregulated epithelial-to-mesenchymal
transition (Jechlinger et al., 2003); OC3 is immunoreactive-
like, characterized by activated immune responses; and OC4 is
proliferative-like, characterized by upregulated DNA replication,
which were all consistent with previous studies (Jechlinger et al.,
2003; Verhaak et al., 2013; Wang et al., 2017; Figures 2E–H).

The Multi-Omics Classifier Was Able to Classify Both
Single-Omics and Multi-Omics Data
A unique advantage of a multi-omics classifier lies in its
ability to handle both single-omics data and multi-omics data,
making more efficient use of different types of data potentially
(Figure 1B). In our study, using the mRNA-miRNA fused
data obtained by the projection and fusion from randomly
selected 200 TCGA samples, we constructed multiple classifiers
based on RF, SVM, KNN, Min-Dis, and Bayesian classifier.
Using the clustering labels as the reference, we evaluated the
performance of these classifiers on the fused mRNA-miRNA
data, the mRNA and the miRNA data alone for the other 262
TCGA samples, respectively. To obtain a stable and robust
estimation of the performance, we repeated the tests 100 times.
Compared to miRNA-based classification results, all classifiers
demonstrated higher accuracies on the mRNA data (Figure 2I,
all P < 0.001, Wilcoxon Signed–rank tests), and, remarkably,
achieved even higher accuracies on the fused data (Figure 2I, all
P < 0.001, Wilcoxon Signed–rank tests). The results supported
our hypothesis that SCCA-CC achieved higher classification
performance when more information is incorporated.

Independent Validations Verified the General
Applicability of Multi-Omics Classification
Among the various classifiers, RF showed relatively higher
accuracy and lower volatility (standard deviation): 91.6% using
the fused data, 83.0% using only the mRNA data, and 74.8%
using only the miRNA data (Figure 2I). Therefore, we trained
a multi-omics classifier based on RF using all the 462 TCGA
samples. To evaluate the general applicability of the classifier
to other independent datasets, we tested the Tothill mRNA

dataset (Tothill et al., 2008) (n = 279) and a miRNA dataset
(n = 442) merged from GSE73581, GSE73582, and Bagnoli
miRNA (Bagnoli et al., 2015) datasets. In both datasets,
the predicted OC subtypes showed a significant association
with survival (Figures 2J,K, both P < 0.01, log–rank tests).
More specifically, patients classified to OC2 (mesenchymal-
like) had the worst overall survival, while those classified to
OC3 (immunoreactive-like) had the best outcome, which was
consistent with previous studies (Jechlinger et al., 2003; Verhaak
et al., 2013; Wang et al., 2017). These results demonstrated the
multi-omics classifier’s potential to classify other independent
datasets with different types of omics data. Notably, it was the first
time ever that the three miRNA datasets (GSE73581, GSE73582,
and Bagnoli) could be classified, since the previous classification
method developed by TCGA only takes mRNA data as input
(Cancer Genome Atlas Research Network, 2011).

Molecular Subtyping of Breast Cancer
Using SCCA-CC
Breast carcinoma is the most common type of gynecological
cancer, as it alone accounts for 24.2% of all new cancer incidences
in women in 2018 (Bray et al., 2018). Over the past two decades,
breast cancer mortality has been reduced remarkably since
1989 (Siegel et al., 2020), mainly attributed to population-wide
screening based on mammography and improved therapeutics.
However, since breast cancer is also a heterogeneous disease,
a significant proportion of patients eventually died due to
limited benefit from chemotherapy (Jemal et al., 2017). The
intrinsic subtypes of breast cancer, including luminal A, luminal
B, basal-like, Her2-enriched, and normal-like have been well
characterized and widely adopted (Perou et al., 2000; Sorlie et al.,
2001). Importantly, the five intrinsic subtypes are characterized
by distinct molecular properties, associate with different clinical
outcomes. In particular, patients classified to the Her2-positive
subtype showed poor survival, while those assigned to the luminal
A subtype displayed more favorable outcome (Sorlie et al., 2001,
2003; Yersal and Barutca, 2014; Dai et al., 2015). For breast cancer
subtype prediction, PAM50 is the most popular classifier (Parker
et al., 2009), but since the classification system was established
based on transcriptomic profiles, it cannot be applied to other
types of omics data.

