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Patients with estrogen receptor-negative breast cancer generally have a worse prognosis

than estrogen receptor-positive patients. Nevertheless, a significant proportion of the

estrogen receptor-negative cases have favorable outcomes. Identifying patients with

a good prognosis, however, remains difficult, as recent studies are quite limited.

The identification of molecular biomarkers is needed to better stratify patients. The

significantly mutated genes may be potentially used as biomarkers to identify the subtype

and to predict outcomes. To identify the biomarkers of receptor-negative breast cancer

among the significantly mutated genes, we developed a workflow to screen significantly

mutated genes associated with the estrogen receptor in breast cancer by a gene

coexpression module. The similarity matrix was calculated with distance correlation to

obtain gene modules through a weighted gene coexpression network analysis. The

modules highly associated with the estrogen receptor, called important modules, were

enriched for breast cancer-related pathways or disease. To screen significantly mutated

genes, a new gene list was obtained through the overlap of the important module genes

and the significantly mutated genes. The genes on this list can be used as biomarkers

to predict survival of estrogen receptor-negative breast cancer patients. Furthermore,

we selected six hub significantly mutated genes in the gene list which were also able

to separate these patients. Our method provides a new and alternative method for

integrating somatic gene mutations and expression data for patient stratification of

estrogen receptor-negative breast cancers.

Keywords: breast cancer patient stratification, estrogen receptor-negative, distance correlation, significantly

mutated gene, gene coexpression network

1. INTRODUCTION

Breast cancer is a heterogeneous disease with many subtypes which exhibits significant differences
in response to therapy and patient outcomes (Jonasson et al., 2019). Breast cancer has been known
to be an endocrine-related cancer (Wu et al., 2020), and the majority of breast cancer subtypes
are hormone-associated (DeSantis et al., 2017; Xu et al., 2019). The expression of the estrogen
receptor (ER), progesterone receptor (PR), and human epithelial growth factor receptor 2 (HER2)
as predictive and/or prognostic markers has been well established in multiple studies (Francis
et al., 2019). Endocrine therapies that target the ER have long been the cornerstone of therapy

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.610087
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.610087&domain=pdf&date_stamp=2021-02-03
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yexiufen@hrbeu.edu.cn
https://doi.org/10.3389/fgene.2021.610087
https://www.frontiersin.org/articles/10.3389/fgene.2021.610087/full


Hou et al. Stratification of ER− Breast Cancer

approaches for the majority of breast cancer patients. However,
20–30% of breast tumors do not express ER and are not
responsive to existing endocrine therapies (Ni et al., 2011). The
prognosis of estrogen receptor-negative (ER−) breast cancer
is worse than estrogen receptor-positive (ER+) breast cancer
in most situations, but ER− breast cancer patients do not
always have a poor clinical outcome. Due to the lack of reliable
biomarkers, it is impossible to identify ER− tumors with a
good prognosis (Teschendorff et al., 2007; Zhang et al., 2016).
Several studies have revealed that different chromosomal and
gene expression patterns are present in patients with different
estrogen receptor statuses (Zhang et al., 2009; Fohlin et al., 2020).
Thus, an accurate grouping of ER− breast cancer into clinically
relevant subtypes is of particular importance for therapeutic
decision making.

Cancer is often driven by the accumulation of genetic
alterations. Until now, the somatic mutation landscapes and
signatures of more than a dozen major cancer types have
been reported. However, pinpointing the driver mutations and
cancer genes frommillions of available cancer somatic mutations
remains a significant challenge (Cheng et al., 2016). In The
Cancer Genome Atlas (TCGA) database, a phenomenon can be
observed that the position and nature of somatic mutations can
often be translated to changes of protein structures or functions
of the genes. The affected gene is designated as a significantly
mutated gene (SMG). SMGs are the result of splice-site change,
nonsense, nonstop, or frame-shift mutations (Zhang et al., 2016).
The prevalence of SMGs in almost all cancer types has allowed
for postulation that they may be act potentially as biomarkers
for subtyping and testing for use in cancer patient outcome
predictions, or a starting point of clarifying the tumorigenesis
process (Cancer Genome Atlas Network, 2012).

