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The estimation of heritability has been an important question in statistical genetics.

Due to the clear mathematical properties, the modified Haseman–Elston regression has

been found a bridge that connects and develops various parallel heritability estimation

methods. With the increasing sample size, estimating heritability for biobank-scale

data poses a challenge for statistical computation, in particular that the calculation of

the genetic relationship matrix is a huge challenge in statistical computation. Using

the Haseman–Elston framework, in this study we explicitly analyzed the mathematical

structure of the key term tr(KTK), the trace of high-order term of the genetic relationship

matrix, a component involved in the estimation procedure. In this study, we proposed

two estimators, which can estimate tr(KTK) with greatly reduced sampling variance

compared to the existing method under the same computational complexity. We applied

this method to 81 traits in UK Biobank data and compared the chromosome-wise

partition heritability with the whole-genome heritability, also as an approach for

testing polygenicity.

Keywords: polygenicity, UK Biobank, subsampling estimator, effective number of markers,

Haseman-Elston regression

INTRODUCTION

Given the increasing sample size and sequencing capability, high-throughput genetic data is
presented as the standard input that challenges statistical computation. For example, in the
estimation of heritability for complex traits using all markers concurrently, both (i) constructing
the genetic relationship matrix [GRM, denoted as K and the mathematical expression can be seen
in section Materials and Methods, with its computational cost O(MN2)] and (ii) the estimation
of heritability using linear mixed model [O(N3)] are computationally expensive (Yang et al.,
2010). In order to alleviate computational burden, various solutions have been proposed. Modified
Haseman–Elston regression (HE) can be used to estimate heritability with reduced computational
cost in the estimation step [O(N2)], but the construction of GRM is still needed (Chen, 2014). Using
summary statistics, such as those estimated from the genome-wide association study (GWAS),
rather than individual-level data, can provide a theoretical equivalence estimate of the heritability
under the assumption that the source of summary statistics and the linkage disequilibrium (LD)
reference are homogeneous (Bulik-Sullivan et al., 2015), if not always the case.

Even under the HE framework, given the availability of biobank-scale data, such as UK Biobank
(UKB) data (Bycroft et al., 2018), the computational cost for GRM poses a challenge for heritability
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estimation mentioned procedure above. In order to reduce the
computational cost of GRM, recently a randomized estimation
of heritability has been introduced by Wu and Sankararaman
(2018), called randomized Haseman–Elston regression (RHE), a
promising method that can be used for both single-trait and bi-
trait analyses (Sankararaman, 2019). This method is built on a
hybrid framework which can be applied to biobank-scale data,
and a key innovation involved is a quick evaluation for tr(KTK),
the trace of the multiplication of GRM with its transpose.
Direct computation of tr(KTK) can be time-consuming, at the
time cost of O(N2M), but in RHE the numerical evaluation of
tr(KTK) can be realized via a randomization method expressed
in quadric form. However, we found that the sampling variance
of RHE in the original report is incorrect because of their wrong
derivation (refer to Appendix A3 in Wu and Sankararaman’s
original report). In this study, we further investigate the statistical
property of RHE, in particular the term about tr(KTK), and its
relevant extensions.

This report was written for three purposes. First, we found
that the provided randomization estimate for tr(KTK) is
correct but with its sampling variance, which is proportional to
tr(KTKKTK), not properly treated in Wu and Sankararaman’s
original report. We derived and numerically validated the
sampling variance of tr(KTK). Second, recently a hybrid routine
that can use either individual-level data and summary statistics
has also been found (Zhou, 2017; Wu and Sankararaman,
2018), in which subsampling technique is used to evaluate
tr(KTK); however, its sampling variance was not available. We
provided a similar method as subsampling but with availability
of its analytical sampling variance. Third, we partitioned the
heritability based on the effective number of markers and applied
them in the partitioning of heritability for some complex traits
in UKB.

MATERIALS AND METHODS

Genetic Relationship Matrix
For a homogenous unrelated sample, its genotypic matrix can be
written as X, a matrix of N rows—individuals, andM columns—
coding the count of the reference allele for a biallelic locus. After

standardization for each genotype x̃kl = xkl−2pl√2plql
, in which 2pl is

the allele frequency and
√
2plql the square root of the variance, we

can define GRM as K = 1
M X̃X̃T . Given K , we can easily derive

some characters of K . Denote Ko as the off-diagonal elements,
and it is easy to see that E (Ko) = −1

N−1 , because the summation
of the diagonal is N − 1. var (Ko) is the sampling variance of the
all off-diagonal elements.