Unsupervised Classification of the Fused
Multi-Omics Data Recapitulated the Five Intrinsic
Subtypes of Breast Cancer
Like our case study in ovarian cancer, we performed unsupervised
classification on 451 patient samples of breast cancer with
matched mRNA and miRNA expression profiles in the TCGA
cohort. Z-score normalization was applied to each type of
omics data, followed by the filtering of genes or miRNAs with
low between-sample variations (MAD < 0.5). We projected
the preprocessed data onto a lower-dimensional space by
SCCA for data fusion using the weighted averaging method
(α = 0.5) subsequently. Based on consensus clustering of
the fused data, we determined the optimal five breast cancer
subtypes (Supplementary Figure 3). Pairwise comparisons
between the subtypes showed significant differences, suggesting
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FIGURE 3 | Multi-omics subtyping of breast cancer using sparse canonical correlation analysis for cancer classification (SCCA-CC). (A) A heatmap showing the
statistical significance of the differences between the identified breast cancer subtypes. The color depth is proportionate to the -log10(P- values) derived from
SigClust. (B) A heatmap illustrating the association between the subtypes identified by SCCA-CC and PAM50. The heatmap is colored in proportion to the -log10(P-
values) derived from hypergeometric tests. (C) A bar plot comparing the classification performance of the five classifiers on mRNA data, miRNA data and the fused
data, respectively. P- values were calculated based on Wilcoxon signed–rank tests. *** indicates P < 0.001. (D–G) GSEA plots illustrating the representative
pathways dysregulated in the Class 1 (Basal-like), Class 2 (Luminal A-like), Class 3 (Luminal B-like), and Class 4 (Her2+-like) subtypes identified by SCCA-CC. (H–J)
Kaplan-Meier plots showing the association of the subtypes identified by SCCA-CC using (H) the GSE22219 mRNA dataset, (I) the GSE22216 miRNA dataset and
(J) the fused mRNA and miRNA dataset with disease-free survival. (K) Kaplan-Meier plot showing the association of the subtypes identified by PAM50 with
disease-free survival. P- values were calculated by log–rank tests.

the significance of the clustering (all P < 0.001, Figure 3A).
Similar to the ovarian cancer study, each breast cancer subtype
we identified was significantly associated with an intrinsic
subtype classified by PAM50 (Figure 3B and Supplementary
Figure 4, all P < 0.001, hypergeometric tests; P < 0.001,

McNemar–Bowker test). To further elucidate the biological
properties associated with identified subtypes, we performed
differential gene expression analysis by comparing each subtype
with the others, followed by GSEA to detect subtype-specific
biological functions. The GSEA results (Supplementary Table 1)
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suggested that Class 1, Class 2, Class 3, and Class 4 were enriched
for the gene expression signatures representative of the basal,
luminal A, luminal B, and Her2+ (ERBB2) subtypes, respectively
(Figures 3D–G; Smid et al., 2008). Since Class 5 recapitulated
the normal-like subtype, and therefore we did not notice any
particular biological process representative of this subtype.

The Multi-Omics Classifier Was Able to Classify Both
Single-Omics and Multi-Omics Data
For breast cancer, we also employed the five classification
algorithms: RF, SVM, KNN, Min-Dis, and Bayesian classifier
to build the classifiers. Using the labels obtained from the
consensus clustering as the reference, we randomly selected
200 breast cancer samples from the TCGA cohort to construct
classifiers based on the mRNA-miRNA fused data and evaluated
the performance on other 251 samples. We repeated the tests
100 times and compared the results of all types of omics data
for each classifier. Similar to the ovarian cancer case study, we
also found that all the classifiers demonstrated higher accuracies
on the mRNA data than on the miRNA data (Figure 3C, all
P < 0.001, Wilcoxon Signed–rank tests), and they achieved even
higher accuracies on the mRNA-miRNA fused data (Figure 3C,
all P < 0.001, Wilcoxon Signed–rank tests). Consistent with
ovarian cancer, our results in breast cancer further demonstrated
the improved classification performance of SCCA-CC on multi-
omics data.

