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Background: Accumulating evidence demonstrated that tumor microenvironmental
cells played important roles in predicting clinical outcomes and therapeutic efficacy. We
aimed to develop a reliable immune-related gene signature for predicting the prognosis
of ovarian cancer (OC).

Methods: Single sample gene-set enrichment analysis (ssGSEA) of immune gene-sets
was used to quantify the relative abundance of immune cell infiltration and develop
high- and low-abundance immune subtypes of 308 OC samples. The presence of
infiltrating stromal/immune cells in OC tissues was calculated as an estimate score. We
estimated the correlation coefficients among the immune subtype, clinicopathological
feature, immune score, distribution of immune cells, and tumor mutation burden (TMB).
The differentially expressed immune-related genes between high- and low-abundance
immune subtypes were further used to construct a gene signature of a prognostic model
in OC with lasso regression analysis.

Results: The ssGSEA analysis divided OC samples into high- and low-abundance
immune subtypes based on the abundance of immune cell infiltration, which was
significantly related to the estimate score and clinical characteristics. The distribution of
immune cells was also significantly different between high- and low-abundance immune
subtypes. The correlation analysis showed the close relationship between TMB and the
estimate score. The differentially expressed immune-related genes between high- and
low-abundance immune subtypes were enriched in multiple immune-related pathways.
Some immune checkpoints (PDL1, PD1, and CTLA-4) were overexpressed in the high-
abundance immune subtype. Furthermore, the five-immune-related-gene-signature
prognostic model (CCL18, CXCL13, HLA-DOB, HLA-DPB2, and TNFRSF17)-based
high-risk and low-risk groups were significantly related to OC overall survival.

Conclusion: Immune-related genes were the promising predictors of prognosis and
survival, and the comprehensive landscape of tumor microenvironmental cells of OC
has potential for therapeutic schedule monitoring.

Keywords: ovarian cancer, immune-related-gene-signature, clinical characteristics, distribution of immune cells,
distribution of tumor mutation burden
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INTRODUCTION

Ovarian cancer (OC) is one of the most common gynecological
tumors worldwide (Lheureux et al., 2019). The OC pathogenesis
is concealed without specific symptoms in the early stage.
Many patients are detected when the tumor has spread
within the pelvis or belly (Kemppainen et al., 2019). In the
advanced stage, OC becomes more difficult to be treated
and could be fatal. More than half of late-stage OC patients
treated by conventional oncology would not respond very
well, which means that the current standardized protocols
(surgery and chemotherapy) are not enough to combat this
(Corrado et al., 2019). The survival rate of OC has been
improved with the development of medicinal modes, but
long-term survival rates are still poor (Giampaolino et al.,
2019). Thus, it is necessary to identify the patient subset with
worse survival who will need additional clinical therapy; for
example, new targeted treatments, including poly(adenosine
diphosphate-ribose) polymerase inhibitors, antiangiogenic drugs,
and immune checkpoint inhibitors, potentially affect the
improvement of survival (Elsherif et al., 2019). It is therefore
necessary to establish new biomarkers that are related to
cancer prognosis and survival, and a complete biological
database benefits the construction of a more common prognostic
signature for OC.