Of note, var (Ko) relates to the concept, so-called effective

number of markers, denoted as Me thereafter. As noticed, Me

is defined as the reciprocal of var (Ko). Me = 1
var(Ko)

=
M2

M+
∑M

l1 6=l2
E
(
ρl1 l2

)2 , in which E(ρl1l2 ) is the expected Pearson’s

correlation between the lth1 and lth2 loci. Alternatively, Me =
1

E
(
ρ l1 l2

)2 . It is known that for a population, the averaged linkage

disequilibrium across the genome is nearly a constant given the

markers; in other words,Me is a constant genetic parameter. The
definition of Me in this report allows researchers to calculate
Me based on a reference population of the same origin to the
population in question. Similarly, Me.c represents the averaged
LD for any pair of markers on the cth chromosomes.

As the causal variants are hardly observed directly, their
relationship with markers are surrogated by relationship between
markers, as reflected inMe. AsMe is a critical parameter in many
genetic applications, a conceptional parameter is its involvement
in genetic prediction (Dudbridge and Wray, 2013), or power
calculation for the estimation of heritability (Visscher et al.,
2014). In the estimation for variance components, as shown
below,Me is a key parameter.

Haseman–Elston Regression Framework
for the Estimation of Heritability
Haseman–Elston regression (HE) has been initially proposed
for the linkage analysis (Haseman and Elston, 1972). With its
original kernel relatedness between sib pairs via linkage replaced
by linkage disequilibrium for unrelated samples, the modified
HE can be used for the estimation of heritability (Chen, 2014).
Due to its clear mathematical property, HE has been found
a bridge to connect and develop various parallel methods for
the estimation of heritability, such as LD score regression that
estimates heritability and uses summary statistics from GWAS
(Bulik-Sullivan et al., 2015; Zhou, 2017).

However, LD score regression is based on various assumptions
that may or may not be met in practice. LD score regression uses
SNPs in a sliding window instead of all genome-wide SNPs to
calculate LD scores, which will lose efficiency if heterogeneity
exists between the reference population and the population
that generates the GWAS summary statistics. If we directly use
individual-level data, the time cost will be unaffordable, such
as for the restricted maximum likelihood estimation method
(REML); in contrast, a method of moment (MoM) can provide
equivalent estimation for the heritability for complex traits.

We assume that

y = X̃β + e; β∼ N

(
0,

h2

M
I

)
; e∼ N

(
0, σ 2

e I
)

in which y is the standardized phenotype for a trait of interest,
X̃ is the standardized genotypic matrix of N individuals and
M the biallelic markers, β is the additive effect associated with
each marker, e is the residual, h2 is the SNP heritability, and
σ 2
e is the residual variance. It is easy to know that var

(
y
)

=
E

(
yyT

)
−E

(
y
)
E

(
yT

)
= h2

M X̃X̃T+σ 2
e I=h2K+σ 2

e I.

Estimation for Heritability via Modified
Randomized Haseman–Elston Regression
Consequently, we extend the work by Wu and Sankararaman
(2018); the moment estimator is to minimize

Q = tr

{[
yyT −

(
h2K+σ 2

e I
)]2}
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By taking the differentiation in terms of h2 and σ 2
e , we have

{
∂Q
∂h2

= tr
{
h2KTK + σ 2

e K − yyTK
}
= 0

∂Q
∂σ 2

e
= tr

{
h2K+σ 2

e I − yyTI
}
= 0

After algebra, we have the normal equations below:

[
tr

(
KTK

)
tr (K)

tr (K) N

] [
ĥ2

σ̂ 2
e

]
=

[
yTKy

yTIy

]
(1)

The estimator for ĥ2 can be written as

ĥ2 = yT (K − I) y

tr
(
KTK

)
− N

(2)

However, different computational strategies deal with the
computational expensive part for both the numerator and the
denominator. In particular, for the numerator, yTKy can be

decomposed as yTX̃X̃Ty/M, and yTX̃, equal to
(
X̃Ty

)T
. Each

element X̃T
j y of X̃Ty is just the regression coefficient between

the jth marker and y that can be computed via simple linear
regression, or multivariate linear regression if covariates are
included. It is easy to recognize that yTX̃X̃Ty/M follows χ2

1
after scaling by the sample size N, and a possible non-central
parameter related to the heritability of the trait. Alternatively, we

derive the mathematical expectation E
(
yTKy

)
= NE

(
χ2
1|h2

)
=

N(1 + Nh2r2), in which r2 is the averaged LD score between a
marker to a causal variants in LD.

The denominator involves the trace of KTK , a high-order
function for GRM. Alternatively, according to the property of the
trace of a matrix, it can be calculated that tr(KTK) =

∑N
i,j K

2
i,j,

a summation of the square of each element in K . From the
first glance, it seems inevitable to compute K , the computational
cost of which is O(N2M), a substantial cost given a large
sample size, such as for UKB of about 500,000 samples (Bycroft
et al., 2018). In order to have a proper estimate for tr(KTK)
but reduce computation cost, three methods are proposed for
estimating tr(KTK).