Independent Validations Verified the General
Applicability of Multi-Omics Classification
In this case study, SVM demonstrated the best performance
and relatively low volatility: 94.8% using the fused data, 88.74%
using only the mRNA data, and 80.4% using only the miRNA
data. Therefore, we trained a multi-omics classifier based on
SVM using all the 451 TCGA samples and evaluated the general
applicability of the classifier to other independent datasets. The
GSE22220 series, including a mRNA dataset (n = 216), a miRNA
dataset (n = 210), of which 207 samples have both types of data,
were used for validations (Buffa et al., 2011). Using either the
mRNA or miRNA dataset alone, we found that the predicted
subtypes by the multi-omics classifier showed a significant
association with survival (Figures 3H,I, both P < 0.01, log–rank
tests). More interestingly, a higher significance of prognosis was
observed using the predicted subtypes based on the fused data
(Figure 3J, P < 0.001, log–rank test). Regardless of single-omics
or multi-omics classifications, the predicted Class 4 (Her2+ like)
subtype always displayed the worst overall survival, while the
Class 2 (Luminal A like) subtype showed more favorable clinical
outcome. These results about clinical associations were consistent
with previous studies, demonstrating the general applicability of
the multi-omics classifier (Sorlie et al., 2001, 2003; Yersal and
Barutca, 2014; Dai et al., 2015). Compared with the PAM50
classification on the same dataset, the SCCA-CC classification
was more significantly associated with survival (Figures 3J,K,
P = 3.5e-5 and 6.8e-5 for SCCA-CC and PAM50 classifications,
respectively). Together, our case study suggested that SCCA-CC
was able to identify subtypes that are more clinically relevant,
and again supported our hypothesis that incorporating different

types of omics data may capture more comprehensive intrinsic
characteristics of breast cancer than a single data type.

Benchmark Study
In order to demonstrate the superiority, we directly compared
SCCA-CC with iCluster on the datasets we analyzed in the case
studies based on three commonly used measures: (i) P- values
derived from log–rank tests in the Kaplan-Meier analysis to show
the association between subtypes and survival; (ii) Silhouette
score evaluating the cluster coherence. A higher Silhouette
score indicates that samples are more similar within subtypes;
and (iii) The algorithm running time evaluating computational
complexity. Using varying numbers of genes preselected based
on MAD, we performed subtyping analysis using SCCA-CC
and iCluster, respectively. As a result, we found SCCA-CC
outperformed iCluster based on the three different clustering
performance measures in almost all the different scenarios
(Figures 4A,B). The algorithm running time is acceptable when a
small number of genes were used for both methods, but the time
iCluster spent increased exponentially with the number of genes,
suggesting better scalability of SCCA-CC (Figure 4C).