Network approaches have provided the means to bridge
the gap between individual genes and systems oncology
(Ghazalpour et al., 2006). Weighted gene coexpression network
analysis (WGCNA) is a systems biology method used to
analyze gene expression profiling data which is widely used
in bioinformatics (Zhang and Horvath, 2005). WGCNA can
help researchers analyze the relationships between genes and
pathogenic mechanisms. Instead of linking thousands of genes to
the disease, this method focuses on the relationship between gene
modules and disease traits (Huang et al., 2020). Many studies
that constructed the coexpression networks in breast cancer used
WGCNA. Coexpression networks were used to screen hub genes
from the co-expression module using the relationship between
genes and traits, together with the core position of genes in
the module (Tang et al., 2019; Jia et al., 2020). A coexpression
network analysis can also identify the prognostic lncRNAs (Liu
et al., 2019; Li et al., 2020). However, these studies did not
consider the information of genetic mutations in breast cancer.

SMGs are not always concentrated in specific genomic loci,
which suggests that instead of common genes, mutations may
affect some pathways or gene interaction networks (Zhang et al.,
2016). So, in this work, we propose a method to screen SMGs
using gene coexpression networks to identify the SMGs that
highly relate to ER_Status. We show the development of a
workflow for screening SMGs associated with clinical data of

the estrogen receptor in breast cancer by a gene coexpression
module. The new gene list was designated as important-SMGs.
The identified genes, which were used to stratify patients
with different subtypes of cancers, were suggested to represent
biomarkers. Our method provides a new alternative method
for cancer patient stratification by integrating transcriptomic,
variants, and clinic data.

2. METHODS

In this work, we propose a method for screening SMGs by a
gene coexpression module associated with clinical data of breast
cancer and the estrogen receptor; the workflow is summarized
in Figure 1. We calculated the similarity coexpression matrix
by distance correlation for WGCNA to construct a gene
coexpression network and to obtain the gene modules. Distance
correlation has a perfect theoretical system and works for
both linear and nonlinear dependence between any two vectors
(Székely et al., 2007). WGCNA is a method used to identify
clusters (modules) of highly correlated genes (Zhang and
Horvath, 2005). We identified some important modules that
were significantly associated with the measured clinical estrogen
receptor data. SMGs were then selected from the TCGA tumor
somatic mutation data and the important-SMGs were obtained
through the overlap between the important module genes and
the SMGs. Furthermore, we respectively chose the hub SMGs
in the important modules and acquired six genes which can be
used as the biomarkers for stratification and prediction of patient
survival of ER− breast cancer.

2.1. Datasets
The TCGA datasets used in this study can be found in the
Data Portal for TCGA-Breast Cancer (Weinstein et al., 2013),
For the construction of the gene coexpression and the SMGs
selection, we used the TCGA dataset. The gene expression profile
was measured experimentally using the Illumina HiSeq 2000
RNA Sequencing platform with log2(x + 1) transformed RSEM
normalized count (Cancer Genome Atlas Network, 2012). The
samples were screened based on RNA-seq data and clinical data,
after which we selected genes with a variable coefficient of more
than 0.2 and a mean >1. Ultimately, we obtained 5,076 genes.

The Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) dataset from the cBioportal
website (Cerami et al., 2012) contains cDNA microarray
performed on the Illumina HT-12 platform (Curtis et al.,
2012; Pereira et al., 2016). The details of data normalization
can be found in Margolin et al. (2013). For validation,
both datasets containing gene expression data and matching
survival time (months) were used for survival analysis.
Samples in the METABRIC were screened based on the
clinical data (contain ER_Status, Days, Vital_Status). The
sample numbers used in the two datasets are shown in
Table 1.

2.2. Distance Correlation
In 2007, distance correlation was proposed by Szekely, Rizzo,
and Bakirov in the paper titled Measuring and Testing
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FIGURE 1 | Workflow of identifying new biomarkers using transcriptomic and variants data.

TABLE 1 | Sample numbers in two datsets.

Dataset Total SMGs ER+ ER− Deceased/Living (ER− )

TCGA 637 383 499 133 23/110 ≈ 0.209

METABRIC 1,888 – 1,435 424 240/184 ≈ 1.304

There are more samples in METABRIC and longer clinical follow-up time.

Dependence by Correlation of Distances published in the
Annals of Statistics (Székely et al., 2007). In this work, the
similarity coexpression matrix was calculated with distance
correlation for WGCNA to perform a gene coexpression
network analysis. Unlike the Pearson correlation, distance
correlation works for both linear and nonlinear dependence
between two gene expression profiles. However, distance
correlation is still a relatively expensive computation.
The time complexity of distance correlation was O(n2).
Distance correlation was calculated using the energy

package in R (see the references in the manual for more
package details).