Estimating tr(KTK)
We present three methods in estimating tr(KTK). Sampling
method I has been proposed by Wu and Sankararaman, but
we provide its correct sampling variance, which was incorrectly
given in their original report (Wu and Sankararaman, 2018).
Sampling method II derives the expectation of tr(KTK) and
estimates it in a reference population with the similar genetic
origin of the population of question. Samplingmethod III slightly
modifies method II if the reference population is big and yields
smaller sampling variance of tr(KTK) than that of method II.

Sampling Method I: The Randomized
Estimator With Corrected Analytical
Sampling Variance
Using randomized estimation, an unbiased estimator LB is
employed to estimate tr(KTK) in RHE (Wu and Sankararaman,

2018). The rational for a randomized estimate is as below:

LB = 1

B

1

M2

B∑

b

tr(zTb XX
TXXTzb) = tr(KTK)

In each iteration, a vector z, of length N, is generated from the
standard normal distribution. As long as z has been generated
B time and B is large enough, it is guaranteed to approach
tr(KTK). As zT

b
XXT can be calculated easily, the computational

cost isO(NMB). Then, LB can be plugged into a normal equation
(Equation 2).

In Wu and Sankararaman’s original report, the sampling
variance of LB was given as var (LB) = 2tr

(
KTK

)
/B, which was

incorrect, and the correct one should have been

var (LB) ≡ Var

(
1

B

∑
B
b=1z

T
b K

TKzb

)

= 1

B2

∑
B
b=1Var

(
zTb K

TKzb

)

= 1

B2

∑
B
b=12tr

(
KTKKTK

)
=

2tr
(
K4

)

B
(3)

The derivation of the penultimate step uses the quadratic
variance calculation formula. The sampling variance of LB is
proportional to tr(KTKKTK), the computational cost of which
is likely to be infeasible for biobank-scale data. However, its
practical sampling variance can be estimated from B iterations

above var (LB) =
∑B

j=1

(
LBj − LB

)2
/B.

Sampling Method II: Estimating tr(KTK) by
Subsampling
In an alternative route, we bypass the direct computation of
tr(KTK). It is shown that tr

(
KTK

)
= N2/Me + N for unrelated

samples (see Supplementary Notes). N is the sample size, a
known parameter; we only need to estimateMe. As noted above,
Me can be estimated by subsampling a proportion of the study
population (Figure 1) or by a reference population of the same
origin with the population of study (Zhou, 2017). Thus, we can
estimateMe using a small proportion of the sample, as long as we
can estimate M̂e; we can easily get the estimator of tr

(
KTK

)
. We

define a new LS estimator: LS ≡ N2/M̂e + N. It is an unbiased
estimate (see Supplementary Notes). Suppose the sample size
of subsample is s, there are s2/2 off-diagonal elements and it
takes O(s2M/2) time to calculate M̂e. The sampling variance of

LS is, using the Delta method,
(
L
′
s

)2
var

(
M̂e

)
= N4

M4
e
σ 2
M̂e

, in

which L
′
S = − N2

M2
e
the first derivative of LS and σ 2

M̂e
the sampling

variance for M̂e. σ 2
M̂e

is not directly known but can be directly

estimated in the third method proposed below.

Sampling Method III: Estimating tr(KTK) via
Shotgun Randomization
However, σ 2

M̂e
in method II is not analytical probably because

each individual will be involved s times in the estimation
of variance. With slightly modification, we developed a new
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FIGURE 1 | Schematic diagram of the sampling methods for the two

estimators. The large square represents the entire genetic relationship matrix

(GRM) with sample size N = 14, and each small an element in GRM, and the

yellow the diagonal element of the matrix. (A) Schematic diagram of sampling

methods for the LS estimator. The red squares in the lower triangular of GRM

represent the pairs of samples for LS. This figure shows that when B = 2 (the

parameter for the LB estimator given by Wu and Sankararaman, 2018), we set

subsample size s =
√
2BN ≈ 7 for LS to guarantee the same computational

cost. (B) Schematic diagram of sampling methods for the LT estimator.

Equally total number (n = BN = 28) of GRM elements in the lower triangular in

red represents the pair of the samples for LT . The elements are drawn as if

they are randomly, as shot by a gun, to reduce correlation between individuals.

estimator LT (lower triangle shotgun sampling estimator) to
estimate tr(KTK) in RHE. The difference in sampling schemes
between methods II and III can be visualized as Figure 1. Given
the whole GRM, method II samples a square matrix of size
s × s after rearrangement and calculates half elements, whereas
method III randomly samples n = s2/2 elements in the whole
GRMwithout replacement so as to reduce overlapping of samples
(Figure 1). This sampling idea is similar to the shotgun method
in the first-generation DNA sequencing technology, so we call the
method III shotgun sampling estimator.