Accumulating evidence demonstrated that the immune
system played an important role in cancer initiation, progression,
and therapeutic responses (Abbott and Ustoyev, 2019). OC
was one of the immunogenic tumors that responded very well
through targeting the immune checkpoints (Ghisoni et al., 2019).
When a single-agent antibody was used to inhibit the cytotoxic
T lymphocyte-associated protein 4 (CTLA-4) or PD-L1 axis,
encouraging results were obtained with a median response
rate of 10–15% in OCs (Hamanishi et al., 2015). Interestingly,
the combination of anti-CTLA4 ipilimumab and anti-PD1
nivolumab showed an overall response rate (ORR; 34%),
which almost doubled the effect of nivolumab monotherapy
(Mills and Fuh, 2017). The previous studies preliminarily
reported the prognostic value of the immune system in OC
(Odunsi, 2017) and revealed the significance of tumor-related
signaling pathways in the tumor microenvironment (Newsted
et al., 2019). For example, immune cell types in the tumor
microenvironment, such as tumor-associated macrophages, were
significantly different in OC patients with chemoresistance (An
and Yang, 2020). M1 macrophages were significantly associated
with better outcomes among the high-grade and late-stage
OC patients (HR: 0.77–0.83). Neutrophils were significantly
associated with worse outcomes among the high-grade and late-
stage OC patients (HR: 1.14–1.73) (Gao et al., 2020). In OC
patients, inflammatory cytokines also influenced the outcome
of patients. For example, IL-22 and TNF-á were increased
in OC patients with stages III–IV compared to stages I–II
(Wang et al., 2017). BRCA1 or BRCA2 mutations were very
common in the OC patients, which were closely related to
the prognosis of OC patients (Birkbak et al., 2013). One study
found that the elevated tumor mutation burden (TMB) was
significantly associated with the efficacy of immunotherapy,

which prolonged clinical response to the anti-PD-L1 antibody
in platinum-resistant recurrent OC (Morse et al., 2017). More
importantly, the abundance of immune cells and other stromal
cells in the tumor microenvironment can be estimated and
scored with multiple computational methods (Becht et al.,
2016). These methodologies have been used to investigate the
relationship between the immune system and OC prognosis
(Liu et al., 2020), and some mechanisms that immune-related
genes were involved in within the immunotherapy response
have been identified in OCs (Shen et al., 2019). However, the
comprehensive landscape and immune-related gene signature
have not been elucidated yet.

In this study, 308 OC cases from TCGA database were
divided into two immune subtypes—high and low abundance
groups of immune cell infiltration based on the mixed cellular
gene expression data. These two immune subtypes were
systematically correlated with clinical characteristics, ESTIMATE
results (including stromal score, immune score, and estimate
score), and mutation information. These correlation results
were used to predict and evaluate the clinical outcomes of
OC. Further, lasso regression was used for the identification
of the five-immune-related-gene signature model (CCL18,
CXCL13, HLA-DOB, HLA-DPB2, and TNFRSF17) to
improve the predictive accuracy for OC overall survival.
This study aimed to quantify the cellular compositions of
the immune response and explore its association with the
OC prognosis. The immune-based prognostic signature will
provide potential value for prognostic prediction and tailored
immunotherapy of OC.

MATERIALS AND METHODS

OC Cohort Acquisition
The OC RNA-sequencing data (FPKM values), mutation data,
and clinical follow-up data were obtained from the public
database TCGA1. Patients with complete follow-up information
and survival status were selected to match with their RNA-
seq data. The main outcome of our study was overall survival.
Patients without survival information were removed for further
evaluation. Following these criteria, 308 OC cases were involved
in this study (Supplementary Tables 1–3). Data were analyzed
with the R (version 3.4.0) and R Bioconductor packages.

Also, OC gene expression datasets were systematically
searched that were publicly available with full clinical
annotations. The data from GSE13876 “Survival Related
Profile, Pathways and Transcription Factors in Ovarian
Cancer” were downloaded to validate the reliability of
the built model. GSE13876 developed a gene expression
profile associated with overall survival in advanced-stage
serous ovarian cancer (n = 415). The raw data from
the microarray datasets generated by Affymetrix and
Illumina were downloaded from the Gene Expression
Omnibus2, including gene expression data, and
survival information.