2.3. WGCNA
WGCNA (Zhang and Horvath, 2005) can be used to identify
clusters (modules) of highly correlated genes. This method
summarizes such clusters using the module eigengene or an
intramodular hub gene. Alternatively, it relates modules to
one another and to external sample traits and calculating
module membership measures using the eigengene network
methodology (Langfelder and Horvath, 2008; Luo et al., 2018).
The functions of WGCNA are plentiful, and only some of
them were used in this study. We mainly used the process
of module division of WGCNA. First, the correlation for all
genes was calculated using correlation methods, and a similarity
coexpression matrix was obtained. The similarity coexpression
matrix was transformed to an adjacency matrix using the soft-
thresholding power which was chosen based on the criteria of
approximating the scale-free topology (SFT) of the network.
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FIGURE 2 | Kaplan-Meier survival curves of ER− and ER+. The ER− breast cancer patient have a poor prognosis in the short term and a relatively good prognosis in

the longer term.

Next, a topological overlap matrix was computed from the
adjacency matrix. Finally, a tree (dendrogram) was produced
from the dissimilarity topological overlap matrix by hierarchical
clustering. The clusters (modules) were obtained using dynamic
tree cutting. For functions of WGCNA, we refer to the
corresponding tutorials package. The WGCNA package is now
available from the Comprehensive R Archive Network(CRAN).

2.4. Enrichment Analysis
Enrichr (Chen et al., 2013; Kuleshov et al., 2016) was
used to analyze the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa et al., 2019) pathways
and the phenome-wide association studies (PheWAS)
(Denny et al., 2010) of diseases identified in the
important modules. Enrichr is open source and freely
available online.

2.5. SMGs and Important SMGs
The SMGs were obtained by screening the somatic
mutations derived from the TCGA breast cancer
patients. The SMGs are genes with frame-shift indels,
splice-site changes, nonstop mutations, or nonsense
mutations (Zhang et al., 2016). Mismatch, silent, RNA,
and in-frame indel mutations did not belong to the
SMGs. Among the samples we selected, the mutation
types of 1920 SMGs and 383 samples are listed in
Supplementary Table 1.

To obtain ER-related SMG, we acquired some SMGs
contained in the important modules by taking the intersection
of genes in important modules and SMGs, and we named them
important SMGs.

2.6. Gene Significance and Module
Membership
To find genes associated with clinical ER_Status, we defined a
measure of gene significance (GS) between the i-th gene profile
xi and the ER_Status as

GSi = cor(xi, ER_Status), (1)

where cor(·, ·) denotes the correlation coefficients. ER_Status can
be mapped to a binary indicator variable where 1 is positive and
0 is negative. The higher the absolute value of GSi of the gene, the
more closely relevant it is to ER.

To measure the relationship between the i-th gene and
the module to which it belongs, we introduced the module
membership (MM) (Langfelder and Horvath, 2008; Wei et al.,
2020) which was defined by calculating the correlation coefficient
between the gene expression profile and the module eigengene.

2.7. Survival Analysis
Some subtypes of breast cancer have a poor prognosis in the short
term and a relatively good prognosis in the longer term. This
particular characteristic of ER− breast cancer can be observed
from Figure 2. Due to this characteristic, the two survival curves
may cross. Thismade the log-rank test P-value large, although the
two curves were obviously separate. The two-stage hypothesis test
was developed for handling the crossing hazard rates problem.
We evaluated the P-values of both the log-rank and the two-stage
hypothesis tests.

For validation, the TCGA breast cancer dataset (containing
133 ER− patients) and the METABRIC dataset (containing
424 ER− patients) were used. The breast cancer characteristic
led to the crossing of the two survival curves, so the two-
stage hypothesis test was developed for handling the crossing
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FIGURE 3 | Identification of modules associated with the ER_Status of breast cancer. (A) The scale-free fit index for various soft-thresholding power. Scale-free

topology (SFT) was achieved when the recommended soft-thresholding power was 3. (B) The mean connectivity for various soft-thresholding powers. (C) The cluster

dendrogram of module eigengenes. (D) The cluster dendrogram of all genes with corresponding color assignments. Nine colors present nine modules. (E)

Module-ER_Status relationship heatmap. The values above the brackets represent the correlation coefficients between modules and ER_Status. The values in

brackets are the P-values for the association test. The red and yellow modules were significantly related to the ER_Status and selected as the important modules.

hazard rates problem (Qiu and Sheng, 2008). To predicate the
significance of the difference in the survival time between the two
patient groups, we performed the Log-rank and two-stage tests.