Given a random subset of n elements A ⊆ {1, 2, · · · , N(N −
1)/2}, we define

LT ≡ N + N2

n

∑
n
i=1Ko

2
Ai

It can be proved that LT is an unbiased estimator of tr(KTK) with
its sampling variance N4var(Ko

2)/n, which can be estimated by
N4var(Ko

2
Ai
)/n (see Supplementary Notes). Therefore, we can

get the unbiased estimate of tr(KTK) and its sampling variance
at the same time in one step. It does not need to calculate all the
elements in Ko but the corresponding pairs of the individuals,
and to calculate the mean of the product of all their genetic
values. Therefore, each item in the summation can be computed
inO(M), and the total running time isO(nM).

The Estimation of Variance Components
and Its Sampling Variance
If we replace tr

(
KTK

)
with its subsampling estimators, we can

get the synthesized estimator for heritability

ĥ2 =
NE

(
χ2
1|h2

)
− N

N2/M̂e

= M̂eh
2r2

where E

(
χ2
1|h2

)
is the mean of χ2

1 for each SNP with or

without the adjustment of covariates. Using the Delta method,

we show in Supplementary Notes that the variance of ĥ2 can be
formulated as

σh2 ≈
2Me

N2
+Me

2
σ 2
Ko

2

n
(h2)

2

and each item in the above formula is estimable, then we can get
the variance estimator of the variance component

σ̂h2 =
2M̂e

N2
+ M̂2

e

σ 2
KoAi

2

n
(ĥ2)

2
(4)

Except for ĥ2, all other parts involved are independent to
the phenotype, so given a specific sample of question, the
estimator has a linear relationship with the square of the
estimated heritability.

Genetic Partitioning of Heritability
Yang et al. (2010) estimated the chromosome-wise partitioned
heritability and found that the heritability of complex trait,
such as human height is proportional to the length of the
chromosome, that is, proportional to the number of causal
variants. Some researchers gave more weight to large effects to
explain heritability and to study polygenicity (O’Connor et al.,
2019; Yang and Zhou, 2020). In this report, we instead calculated
heritability based on M̂e and compared the chromosome-wise
partition heritability with the whole-genome heritability

ĥ2C =
22∑

c=1

NE

(
χ2
1|h2

)
− N

N2/M̂e.c
=

22∑

c=1

M̂e.ch
2
c r

2
c (5)

in which M̂e.c is the effective of markers for the cth chromosome
and r2c is the averaged squared correlation between a casual
variant and a marker on the cth chromosome. Under the
assumption of polygenicity, ĥ2C = h2

M̂e

∑22
c=1 r

2
c , and the ratio

between h2

h2C
= r2∑22

c=1 r
2
C

. As both r2 and
∑22

c=1 r
2
c are unknown,

we use 1
Me

and 1∑C
c=1 Me.c

as the surrogates for r2 and
∑22

c= 1 r
2
c .

By breaking the GRM of the whole genome K in Equation
(1) into the GRMs for 22 autosomes, we can also estimate
the chromosome heritability jointly in one model. This method
has to inverse a 23 × 23 matrix. Under the assumption
that the genotype of each chromosome contains the same N
individuals, the inversed matrix is completely upon N and
Me.c, so a computation cost linear to 23, without bothering
the conventional matrix inversion procedure, a computation
cost of 233, can be written down analytically. In particular,
the cth diagonal element of the inverse matrix is Me.c/N

2, and
the last column/row is −Me.c/N

2. For more details, please see
Supplementary Notes.
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Heritability for the Weighted Genetic
Relationship Matrix
Given the definition of the weighted GRM

Kw=
∑M

l=1 (xil − 2pl)(xjl − 2pl)∑M
l=1 2plql

we can get an estimator of the weighted heritability as well
as its variance estimator based on weighted GRM through a
similar derivation

ĥ2w =
N

∑M
l=1 2plqlχ

2
1|h2,l∑M

l=1 2plql
− N

N2/M̂ew

, σ̂h2w = 2M̂ew

N2
+ M̂2

ew

σ 2
KoAi

2

n
(ĥ2w)

2

where M̂ew is the estimation ofMe forKw, and χ2
1|h2 ,l is the square

of the z-score for the lth SNP with or without the adjustment of
covariates. The weighted chromosome-wise partition heritability
can be expressed as

ĥ2Cw =
22∑

c=1

N

∑Mc
l=1 2plqlχ

2
1|h2,l∑Mc

l=1 2plql
− N

N2/M̂ew.c

where M̂ew.c is the estimation of weighted Me for the
cth chromosome and Mc is the number of SNP of the
cth chromosome.