1https://portal.gdc.cancer.gov/
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Quantification of the Abundance of
Immune Cell Infiltration in the Tumor
Microenvironment
To estimate the population-specific immune infiltration, the
single-sample gene-set enrichment analysis (ssGSEA) was used
to quantify the abundance of tumor microenvironment cell
infiltration in each sample based on the gene expression data
(Wu et al., 2016). Briefly, the ssGSEA applied gene signatures
expressed by immune cell populations to individual cancer
samples. The computational approach included immune cell
types that are involved in innate immunity and adaptive
immunity. Tumors with qualitatively different immune
cell infiltration patterns were grouped with hierarchical
agglomerative clustering based on Euclidean distance and
Ward’s linkage. In total, 24 human tumor microenvironment
cell subtypes were evaluated, including M0 macrophages, M1
macrophages, M2 macrophages, memory B cells, naive B cells,
endothelial cells, eosinophils, activated dendritic cells, resting
dendritic cells, fibroblasts, activated NK cells, resting NK cells,
activated mast cells, resting mast cells, monocytes, resting
CD4 memory T cells, naive CD4 T cells, neutrophils, plasma
cells, follicular helper T cells, gamma delta T cells, activated
CD4 memory T cells, CD8 T cells, and regulatory T cells
(Supplementary Table 4). The ssGSEA analysis was conducted
with GSVA R package (version: 3.12)2.

Sparse Hierarchical Clustering for OC
Samples
Tumors with different qualitative microenvironment cell
infiltration patterns were grouped with sparse hierarchical
clustering based on Euclidean distance and Ward’s linkage. The
sparse k-means method was used to establish the optimal number
of tumor groups. This method used the genes in each node and
metanode. Briefly, classification consistency was tested with
random forest. The sparse hierarchical clustering algorithm was
used to analyze the data that contained the variables selected by
the sparse K-means method, which optimized the classification
of samples into two subtypes (Supplementary Table 5). This
procedure was performed with the Sparcl R package (version
1.0.3) (Prado-Vázquez et al., 2019) and was repeated 1,000 times
to ensure the stability of classification3.

Estimation of Infiltrating Cells and Tumor
Purity in OC
ESTIMATE (Estimation of Stromal and Immune cells in
MAlignant Tumor tissues using Expression data) is a tool
to predict tumor purity and the presence of infiltrating
stromal/immune cells in tumor tissues with gene expression data
(Supplementary Table 6). The ESTIMATE algorithm is based
on single sample Gene Set Enrichment Analysis and generates
three scores: ImmuneScore (that represents the infiltration of
immune cells in tumor tissue), StromalScore (that captures the
presence of stroma in tumor tissue), and ESTIMATEScore (that

2http://www.bioconductor.org/packages/release/bioc/html/GSVA.html
3https://www.rdocumentation.org/packages/sparcl/versions/1.0.3

infers tumor purity). They all positively correlated with the ratio
of immune, stroma, and the sum of both, respectively, which
means the higher the respective score, the larger the ratio of the
corresponding component in microenvironment cell (Yoshihara
et al., 2013). Estimations of infiltrating cells and tumor purity in
OC were analyzed by Estimate R package (version 3.5.1) using the
ESTIMATE algorithm4.

The Proportions of Immune Cells in OC
The CIBERSORT algorithm and the LM22 gene signature
were used to quantify the proportions of immune cells
in the OC samples, which allows for highly sensitive and
specific discrimination of 22 human immune cell phenotypes.
CIBERSORT was a deconvolution algorithm that uses a set of
reference gene expression values (a signature with 547 genes)
considered a minimal representation for each cell type and,
based on those values, infers cell type proportions in data from
bulk tumor samples with mixed cell types using support vector
regression. Gene expression profiles were prepared with standard
annotation files, and data were uploaded to the CIBERSORT web
portal5, with the algorithm run using the LM22 signature and
1,000 permutations (Supplementary Table 7). The correlation
analysis between immune cells was conducted with Corrplot R
package (version 0.84) based on Pearson correlation analysis
(Supplementary Table 8).

The Distribution of Tumor Mutation
Burden (TMB) and TMB Score
TMB was calculated as mutations per megabase (mut/Mb).
Mutational signature analysis was performed for tumors with
somatic mutation counts of at least 10. With the development of
cancer genomics, mutation annotation format (MAF) was widely
accepted and used to store the detected somatic variants. Maftools
is an R package that is published in Bioconductor6, and is specially
used to visualizethe information in MAF files. The distribution
of tumor mutation burden (TMB) was conducted by Maftools R
package (Supplementary Table 3), which generated four results,
including the summary of TMB, waterfall of mutation genes,
interaction of mutation genes, and TMB score (Supplementary
Table 9). Furthermore, the association between the expression
of top mutation genes and drug sensitivity was performed by
Corrplot R package (version 0.84) with the Pearson correlation
coefficient (r > 0.5, and p < 0.05) based on the corresponding
data from CellMiner7.