To further compare SCCA-CC with other cancer taxonomies
and clinical risk factors, we performed Cox regression analyses
in ovarian cancer (TCGA dataset) and breast cancer (GSE22220),
respectively. For both cancer types, we first employed iCluster to
identify the subtypes with default parameters and evaluated the
associations between the identified subtypes with the reference
subtyping results based on TCGA or PAM50 (Supplementary
Figures 5, 6). In ovarian cancer, we found that the SCCA-
CC taxonomy showed higher statistical association with patient
survival than the classifications based on iCluster and TCGA in
the univariate analysis (Table 1). After adjusting for other clinical
factors such as age and stage, the SCCA-CC classification did
not show significant prognostic power. The lack of significance
in the survival difference is not surprising, since the TCGA
cohort includes HGSOC patients only, who showed very poor
overall survival in general. HGSOC patients are diagnosed
at advanced stages, and the 5-year overall survival rate (20–
30%) has not significantly improved over the last 20–30 years
(Davidson et al., 2014; Konstantinopoulos et al., 2015). These
patients were difficult to stratify by other pre-existing classifiers
such as the TCGA taxonomy itself (Figure 2C). Even with
our SCCA-CC classifier, the survival difference is marginally
significant (P = 0.031, Univariate Cox regression in Table 1;
P = 0.0387, and log–rank test in Figure 2D) in the TCGA
cohort. However, the independent validation dataset, with only
miRNA expression profiles for ovarian cancer, includes not
only high-grade serous tumors but also other ovarian cancer
histotypes that are less aggressive. Therefore, in the miRNA
cohort, the overall survival of the patients showed much
higher diversity (Figures 2J,K). Based on the univariate and
multivariate analysis, we found the SCCA-CC classification
showed significant prognostic power, even after adjusting for age
and stage information (Supplementary Table 3). Furthermore, in
breast cancer SCCA-CC also outperformed iCluster classification
and the PAM classification, and the prognostic power remains
after adjusting age and grade factors (Table 2). Together, using
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FIGURE 4 | A comparison of sparse canonical correlation analysis for cancer classification (SCCA-CC) with iCluster. Using varying numbers of genes preselected
based on MAD, we compared the classification performance between SCCA-CC and iCluster based on (A) P- values indicative of association with survival
calculated by log–rank tests, (B) Silhouette score representing the coherence of clusters, and (C) the algorithm running time evaluating the computational complexity.

both the ovarian and breast cancer case studies, we demonstrated
the better performance of SCCA-CC in identifying molecular
subtypes that are more coherent and clinically relevant.

Interpretations of the Canonical Variate
Pairs
Sparse CCA provides sets of variables with sparse loadings, which
is consistent with the belief that only a small number of genes
are expressed under specific conditions (Parkhomenko et al.,
2007). Previous studies have used sparse CCA to investigate
the associations between different types of omics data, e.g.,
identification of sets of genes that are correlated with sets of SNPs

and copy number variations (Parkhomenko et al., 2007, 2009;
Waaijenborg et al., 2008). For better understanding the biology
underlying the CCA we further analyzed the pairwise correlations
of mRNAs and miRNAs, and build miRNA-mRNA regulatory
networks in our case studies.

In ovarian cancer, we checked the first canonical variate
pair of mRNAs and miRNAs and found 105 non-zero
mRNA variables and 12 non-zero miRNA variables. Pairwise
correlation coefficients (n = 1260) were calculated between
these variables using their original expression data. Interestingly,
we found apparent correlation (negative or positive) between
the expression levels of mRNAs and miRNAs, suggesting
their potential interactions (Figure 5A). As a comparison, we
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TABLE 1 | Univariate and multivariate Cox regression analyses in ovarian cancer
using the TCGA dataset.

Univariate Multivariate

HR (95% CI) P- value HR (95% CI) P- value

Age (≥65 vs. < 65) 1.37 (1.07–1.76) 0.014 1.32 (1.02–1.71) 0.034

Stage (Late vs. Early) 2.33 (1.10∼4.94) 0.028 2.21 (1.04–4.70) 0.039

SCCA-CC
(multinomial)

1.04 (0.85–1.08) 0.466

TCGA labels
(multinomial)

0.94 (0.95–1.19) 0.279

SCCA-CC (OC2 vs.
OC1/3/4)

1.33 (1.03∼1.73) 0.031 1.21 (0.93–1.58) 0.161

iCluster (iCluster 1 vs.
iCluster 2–4)

1.25 (0.94∼1.67) 0.12

TCGA labels
(Mesenchymal vs.
Others)

0.82 (0.91∼1.63) 0.18

TABLE 2 | Univariate and multivariate Cox regression analyses in breast cancer
using the GSE22220 series dataset.