Connection to Other Estimators
The BOLT-LMM method (Loh et al., 2015) might be the most
widely used method in the field of heritability estimation for
large-scale data. Theoretically, the computational complexity of
BOLT-LMM is O(PMN1.5), where P is the number of iterations
for convergence. In the LT estimator, the subsample size n ≪
N1.5, so our calculation time is less than BOLT-LMM in theory.
In terms of actual calculation, the LB estimator used less
calculation time to get an accuracy similar to BOLT-LMM (Wu
and Sankararaman, 2018); the variance of our estimators is
about an order of magnitude smaller than LB under the same
calculation time. Thus, our method is better than BOLT-LMM in
calculation accuracy and time. In terms of memory, the memory
complexity of BOLT-LMM isO(NM/4), while thememory of our
subsampling estimators is proportional to M and the subsample
size s in the LS estimator, which generally does not exceed 10% of
the total sample size.

Given the availability of the estimators and their sampling
variances, it is able to evaluate the statistical power of the
estimators and estimate the sample size for the given type I
and type II error rates. Under the null hypothesis h2 = 0, the
sampling variance for the additive variance component can be

reduced to σ̂h2 ≈ 2M̂e

N2 , which are equivalent to that of REML
(Visscher et al., 2014). It is consequently known that the statistical
power of the presented method will be equivalent to REML. In
contrast, the original Haseman–Elston regression has doubled

sampling variances where σ̂h2 ≈ 4M̂e

N2 (Chen, 2014), because the

original HE regression only uses the off/upper-diagonal of the
matrix, as presented in the numerator above. The connection to
LD score regression is obviously too; here, the whole Me can be
seen as a genome LD score, rather than being partitioned into
genomic bins.

RESULTS

Simulation Results for the Evaluation of
tr(KTK)
In the simulation and in the real data, we compared themean and
variance of the three estimators LB, LS, and LT , and the results
are as presented in Figure 2. We took n = BN and s =

√
2BN to

make sure the three estimators are under the equal computational
cost ofO(NMB) (see Figure 1 for an example). In the simulation,
we set the genotype in two ways: (1) The minor allele frequency
(MAF) of each SNP was randomly generated from a uniform
distribution between 0.03 and 0.5, and two levels of LD (linkage
disequilibrium, in terms of Lewontin’s D

′
, the normalized LD

parameter) strength were set as 0–0.2 (weak LD) and 0.6–0.8
(strong LD) with the SNP numberM = 2,000, 5,000 and sample
sizeN = 500, 1,000, and 2,000, respectively. (2) The real genotype
data consisted of 12,980 adjacent markers on chromosome 22 of
2,000 randomly sampled unrelated white British individuals in
UKB. B was set from 5 to 50 and repeated 100 times for each to
assess the mean and variance of the three estimators.

Across different parameter settings (sample sizes, number
of loci, MAF, and LD), it yielded a similar pattern for the
evaluated results of tr(KTK). We chose M = N = 2,000
and strong LD for detailed presentation, and the rest were
shown in Supplementary Figures 1, 2). Figure 2 shows that all
the three estimators were unbiased. The variance of each of these
estimators, as expected, was inversely proportional to B. The
real sampling variance of LB was several times larger than the
analytical incorrect result given inWu and Sankararaman’s study
(refer to Appendix A3 in their original report) but was consistent
with 2tr

(
KTKKTK

)
/B, just the corrected one as derived in this

study (Equation 3). The sampling variance of LT was about an
order of magnitude smaller than that of LB. The simulation
results in the real data shown in Supplementary Figure 3 were
consistent with Figure 2.

Real Data Analysis for tr(KTK)
We compared the performance of the three estimators LB, LS,
and LT in UKB. After quality control, 525,460 autosome SNPs
with MAF> 0.01 for 278,788 unrelated British white individuals,
whose pairwise genetic relationship coefficient <0.0125, were
included for analysis. We set B = 5, 10, 20, 40, 60, 80, and
100, and calculated each of the three estimators 100 times to get
the mean and the variance for each B. We compared the means
of the three estimators with the expected value of tr

(
KTK

)
=

N2/M̂e+N, where M̂e was estimated from subsamples; given with
M̂e ≈ 87,351, tr

(
KTK

)
was expected to be 1,168,573 for each of

the three estimators.
The calculation was performed on an Intel(R) Xeon(R)

Bronze 3104 CPU @ 1.70-GHz server cluster, and about
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FIGURE 2 | The means and the sampling variances of three estimators in simulation. The genotype data were constituted by 2,000 individuals and 2,000 markers

with strong LD (from 0.6 to 0.8 in Lewontin’s measure D
′
). B is the parameter related to the iteration for LB. For each B, the number of samples of the LS and LT

estimators was adjusted to ensure that the three estimators have the same computational cost. (A) The boxplots of means and (B) the variance of 100 random

experiments of three estimators for each B. In (A), we combined 10 cases with B = 5–14 into the first group, and so on, and the last five cases with B = 46–50 were

combined into the fifth group. The red boxes represent the means of LB, green the means of LS, and blue the means of LT , respectively. The black horizontal line

represents the real value of tr
(
KTK

)
. In (B), the solid red line represents the true sampling variance of the LB estimator derived in this study, and in contrast the

long-dash red line the sampling variance of the LB estimator incorrectly given by Wu and Sankararaman (2018). The solid blue line represents the theoretical sampling

variance of LT . The solid green line is not given because we cannot get the theoretical sampling variance of LS yet.