Differentially Expressed Genes (DEGs)
Associated With the Immune Subtypes
To identify genes associated with the immune subtype, OC
patients were grouped into high- and low-abundance groups
of immune cell infiltration (Immunity-H; Immunity-L). DEGs
between these two groups were determined with the R package

4https://r-forge.r-project.org
5http://cibersort.stanford.edu/
6https://bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/
maftools.html
7https://discover.nci.nih.gov/cellminer/
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limma package (Bioconductor version 3.0), which implements an
empirical Bayesian approach to estimate gene expression changes
using moderated t-tests (Supplementary Table 10). DEGs among
immune subtypes were determined with significance criteria
(adjusted P-value < 0.05). The adjusted P-value for multiple
testing was calculated with the Benjamini-Hochberg correction.
The immunology database and analysis portal (IMMPORT)
website8 is funded by the NIH, NIAID, and DAIT in support of
the NIH mission to share data with the public. The expression
information of immune-related genes of each sample was
extracted with ImmPort, and differentially expressed immune-
related genes (DEIRGs) were identified, including genes that
were directly or indirectly involved in immune responses
(Supplementary Tables 11,12).

Functional and Pathway Enrichment
Analysis
Gene-annotation enrichment analysis of DEGs was performed
with the clusterProfiler R package (version 3.0.4)9. Gene
Ontology (GO) terms (Supplementary Table 13) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
(Supplementary Table 14) were identified with a strict cutoff
value P < 0.01 and a false discovery rate (FDR) < 0.05.
The upregulated and downregulated pathways were also
identified between two immune subtypes with a gene set
enrichment analysis (GSEA) of the adjusted expression data
for all transcripts. Gene sets were downloaded from the
MSigDB database of Broad Institute10. Enrichment P-values
were based on 10,000 permutations and subsequently
adjusted with the Benjamini-Hochberg multiple testing to
control the FDR. All DEIRGs were mapped in the protein–
protein interaction (PPI) network in the STRING11 database
(Supplementary Table 15) to evaluate their interactive
associations. Subsequently, the PPIs were analyzed with
Cytoscape software (version 3.2.1; National Resource for
Network Biology) to obtain hub modules with the molecular
complex detection (MCODE) (score > 7).

Lasso Regression for OC Tissues
The OC samples were divided into two groups according to
the mean value of DEIRG expressions. Overall survival was
calculated with the Kaplan-Meier method and compared to
the log-rank test. The p < 0.05 was considered a statistical
significance. Further, the overall survival-related DEIRGs were
selected to construct lasso regression that examines the
relationship between gene signatures and OC risk score.Lasso
regression was constructed by the glmnet R package12. The risk
scores of OC samples were calculated according to the expression
of the selected overall survival-related DEIRGs and were stratified
into high- and low-risk score groups based on the median
value of the risk scores. The Kaplan-Meier method was used to

8https://www.immport.org/home
9https://www.rdocumentation.org/packages/clusterProfiler/versions/3.0.4
10https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
11https://string-db.org/
12https://cran.r-project.org/web/packages/glmnet/index.html

evaluate the availability of the prognostic model. In addition, the
association of clinical characteristics with overall survival was
analyzed in OC patients with the univariate and multivariate Cox
regression model.

Statistical Analysis
For between-group comparisons, statistical significance was
estimated with unpaired Student’s t-tests for normally distributed
variables and with Mann-Whitney U-tests (also called the
Wilcoxon rank-sum test) for non-normally distributed variables.
The Spearman correlation coefficient was calculated between
the TMB score and ESTIMATEScore by Graphpad prism 8. In
all cases, p < 0.05 was considered as statistical significance.
Benjamini-Hochberg multiple testing and FDR were calculated
to correct the p-value in DEGs, GO, and KEGG analysis.
The Kaplan-Meier method was used to generate survival
curves for the subgroups in each data set, and the Log-
rank (Mantel-Cox) test was used to determine the statistical
significance of differences. The hazard ratios for univariate
analyses were calculated with a univariate Cox proportional
hazard regression model.