3. RESULTS

3.1. Gene Co-expression Module
Associated With Estrogen Receptor
The similarity coexpression matrix was calculated with distance
correlation. When we chose 3 as the recommended soft-
thresholding power, the SFT was achieved. The scale-free fit
index is shown in Figure 3A, and the mean connectivity for
various soft-thresholding powers is shown in Figure 3B. The
modules were obtained by hierarchical clustering based on the
minimum module size of 30. The modules were then merged
if the similarity between module eigengenes were >0.75. The
cluster trees (dendrograms) of the module eigengenes are shown
in Figure 3C and the cluster dendrograms of the genes that
were assigned module colors after the merge is shown in the
Figure 3D. Finally, nine coexpression modules were constructed.

To find modules related to clinical ER_Status, the correlation
between modules eigengenes and ER_Status was calculated and

shown in Figure 3E. The modules eigengenes were associated
with ER_Status when p < 0.01. There were four modules
positively associated with ER_Status, and three modules that
were negatively associated. The yellow and red modules, where
the absolute value of the correlation coefficient was >0.6,
had the highest correlations with ER_Status. This means that
these modules have great biological significance related to
the ER_Status, so these two modules were selected as the
important modules.

3.2. Enrichment Analysis of the Important
Modules
We analyzed the KEGG and PheWAS enrichments for the two
important modules to associate each module with biological
pathways and diseases (see Table 2). Enrichment results of all
modules are available in Supplementary Table 2.

Several KEGG enriched terms related to cardiac diseases
were enriched in the yellow module. Approximately 59% of
cancer patients in the dataset used in this study received
radiation therapy. What is more, hormonal therapy plays an
important role in breast cancer treatments (Jones and Buzdar,
2004). Some reports showed that one of the side effects of
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TABLE 2 | KEGG and PheWAS enrichment analysis by Enrichr of the important modules identified by WGCNA.

Module No. KEGG P-value PheWeb P-value

Yellow 677 Dilated cardiomyopathy (DCM) 3.67E-03 Cancer of stomach 2.18E-03

Adrenergic signaling in cardiomyocytes 3.86E-03 Pelvic peritoneal adhesions,- 5.20E-03

female (postoperative) (postinfection)

Cardiac muscle contraction 4.83E-03 Cholecystitis without cholelithiasis 5.85E-03

Glutamatergic synapse 5.35E-03 Cancer of eye 8.57E-03

Hypertrophic cardiomyopathy (HCM) 8.07E-03 Elevated cancer antigen 125 [CA 125] 8.57E-03

Red 1819 Metabolism of xenobiotics- 2.80E-04 Genital prolapse 6.45E-04

by cytochrome P450

Chemical carcinogenesis 3.42E-04 Breast cancer 2.55E-03

Neuroactive ligand-receptor interaction 1.31E-03 Osteoarthrosis, localized, primary 2.73E-03

Caffeine metabolism 6.53E-03 Heart failure with preserved 2.88E-03

EF [Diastolic heart failure]

Protein digestion and absorption 6.83E-03 Other venous embolism and thrombosis 4.09E-03

All the important modules were highly enriched with PheWAS in breast cancer, cancer or female-related diseases.

breast cancer treatments (radiation therapy, hormonal therapy)
is cardiotoxicity (Bird and Swain, 2008; Demissei et al., 2020).
This may be the cause of the enrichment of the cardiac disease
pathway in the yellow module. The yellow modules were highly
enriched in cancer (For instance, cancer of stomach, cancer
of eye, and elevated cancer antigen) or female-related diseases
with PheWAS. With the KEGG pathway enrichment analysis,
the red modules were enriched in the metabolism and chemical
carcinogenesis pathways. This is consistent with the conclusion
that the ER is a modulator in metabolic disorders (Mauvais-Jarvis
et al., 2013). With PheWAS diseases enrichment analysis, the
top two significant terms were breast cancer and female-related
diseases. The results of the enrichment analysis confirmed the
biological significance of the important modules related to breast
cancer or other cancers.

3.3. Survival Analysis by Important-SMGs
and RNA-Seq Data
The new gene list, designated as the important-SMGs, was
obtained through overlapping the important module genes
and the SMGs. The list contains 227 SMGs and is shown in
Supplementary Table 3.

In Zhang et al. (2016), the ER− samples were also separated
into two groups. The authors developed an approach for
stratifying cancer patients into groups with different clinical
outcomes. They focused on this specific Group 1 with a
significantly higher proportion of ER-negative patients. Thirteen
SMGs among the 201 SMGs in Group 1 are identical to
the important-SMGs obtained by our approach. The TCGA
breast cancer dataset (containing 133 ER− patients) and the
METABRIC dataset (containing 424 ER− patients) were used in
this test. The important-SMGs in this work were compared with
the Group 1-specific genes in Zhang et al. (2016). For survival
analysis, the ER− samples were separated into two groups based
on the K-means algorithm with K = 2, using the two gene lists
and the RNA-seq data. The results are shown in Figure 4.