30 threads were allocated for each calculation. The actual
calculation time of the three estimators were basically the same
(see Supplementary Table 1) and conformed to the theoretical
calculation complexity O(NMB). The variances of the three
estimators LB, LS, and LT for tr(KTK) are listed in Table 1.
In particular, between the randomized estimator and the
subsampling estimators, there was a huge difference between
their variances. Under the real data, the sampling variance of
LB was large, while the sampling variances of the other two
estimators were smaller and the variance of LT was about half
that of LS. The variances of each of the three estimators decreased
with the increasing B, consistent with the simulation.

Chromosome-Wise Partitioning for
Heritability
Equation (2) presents how heritability is estimated using all 22
autosomes, and Equation (5) offers an alternative method by
summation of chromosome-wise estimation for heritability. For
ease of comparison, we only estimated heritability for 81 traits
as demonstrated by Ge et al. (2017). We used the first two
principal components as the covariates to control the possible
population stratification; other covariates were adjusted upon the
traits. The chromosome-wise partition heritability was calculated
by the summation of the heritability estimated for Me.c for each

chromosome (Table 2), and the whole-genome heritability was
calculated from the GRM of the whole genome.

The estimated heritability of some selected UKB traits is listed
in Table 3 (see Supplementary Table 2 for all the 81 traits).
The heritability of all traits was basically very similar to Ge
et al.’s result and within the error range. Several physiological
traits, such as height and weight had high heritability, while
social traits that were more affected by social factors, such as
the duration of certain activities, showed lower heritability. This
result was consistent with the mainstream conclusion. The left
part of Equation (4) for variance estimators of the whole-genome

heritability ( 2M̂e

N2 ) contributed a large part of the total variance
(about 0.0017 in 0.002 for N = 270,000). Although the variances
of the L̂B, L̂S, and L̂T were several times different, they influenced
little on the variance of estimated heritability.

In the comparison of the two kinds of heritability for each
trait, all the chromosome-wise partition heritability was higher
than the whole-genome heritability except for the trait of the age
diabetes diagnosed (the explanation of this exception is given
below). For a certain polygenic trait, the heritability attributed
to each chromosome was proportional to M̂e.c according to the
heritability estimation formula (Equation 5). Since the LD score
between chromosomes could be considered as 0, this causes
the M̂e of the whole genome to be diluted by a large number
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TABLE 1 | The sampling variance of the three estimators.

Estimator B = 5 B = 10 B = 20 B = 40 B = 60 B = 80 B = 100

LB 13,918,476 6,970,471 3,501,313 1,689,667 1,214,649 875,951 781,079

LS 4,185,873 982,406 501,486 267,914 138,344 142,868 186,764

LT 1,587,955 787,997 389,442 217,566 130,818 8,6461 81,037

B represents the iterations taken by LB. We took sample size s =
√
2BN for LS and n = BN for LT in each step to guarantee the three estimators having the equal computational cost

of O(NMB), where N is the total sample size.

TABLE 2 | M̂e.c and M̂ew.c of each autosome.

Autosome Number of

markers

M̂e.c M̂ew.c

1 41,805 10,333.95 5,531.40

2 42,087 10,131.61 5,410.58

3 35,488 8,377.99 4,557.51

4 33,248 8,168.11 4,567.46

5 31,855 7,772.11 4,200.29

6 36,643 1,217.21 522.52

7 28,868 6,996.85 3,882.00

8 27,244 5,878.64 2,941.71

9 23,120 6,172.40 3,423.64

10 26,242 5,978.38 3,607.96

11 26,119 4,978.77 2,835.29

12 25,041 6,204.85 3,385.99

13 18,065 4,988.62 2,802.15

14 17,040 4,492.59 2,458.88

15 16,555 3,911.11 2,174.81

16 18,570 4,448.96 2,461.84

17 17,140 3,868.71 2,040.32

18 15,837 4,561.48 2,549.61

19 13,998 3,151.14 1,816.42

20 13,997 3,800.48 2,080.39

21 7,949 2,223.92 1,231.52

22 8,549 2,114.08 1,240.90

M̂e.c is the estimation of the effective of markers (Me ) for the c
th autosome, and M̂ew.c is

the estimation of weighted Me for the c
th autosome.

of blank LD, so the overall M̂e was smaller than the average
M̂e.c of each chromosome. In order to eliminate the influence
of blank LD to see the contribution of effects of causal variants
to heritability, Figure 3 shows the relationship of these two
estimations of the heritability for the 81 traits. The slope of the
solid gray line in the figure represents the ratio of the whole-
genome M̂e to