RESULTS

Sparse Hierarchical Clustering Showed
Significant Association With Clinical
Features and ESTIMATE Algorithm
The OCcohort included RNA-sequencing data from a total of 308
patients (Supplementary Table 1) with complete clinical follow-
up information, including survival status, additional radiation
therapy, age at initial pathological diagnosis, anatomic neoplasm
subdivision, clinical stage, lymphatic invasion, histologic grade,
cancer status, primary therapy outcome, and tumor residual
disease (Supplementary Table 2). The abundance of each tumor
microenvironment cell infiltration based on the gene expression
data in OC was calculated by ssGSEA (Supplementary Table 4),
including the immune cell information (aDCs, APC co
inhibition, APC co stimulation, B cells, CCR, CD8+ T cells,
checkpoint, cytolytic activity, DCs, HLA, iDCs, inflammation-
promoting, macrophages, mast cells, MHC class I, neutrophils,
NK cells, parainflammation, pDCs, T cell co-inhibition, T
cell co-stimulation, T helper cells, Tfh, Th1 cells, Th2 cells,
TIL, type I IFN response, and type II IFN response). The
OC samples provided an optimum classification into two
subtypes with the sparse hierarchical clustering algorithm
based on the data containing immune cell information, which
named high- and low-immunity abundance groups of the
immune cell infiltration (Immunity-H: n = 156; Immunity-
L, n = 152) (Supplementary Table 5). The ssGSEA-bsed
ESTIMATE algorithm generated three scores: the immune
score, stromal score, and ESTIMATE score (Supplementary
Table 6). The correlations between clinical features and tumor
microenvironment cell infiltration were tested with the chi-
square test based on those two immune subtypes. The sample
clusters were significantly related to those clinical characteristics,
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including clinical stages (II, III, and IV) and cancer status
(with cancer or without cancer). The sample clusters were also
significantly positively related to immune score, stromal score,
and ESTIMATE score; and were negatively related to tumor
purity (Figure 1).

The Distribution of Immune Cells in
Different Immune Subtypes and
Correlation With Clinical Features and
Survival
The tumor-immune infiltration of the 308 OC samples was
summarized (Figure 2A and Supplementary Table 7). The

distribution of immune cells was significantly different between
Immunity-H and Immunity-L groups, including B cells naïve,
B cells memory, plasma cells, T cells CD8, T cells CD4 naïve,
NK cells resting, NK cells activated, monocytes, macrophages
M0, macrophages M1, dendritic cells resting, dendritic cells
activated, and mast cells resting (Figure 2B). The tumor-immune
infiltration cell heatmap depicted a comprehensive landscape
of tumor-immune cell interactions and cell lineages in OC,
which indicated that some immune cells were particularly closely
connected to others, for example, T cells follicular helper and T
cells CD4 memory resting, macrophages M2 and macrophages
M0, B cells naïve and B cells memory, dendritic cells resting
and eosinophils, macrophages M1 and B cells naïve, and T

FIGURE 1 | The clinical and ESTIMATE algorithm association of immune clusters. The heatmap shows the OC samples were divided into two groups (immune
relative high abundance of immune cells infiltration group and low abundance of immune cells infiltration group). The distribution of clinical features was compared
between the high- and low-abundance immune groups. The association of ESTIMATE algorithm (including immunescore, stromalscore, and ESTIMATEscore) was
compared between high- and low-risk immune groups. *p < 0.05, ***p < 0.001.
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cells CD8 and T cells CD4 memory resting (Figure 2C and
Supplementary Table 8). In terms of clinical characteristics, B
cells memory was increased in patients with grade 3 compared
to grade 2 in OC (Figure 2D). B cells naïve was decreased in
patients with grade 3 compared to grade 2 in OC (Figure 2E).
M1 macrophages were present a significantly decreased trend
among stages II, III, and IV (Figure 2F), while M2 macrophages
were present a significantly increased trend among stages
II, III, and IV (Figure 2G). Eosinophils, neutrophils, and T

cells follicular helper were significantly related to OC survival
(Figures 2H–J).