From the two-stage P-value, the two gene lists in our test on
the TCGA ER− data were able to separate the patients into two

groups with a significant survival time difference. The survival
curves in Figures 4A,Bwere clearly separated, but the two curves
obtained by the important-SMGs in Figure 4Bwere further apart
than that obtained by the gene list of Group 1 in Zhang et al.
(2016) in Figure 4A. Therefore, on the TCGA ER− data, the
important-SMGs were able to separate the patients into twomore
significant groups.

The test on METABRIC data shown in Figure 4D suggested
that the important-SMGs were able to separate the patients into
two groups with a significant survival time difference (the P-value
of the two tests are 0.00853). However, the gene list of Group
1 in Zhang et al. (2016) shown in Figure 4C could effectively
separate the ER− patients with the bigger P-value (the P-values
of the two tests larger than 0.01). The survival curves of the two
groups obtained by the important-SMGs were also further apart.
Therefore, on the METABRIC data, the important-SMGs were
able to separate the patients into two more significant groups.

3.4. Survival Analysis by Six Hub SMGs and
RNA-Seq Data
As discussed in the previous section, the 227 important-SMGs
were able to more significantly separate the ER− patients
into two groups. As biomarkers, it is best to keep the
number of genes as small as possible. Gene co-expression
modules were composed of highly correlated genes, we just
have to choose a few representative genes from 227 SMGs.
The most representative genes are the hub genes within
important modules.

We chose the GS > 0.2 and MM > 0.8 in the two
important modules and obtain 29 hub genes. The six genes
(FOXA1, GABRP, BCL11A, DNALI1, STAC, and ESR1) obtained
by overlapping the 29 hub genes and the SMGs were called the
hub-SMGs. The ER− samples were separated into two groups
based on the K-means algorithm with K = 2, using the
hub-SMGs and the RNA-seq data. The results in the TCGA
and the METABRIC datasets of survival analysis are shown in
Figure 5. From the value of the two-stage P-value, the hub-
SMGs can significantly separate the ER− breast cancer patients
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FIGURE 4 | Kaplan-Meier survival curves. The 227 important-SMGs were able to separate the patients into two groups more significantly. The P-values were smaller

in METABRIC dataset. (A) Group 1 in TCGA, (B) important-SMGs in TCGA, (C) group 1 METABRIC, (D) important-SMGs in METABRIC.

into two groups. Patients in different groups have different
survival times. From Figure 5B, the P-value in the METABRIC
dataset is 0.00554 which is smaller than the P-value of the
Important-SMGs 0.00853 (see Figure 4D). This suggests that a
few genes can represent the important-SMGs and separate the
ER− patients.

4. CONCLUSION

With rapid developments in massively parallel sequencing
and computing capacity, a rich resource of data in different
modalities for cancer specimens have been generated in
public databases at an amazing speed. Therefore, integrating
and mining the tremendous volume of data has become an
important subject in the field of bioinformatics. In our study,

we show the development of a new workflow to integrate
somatic mutations, gene expression, and clinical data. We
constructed a gene co-expression network and obtained nine
coexpression modules. The yellow and red modules were
selected as the important modules, because these two modules
have the most significant correlation with ER. We obtained
the important-SMGs list through the overlap between the
important module genes and the SMGs. In the TCGA and
METABRIC datasets, we verified that the important-SMGs
were able to separate the ER− patients more significantly than
other methods.

Furthermore, we selected the six hub SMGs as potential
biomarkers which are also able to separate these patients.
The genes ESR1, DNALI1, and FOXA1 belong to the yellow
module, the genes GABRP, STAC, and BCL11A belong to the
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FIGURE 5 | Kaplan-Meier survival curves using the six hub SMGs. A few hub SMGs can represent the 227 important-SMGs and were able to separate the patients

into two groups more significantly. (A) Six hub SMGs in TCGA. (B) Six hub SMGs in METABRIC.

red module. These six genes have been reported to be related
to cancer or breast cancer in the literature. In particular, two
genes in the yellow module are directly related to estrogen
receptors. ESR1 (estrogen receptor 1, also known as ER) is a
gene that encodes the estrogen receptor protein (Holst et al.,
2007). FOXA1 is a key determinant of estrogen receptor
function and endocrine response (Hurtado et al., 2011). The
conclusion of the relevant literature verified the correctness of
our algorithm flow.

Our work provided a novel workflow for identifying new
biomarkers using transcriptomic and variants data. In future
research, we will use the same workflow for other complex
diseases to further test its effectiveness and to find a new gene
list to stratify patients.
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