∑c
i=1 M̂e.c, a ratio of 0.729. This figure was to

capture traits that do not meet the assumptions of polygenic
assumption—or fitness of the model. If a trait were purely
polygenic, the point representing this trait would be expected
just along the solid gray line. However, the points were mostly
distributed above the line, indicating that the effect size of
causal variants was not evenly distributed on the chromosomes.
In particular, the trait of the age diabetes was diagnosed, the
Manhattan plot of which showed many statistically significant

SNPs concentrated on the major histocompatibility complex
(MHC) region on chromosome 6. They all belong to MHC,
which is related to many human traits. Obviously, these loci
breached the polygenic assumption underlying. After deleting
these loci, we reestimated the two kinds of heritability, and all
the traits were basically close to the solid gray line and were
closer compared with Figure 3 (see Supplementary Figure 4).
This shows that the model assumptions were basically valid,
and the estimated value of heritability had a certain degree
of reliability.

Alternatively, the chromosome-wise partitioning heritability
could be estimated jointly by fitting 22 autosomes altogether.
It was basically the same as those calculated singly but slightly
lower than the latter. It was because when calculating the
heritability of chromosomes jointly, we set N for the whole
genome in Equation (5), but smallerN were taken in the equation
for estimating the heritability of each chromosome singly, as
fewer individuals met the quality control standards for a single
chromosome. We mentioned in Method that the fast estimation
of joint heritability should meet the precondition that N of each
chromosome are equal. The heritability estimated by the two
methods will be strictly equal if this precondition holds (see
Supplementary Notes). For traits with large sample sizes, this
precondition could be met well, and the heritability estimated by
the two methods was almost the same.

We also estimated the weighted chromosome-wise partition
heritability and the weighted whole-genome heritability for these
traits (see Supplementary Figure 5). In general, the weighted
estimation of heritability was similar to that without weight.

DISCUSSION

In this study, we corrected the erroneous variance of the LB
estimator and proposed another two unbiased estimators of
tr(KTK), which was the most time-consuming term in RHE (Wu
and Sankararaman, 2018). Instead of plotting the running time
and accuracy of different methods like most articles, we used a
different experimental design to make a special comparison with
the LB estimator. We borrowed the sampling size parameter B
in LB and adjusted the sample size of our estimators so that
the theoretical calculation time of the three estimators was the
same under different sample size parameter B. Under the same
time complexity, our results showed better stability with smaller
variances. In other words, under the same accuracy requirements,
our method could greatly reduce the computation cost.
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TABLE 3 | Estimation of heritability for some traits in UK Biobank.

Field ID Field name N ĥ2
Chr

ĥ2
Gen

ĥ2se

3786 Age asthma diagnosed 31,535 0.271 0.265 0.013

2754 Age at first live birth 100,951 0.281 0.217 0.004

2976 Age diabetes diagnosed 12,628 0.231 0.618 0.033

2139 Age first had sexual intercourse 255,880 0.064 0.051 0.002

21001 Body mass index (BMI) 277,223 0.360 0.282 0.002

4079 Diastolic blood pressure, automated

reading

259,815 0.199 0.161 0.002

894 Duration of moderate activity 231,311 0.045 0.034 0.002

914 Duration of vigorous activity 166,696 0.032 0.025 0.003

874 Duration of walks 267,826 0.055 0.040 0.002

20150 Forced expiratory volume in 1-s (FEV1),

best measure

207,848 0.257 0.207 0.002

20151 Forced vital capacity (FVC), best measure 207,848 0.314 0.252 0.002

2149 Lifetime number of sexual partners 253,460 0.011 0.008 0.002

20127 Neuroticism score 226,198 0.160 0.133 0.002

20161 Pack years of smoking 81,555 0.275 0.201 0.005

102 Pulse rate, automated reading 259,815 0.217 0.170 0.002

21021 Pulse wave arterial stiffness index 92,137 0.045 0.033 0.005

1299 Salad/raw vegetable intake 278,142 0.079 0.057 0.002

20015 Sitting height 277,231 0.528 0.444 0.002

1160 Sleep duration 278,142 0.089 0.070 0.002

50 Standing height 277,508 0.895 0.729 0.002

4080 Systolic blood pressure, automated

reading

259,812 0.194 0.155 0.002

48 Waist circumference 277,649 0.278 0.219 0.002

1528 Water intake 278,142 0.098 0.075 0.002

21002 Weight 277,325 0.372 0.299 0.002

23102 Whole body water mass 273,248 0.468 0.386 0.002

N is the sample size, ĥ2
Chr

is the chromosome-wise partition heritability calculated by adding the heritability of each chromosome, ĥ2
Gen

is the whole-genome heritability calculated from

the GRM of the whole genome, and ĥ2se is the standard error of the whole-genome heritability.