Associations Between ESTIMATE Score
and Mutation
The distribution of tumor mutation was plotted to explore the
relationship between immune and mutation statuses of OC
(Figures 3A,C and Supplementary Table 3). The mutation of

FIGURE 2 | The distribution of immune cells between high- and low-abundance immune groups and corresponding clinical features. (A) Barplot showing the
proportion of 22 kinds of immune cells in OC samples. Column names of the plot are the sample ID. (B) Boxplot shows the ratio differentiation of 13 kinds of immune
cells between high- and low-abundance immune groups, and the Wilcoxon rank sum was used for the significance test. (C) Heatmap showing the correlation
between 22 kinds of immune cells and numeric in each tiny box indicating the p-value of the correlation between two kinds of cells. The shade of each tiny color box
represents the corresponding correlation value between two cells, and the Pearson coefficient was used for significance test. (D,E) The correlation of B cells memory
and B cells naïve with clinicopathological grade characteristics. Wilcoxon rank sum or Kruskal–Wallis rank sum test served as the statistical significance test. (F,G)
The correlation of M1 macrophages and M2 macrophages with clinicopathological stage characteristics. Wilcoxon rank sum or Kruskal–Wallis rank sum test served
as the statistical significance test. (H–J) Kaplan–Meier survival analysis for Eosinophils, neutrophils, and T cells follicular helper in OC. A comparison with the median
determined immune cell group. P-value was verified by log-rank test. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 3 | Associations of mutation in immune subtype. (A) The overall summary of mutation information in the OC cohort. (B) The correlation of TMB with
ESTIMATEscore in OC. (C) The waterfall plot shows the top 30 mutated genes in OC cohort and their mutation information. (D) The significant co-occurrence of
gene mutations in OC. (E) The associations of top mutation gene expressions with drug sensibility. TMB, Tumor mutation burden. The statistical significance was
defined as p < 0.05.
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the top 30 genes was plotted, including TP53, TNN, MUC16,
CSMD3, NF1, TOP2A, USH2A, HMCN1, RYR2, FAT3, MUC17,
LRP1B, APOB, BRCA1, FLG, MACF1, CDK12, DNAH3, RB1,
AHNAK, COL6A3, KMT2C, LRP2, LRRK2, SYNE1, MDN1,
MYH4, SYNE2, TENM1, and DST. Furthermore, TMB score
was significantly associated with the ESTIMATE score, which
indicated that TMB might be significantly associated with the
efficacy of immunotherapy (Figure 3B and Supplementary
Table 9). The significant co-occurrences of gene mutations were
plotted (Figure 3D), such as LRP2 and TNN, TNN and LRRK2,
MUC16 and KMT2C, MUC16 and BRCA1, MUC16 and APOB,
NF1 and BRCA1, DNAH3 and COL6A3, and DNAH3 and RYR2.
It was well revealed that tumors were dependent on driver
mutations that promote and maintain the malignant phenotype.
Moreover, the associations of top mutation gene expressions
with drug sensibility were explored. Some mutation genes
showed positive associations with drug sensibility, including
COL6A3 and Zoledronate, TENM1 and Nelarabine, RB1 and
Nelarabine, AHNAK and Dasatinib, HMCN1 and Dabrafenib,
LRRK2 and PD-98059, LRRK2 and Vemurafenib, HMCN1
and Vemurafenib, and LRRK2 and Dabrafenib (Figure 3E).
Some mutation genes showed negative associations with drug
sensibility, including FAT3 and Epothilone B, FAT3 and
Pelitrexol, and MACF1 and Tamoxifen (Figure 3E). Those drug
sensibility-associated mutation genes were the potential drug
therapeutic targets.