Univariate Multivariate

HR (95% CI) P- value HR (95% CI) P- value

Age (≥65 vs. < 65) 2.28 (1.42∼3.68) 0.0007 1.81 (1.09–2.99) 0.021

Grade (2–3 vs. 1) 1.82 (1.06∼3.11) 0.030 1.55 (0.89–2.68) 0.118

ER status (1 vs. 0) 0.80 (0.51∼1.26) 0.33

SCCA-CC
(multinomial)

0.86 (0.96–1.39) 0.127

PAM50 (multinomial) 1.06 (0.78–1.15) 0.575

SCCA-CC
(Class 4 vs. Classes
1–3, 5)

2.95 (1.73∼5.02) < 0.0001 1.95 (1.07–3.55) 0.030

iCluster
(iCluster 5 vs. iCluster
1–4)

2.49 (1.54∼4.02) 0.0002 1.68 (0.97–2.91) 0.063

PAM50
(Her2+ vs. others)

1.77 (0.93∼3.35) 0.08

generated a background distribution of correlation coefficients
based on random sampling of 1260 pairs of mRNAs and miRNAs
from all the input data, repeating for 1,000 times. As a result,
the randomly selected mRNAs and miRNAs showed lack of
association (Figure 5A), suggesting the functional relevance of
the non-zero mRNAs and miRNAs variables. Based on the
interesting correlation observed, we hypothesize that physical
interactions may underlie the expression associations between
these mRNAs and miRNAs selected by sparse CCA. To test
the hypothesis, we built a miRNA-mRNA regulatory network
by collecting both experimentally validated miRNA-target
interactions (from miRecords (Xiao et al., 2009), miRTarBase
(Huang et al., 2020), and TarBase (Karagkouni et al., 2018)
and predicted miRNA-target interactions with evolutionary
conservation (from TargetScan (Agarwal et al., 2015), PITA
(Kertesz et al., 2007) and miRanda (Enright et al., 2003). As
expected, most of the mRNAs (99 out of the total 105) and all the

miRNAs are interconnected (Figure 5C), suggesting that these
miRNAs have intense physical interactions with the mRNAs. As
an example, CDR2L, with the second largest weight, is the target
of hsa-miR-125b, hsa-miR-142-3p, hsa-miR-142-5p and hsa-
miR-222 based on targetScan, and/or PITA predictions (Kertesz
et al., 2007; Agarwal et al., 2015; Supplementary Table 2).
Similarly, MMD, with the third largest weight, is the target
of hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-223, hsa-miR-224,
and hsa-miR-335 (Kertesz et al., 2007; Agarwal et al., 2015;
Supplementary Table 2).

Similarly, in BRCA we checked the first canonical variate
pair of genes and miRNAs dataset and found 204 non-zero
mRNA variables and 57 non-zero miRNA variables. Pairwise
correlation coefficients (n = 11628) were calculated between
these variables using their original expression data. As a result,
we also found strong correlation (negative or positive) between
the expression levels of mRNAs and miRNAs (Figure 5B).
A background distribution of correlation coefficients based on
random sampling of 11,628 pairs of mRNAs and miRNAs from
all the input data, repeating for 1,000 times. As expected, the
randomly selected mRNAs and miRNAs also showed lack of
association (Figure 5B). We further built a miRNA-mRNA
regulatory network to investigate whether physical interactions
may also underlie the expression associations of mRNAs and
miRNAs selected by sparse CCA in BRCA. Indeed, most of
the genes (195 out of the total 204) and the miRNAs (52 out
of the total 57) are interconnected (Figure 5D), suggesting
that these miRNAs have intense physical interactions with the
mRNAs. For instance, Gene UBE2T with the highest weight is
the target of hsa-mir-96, hsa-mir-200c, has-miR-182 based on
targetScan, and/or PITA predictions (Kertesz et al., 2007; Agarwal
et al., 2015; Supplementary Table 2). Gene CKS2, with the
second highest weight, is the target of hsa-mir-200c, has-miR-
429, and has-miR-33b (Kertesz et al., 2007; Agarwal et al., 2015;
Supplementary Table 2).

Together, these results provide compelling evidence that the
sparse CCA selected biologically relevant genes and miRNAs,
which explains their strong expression correlation enabling
multi-omic data fusion in the projected space.