We noted that Wu and Sankararaman further reduced the
calculation time in matrix multiplication by introducing the
mailman algorithm (Liberty and Zucker, 2009), which could also
be used in our calculation by writing our estimators in the form
of multiplication of genetic matrix and a random vector with
multinoulli distribution. From these perspectives, our estimators
were superior substitutions of the LB estimator in Haseman–
Elston regression.

We also gave the sampling variance of the subsampling
estimator, which could be calculated by one sampling without
additional calculation. As a result, the variance estimator of the
heritability could be easily derived. Although the variance of
the LB estimator 2tr

(
KTKKTK

)
/B could also be derived by the

subsampling method (beyond the scope of this study), its time
complexity greatly exceeded the calculation of tr

(
KTK

)
as far as

we know.
The variance of LS was always slightly larger than that of

LT . This was because LT randomly extracted nearly uncorrelated
elements in the lower triangular matrix Ko, while LS extracted
all elements in a triangle of Ko (after reordering the individuals).
Although their sampling variance was approximately equal to the

population variance var(Ko), the sampling variance of LT was
relatively smaller because it uses less related individuals.

One possible drawback of the LT estimator relies on a much
larger reference population than that of LS. When the reference
sample size is small, it is obvious that LT becomes LS. Therefore,
the LT estimator can make full use of large sample size, such
as that of UKB. Although the difference between the variances
of these two estimators is small, and the difference in the final
heritability estimation is even slight, we still provide a novel and
simple subsampling idea, which can be used in many situations
involving large samples.

In the early analysis of heritability, both GRM and Haseman–
Elston regression were applied to related individuals under
the context of linkage analysis using sibling data. Under
linkage, relatedness is actually related to the concept of identity
by descent (IBD). However, with the increasing amount of
data, the significance and application range of GRM and HE
have been expanded. The unrelated individuals we emphasize
here are mainly to distinguish from the linkage analysis of
pedigree data. There is no problem in the estimation of
heritability with related individuals, as demonstrated below. The
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FIGURE 3 | The relationship of the chromosome-wise partition heritability and the whole-genome heritability. (A) Each dot represents a trait in the UKB dataset listed

in Supplementary Table 2. The horizontal axis represents their chromosome-wise partition heritability, and the vertical line at each point is their error bar; the vertical

axis represents their whole-genome heritability. The red color represents the chromosome-wise partition heritability calculated jointly, and the green color represents

the chromosome-wise partition heritability calculated singly. The long-dash line crosses the origin has a slope of 1. The slop of the solid line is 0.729, the ratio of
M̂e∑22

c=1 m̂e.c
. (B) The Manhattan plot for the trait age diabetes diagnosed, and the threshold is for genome-wise threshold for α = 0.05 after Bonferroni correction.

expression tr
(
KTK

)
= N2/Me + N still holds true for related

samples (see Supplementary Notes), which was confirmed in
simulation (Supplementary Table 3). We have expanded the
sample to all UKB British Whites, which included extra 131,850
individuals, totaling sample sizeN = 410,638, of various possible
relatedness with the 278,788 unrelated samples and reestimated
the heritability. The results are listed in Supplementary Table 4.
In general, the heritability increased compared to the previous
results of the unrelated set, but negligible. It shows that our
estimators are basically applicable among a more realistic
population even containing partially related individuals but leave
some concerns in theoretical soundness.

Using modified Haseman–Elston regression to estimate
heritability is becoming more and more popular in summary
statistics. We further explored an important connection between
Haseman–Elston regression and Me, the effective number of
independent SNPs, which is also a critical concept in quantitative
genetics. We found thatMe plays a pivotal role in the estimation
of variance components and heritability. As long as we get
the estimation of Me, we can easily get the estimation of its
corresponding variance components.

Although we used only individual-level data to estimate
heritability in this report, the nature of Me allows researchers
to estimate heritability based on a reference population of
the same origin to the population in meta-analysis. However,
the existence of family structure will make Me shrink (see
Supplementary Table 3; the expansion of trace means the
shrinkage of Me), and different family structures make it shrink

differently, leading to inaccurate meta-analysis. Therefore, we
do not recommend using our method in samples with various
related individuals, but it raises a very interesting question for the
estimation theory using mega-scale family trees (Kaplanis et al.,
2018; Shor et al., 2019).

Due to the statistical property of Me, we can easily extend
Me to the dominant model and use the same method to obtain
both additive and dominant heritability, as long as their codes
for the count of the reference allele are orthogonal, as discussed
(Vitezica et al., 2017; Álvarez-Castro and Crujeiras, 2019). We
can also extend Me to estimate a genetic correlation for a pair
of traits, in which tr

(
KTK

)
= N1N2/M̂e + No, where No is the

overlap sample size between a pair of cohorts, which haveN1 and
N2 individuals, respectively.

URLs: The related source code, https://github.com/
GuoanQi1996/LT-Estimator.
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