GO and KEGG Analysis of DEGs
Significantly Enriched in Immune System
A total of 20,530 genes were analyzed with the limma package
to identify the underlying biological characteristics of immune
subtypes, and 9712 DEGs were acquired (Supplementary
Table 10). Next, GO and KEGG enrichment analyses of DEGs
revealed a total of 1,064 statistically significant GO enrichments
(Supplementary Table 13) and 64 statistically significant KEGG
enrichments (Supplementary Table 14). GO enrichment results
found that DEGs were closely related to immune processes;
for example, immune response-regulating cell surface receptor
signaling pathway, complement activation pathway, antigen
receptor-mediated signaling pathway, chemokine-mediated
signaling pathway, T-cell-mediated immunity, Fc-gamma
receptor signaling pathway, negative regulation of interleukin-
10 production, Fc receptor-mediated stimulatory signaling
pathway, Fc-epsilon receptor-signaling pathway, regulation
of antigen processing and presentation, immunoglobulin
production, positive regulation of B-cell activation, interleukin-2
biosynthetic process, regulation of interleukin-2 biosynthetic
process, immunoglobulin mediated immune response, B-cell-
mediated immunity, B-cell receptor signaling pathway, Fc
receptor signaling pathway, and phagocytosis. Here, we
showed the top six enrichments (Figure 4A) and top 15
enrichments that were upregulated and downregulated
between two immune subtypes (Figure 4B) derived from
GO analysis. KEGG enrichment results found that DEGs
were closely related to immune processes too; for example,
PD-L1 expression and the PD-1 checkpoint pathway in

cancer, antigen processing and presentation, T-cell receptor
signaling pathway, Fc gamma R-mediated phagocytosis,
intestinal immune network for IgA production, B-cell receptor
signaling pathway, primary immunodeficiency, Th17 cell
differentiation, viral protein interaction with cytokine and
cytokine receptor, NF-kappa B signaling pathway, TNF signaling
pathway, Th1 and Th2 cell differentiation, and chemokine
signaling pathway. Here, we showed the top six enrichments
(Figure 4C) and the MHC-I pathway (Figure 4D) derived
from KEGG analysis.

IRG Expression Changes and Hub
Molecules in Immune Subtype
The GO and KEGG analysis showed that DEGs were significantly
enriched in the immune system, which prompted IRGs
expression changes between immune subtypes. The expression
information of IRGs was extracted from each sample according
to the list of IRGs curated by the Immunology Database
and Analysis Portal (IMMPORT) website, which included
genes that were directly or indirectly involved in immune
responses. A total of 998 IRGs were curated by the IMMPORT
dataset in OC (Supplementary Table 11), among which
around 118 were identified as DEIRGs between two immune
subtypes (Figure 5A and Supplementary Table 12). Those
DEIRGs were used to construct a PPI network (Figure 5B).
The entire PPI network was analyzed with MCODE, and
two hub modules (module 1 score = 20.09 and module
2 score = 11.75) were chosen (Figures 5C,D). Thus, a
total of 147 hub molecules was identified according to
hub modules. Hub module 1 contained 22 hub molecules,
including HLA-A, HLA-B, HLA-C, HLA-DMA, HLA-DOA,
HLA-DOB, HLA-DPB1, HLA-J, HLA-DQA1, HLA-DQA2, HLA-
DQB1, HLA-G, HLA-DRA, HLA-DRB1, HLA-DRB5, HLA-
DRB6, HLA-DPB2, CD274, CD3G, CD3E, CD3D, and GRAP2
(Figure 5C). Hub module 2 contained 18 hub molecules,
including CCL26, PDCD1, CCL21, CCL22, CCL24, CCL17,
FPR2, CCL18, CCL19, IL21R, CXCR6, CCL11, CCL13, XCL2,
CCR3, CCR4, CXCL13, and CTLA4 (Figure 5D). Those hub
molecules assisted in the understanding of the key molecules in
the PPI network.