DISCUSSION

Cancer molecular heterogeneity hampers the selection of patients
for more optimized clinical management and the design of
targeted agents. During the last decade, tremendous efforts
have been made to dissecting the inter-tumor heterogeneity
in an overwhelming number of studies based on unsupervised
classification of high-throughput omics profiles. These studies
gained novel insights into cancer biology with important
clinical implications, which laid a solid foundation for precision
medicine. However, most of these studies were based on single-
omics data, especially transcriptomic data, which ignored other
genetic and epigenetic levels of gene regulation, and resulting
in only partial understanding of cancer heterogeneity. Recent
studies have seen a growing interest in integrating multiple types
of omics data for more comprehensive cancer subtyping, but few
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FIGURE 5 | Interpretations of the canonical variate pairs. (A,B) The distributions of observed pairwise correlation coefficients between non-zero mRNA variables and
miRNA variables in the first canonical variates, compared to the corresponding background distributions in this panel (A) ovarian cancer and (B) breast carcinoma
(BRCA), respectively. The gray area represents 95% confidence intervals. (C,D) MiRNA-mRNA regulatory networks constructed based on non-zero mRNA and
miRNA variables selected by sparse CCA in this panel (C) ovarian cancer and (D) breast carcinoma, respectively. Triangles and circles represent miRNAs and
mRNAs, respectively. Edges represent the interactions between miRNAs and mRNAs experimentally validated and/or predicted by databases including miRecords,
miRTarBase, TarBase, TargetScan, PITA, and miRanda. Nodes are colored in proportion to the averaged log2 transformed expression levels of mRNAs/miRNAs
across all TCGA samples, and edges are colored based on Pearson correlation coefficients between the expression levels of miRNAs and mRNAs.

existing methods can classify both single-omics and multi-omics
data. In this study, we developed SCCA-CC, a robust and efficient
framework for cancer subtyping and classifications based on data
fusion using sparse CCA followed by unsupervised classification.
Using two case studies on multiple independent cohorts, we
demonstrated that SCCA-CC was able to identify biologically
meaningful and clinically more relevant taxonomies.

Conventional CCA may suffered from the high dimensionality
of genomic data where the number of observations greatly
exceeds the number of samples, leading to high risk of potential
collinearity and unstable estimates (Waaijenborg et al., 2008;
Parkhomenko et al., 2009; Boutte and Liu, 2010). PCA is a
powerful dimension reduction method, which has been used
prior to CCA in some applications. However, in our study,
we did not perform PCA prior to CCA due to the following
considerations: (1) We employed sparse CCA but not the
conventional CCA in our study. In the sparse CCA (Witten et al.,

2009), a penalized matrix decomposition is introduced using a
LASSO penalty to compute a rank-K approximation of a matrix
(Witten et al., 2009; Lin et al., 2013). This is inspired by several
penalization methods presented in the regression context (Zou
et al., 2006; Wright et al., 2009; Wu et al., 2009). As reported
before, the problem of multicollinearity can be mitigated by the
use of sparse loadings in the CCA algorithm (Waaijenborg and
Zwinderman, 2009; Witten et al., 2009; Boutte and Liu, 2010;
Lin et al., 2013). (2) Cross-platform applicability. In practice,
the strategy to perform PCA before CCA may be difficult to
be applied to other datasets based on different gene expression
profiling platforms. For instance, a lot of newly identified genes
in RNA-seq data were often missing in early gene expression
microarrays published many years ago. (3) After performing PCA
prior to CCA, the generalized eigenvector problem is changed
into the eigen-system computation of a nonsymmetric matrix
which is unstable as previously reported (Swets and Weng, 1996).
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(4) Performing PCA prior to CCA may discard dimensions that
contain important discriminative information (Xing et al., 2016).

For both ovarian and breast cancers, the subtypes identified by
SCCA-CC recapitulated the taxonomies previously established,
as suggested by the pairwise statistical tests and GSEA.
However, SCCA-CC derived subtypes showed a more significant
association with clinical outcomes. Notably, ovarian cancer
subtypes identified by SCCA-CC were significantly associated
with overall survival in the TCGA cohort, while the four subtypes
previously defined by TCGA did not show any significant
clinical association. On independent mRNA, miRNA, and fused
datasets, SCCA-CC demonstrated consistent clinical associations
in both our ovarian and breast cancer studies. These results
demonstrated that SCCA-CC is able to detect the biologically
coherent subgroups in different types of single-omics data, and
incorporating multiple types of omics data can further improve
the prediction performance.

More importantly, a number of published studies with only
miRNA expression profiles cannot be classified using existing
subtyping systems based on mRNA expression signatures. SCCA-
CC presented a unique advantage in its ability to classify both
single-omics data and multi-omics data, which significantly
extends the general applicability to make efficient use of
public resources. More specifically, we constructed multi-omics
classifiers using the fused data with the consensus clustering
labels as the reference and evaluated the robustness of the
classification performance by iterative testing. The validity of
multi-omics classifiers was verified by the observed significant
prognostic power on both the mRNA dataset and the miRNA
dataset. Notably, it was the first time ever that the miRNA datasets
could be classified since the previous classification assays only
take mRNA data as input.

In a benchmark study against iCluster, SCCA-CC also
demonstrated its superiority in the higher coherence and clinical
relevance of identified cancer subtypes, and lower computational
complexity. Furthermore, the strength of SCCA-CC also lies
in the biological interpretability. The non-zero mRNAs and
miRNAs selected by sparse CCA had strong correlation in their
expression levels, which can be explained by their intense physical
interactions. These results provide compelling evidence that the
sparse CCA selected biologically relevant genes and miRNAs.

Despite the demonstrated usefulness, the major limitation of
SCCA-CC lies in the limited types of omics data we used in the
study. Only mRNA and miRNA data were fused for classification,
likely missing heterogeneity occurring at other omics levels.
Thus, our future work will focus on integrating more types of
omics data to dissect the heterogeneity more comprehensively.
Considering the differences in the dimensionalities and data
scales between various types of omics data, how to properly
preprocess the data for effective data fusion remains a
significant challenge.
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Supplementary Figure 1 | Consensus clustering based on the fused data in
ovarian cancer. (A) Heatmap illustrating the consensus matrices for k = 4, 5, and
6. (B) Consensus cumulative distribution function (CDF) plot for k varying from 2 to
6. (C) Delta area plot shows the relative change in the area under the consensus
cumulative distribution function (CDF) curve comparing k and k–1. At k = 4, there
is no appreciable increase (Delta area < 0.1). (D) Gap statistic suggesting the
optimal number of clusters is four in the TCGA dataset. Error bars indicate SEM.

Supplementary Figure 2 | A heatmap illustrating the pairwise comparison
between the subtypes identified by SCCA-CC and those defined by the cancer
genome atlas (TCGA) in the TCGA ovarian cancer dataset.

Supplementary Figure 3 | Consensus clustering based on the fused data in
breast cancer. (A) Heatmap illustrating the consensus matrices for k = 5, 6, and 7.
(B) Consensus cumulative distribution function (CDF) plot for k varying from 2 to 7.
(C) Delta area plot shows the relative change in the area under the consensus
cumulative distribution function (CDF) curve comparing k and k–1. At k = 5, there
is no appreciable increase (Delta area < 0.1). (D) Gap statistic suggesting the
optimal number of clusters is five in the TCGA dataset. Error bars indicate SEM.

Supplementary Figure 4 | A heatmap illustrating the pairwise comparison
between the subtypes identified by SCCA-CC and those defined by PAM50 in the
TCGA breast cancer dataset.

Supplementary Figure 5 | Heatmaps showing the pairwise comparison between
the subtypes identified by iCluster and the cancer genome atlas (TCGA) in the
TCGA ovarian cancer dataset. (A) The statistical significance of association
quantified by hypergeometric tests. (B) The detailed confusion matrix.

Supplementary Figure 6 | Heatmaps showing the pairwise comparison between
the subtypes identified by iCluster and PAM50 in the GSE22219 breast cancer
dataset. (A) The statistical significance of association quantified by
hypergeometric tests. (B) The detailed confusion matrix.

Supplementary Table 1 | The result of gene set enrichment analysis (xlsx).

Supplementary Table 2 | The weights of canonical variates (xlsx).

Supplementary Table 3 | Univariate and multivariate Cox regression analyses in
the independent miRNA validation datasets (xlsx).
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