HLA System and Immune Checkpoint in
Immune Subtype
Major histocompatibility complex (MHC), a group of genes
that code proteins, was found on the surfaces of cells that
help the immune system recognize foreign substances. MHC
proteins were found in all higher vertebrates. In human beings,
the complex was also called the human leukocyte antigen
(HLA) system. According to the hub molecules obtained from
the PPI network, the HLA system and immune checkpoints
(PD1, PDL1, and CTLA-4) were identified. The expression
information of the HLA family and immune checkpoints from
DEIRGs were shown (Figure 6), which indicated that HLA
family and immune checkpoints were significantly different
between Immunity-H and Immunity-L groups. Specifically,
PD1, PDL1, and CTLA-4 were significantly highly expressed
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FIGURE 4 | Functional and pathway enrichment analyses. (A) The GO enrichment analysis in different expressed genes between the high- and low-abundance
immune groups. Only gene sets with NOM p < 0.05 and FDR q < 0.05 (adjusted p-value using the Benjamini-Hochberg procedure to control the FDR) were
considered significant. Only six leading gene sets were displayed in the plot. (B) The up- and downregulated GO pathways among immune subtypes by running a
gene set enrichment analysis (GSEA) in different expressed genes. Enrichment P-values were based on 10,000 permutations and subsequently adjusted for multiple
testing using the Benjamini-Hochberg procedure to control the FDR. (C) The KEGG enrichment analysis in different expressed genes between the high- and
low-abundance immune groups. Only gene sets with NOM p < 0.05 and FDR q < 0.05 (adjusted p-value using the Benjamini-Hochberg procedure to control the
FDR) were considered significant. Only six leading gene sets were displayed in the plot. (D) MHC-I pathway as an example for enriched KEGG.

in the Immunity-H group. The HLA family, including HLA-A,
HLA-B, HLA-C, HLA-DMA, HLA-DMB, HLA-DOA, HLA-
DOB, HLA-DPA1, HLA-DPB1, HLA-DPB2, HLA-DQA1,
HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1,
HLA-DRB5, HLA-DRB6, HLA-E, HLA-F, HLA-G, HLA-H, and
HLA-L, showed significant differences between Immunity-H and
Immunity-L groups.

Development of the Immune-Based
Prognostic Signature for OC
The K-M plot analysis revealed that 10 out of 118 DEIRGs
were significantly associated with OC overall survival (p < 0.05),

including CCL18, CXCL13, HLA-DOB, HLA-DPB2, HLA-
DQA2, HLA-DRB6, HLA-J, IFNG, IL18RAP, and TNFRSF17
(Figure 7). Most of them were hub molecules in the PPI
network. Furthermore, lasso regression was performed to
identify the five-immune-related gene signature model (CCL18,
CXCL13, HLA-DOB, HLA-DPB2, and TNFRSF17) to improve
the predicted accuracy for overall survival in OC, when log
(lambda) was between −2 and −3 (Figures 8A,B). The survival
risk score was calculated as (-0.10182 × expression level of
CCL18) + (-0.2125 × expression level of CXCL13) + (-
0.6473× expression level of HLA-DOB)+ (-0.5321× expression
level of HIBCH)+ (-0.120× expression level of HLA-DPB2)+ (-
0.2076 × expression level of TNFRSF17). The OC samples were
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FIGURE 5 | The different expressed immune-related genes and PPI network in OC tissues. (A) The heatmap of OC tissues and the different expressed
immune-related genes between the high- and low-abundance immune groups. (B) PPI network of those different expressed immune-related genes. (C,D) Hub
modules were analyzed using MCODE (module 1 score = 20.09 and module 2 score = 11.75).
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FIGURE 6 | HLA system and immune checkpoint between the high- and low-abundance immune groups. (A) Boxplot of the difference between high- and
low-abundance immune groups in the HLA family. (B) Boxplot of the difference in CTLA-4 (CD152) between high- and low-abundance immune groups. (C) Boxplot
of the difference in PD-1 (CD279) between high- and low-abundance immune groups. (D) Boxplot of the difference in PD-L1 (CD274) between high- and
low-abundance immune groups. Wilcoxon rank sum was used for the significance test. ***p < 0.001.

divided into two groups (high-risk score group = 153, and
low-risk score group = 154) according to the median value of
risk score (risk score value = 0.639) (Supplementary Table 16).
Additionally, overall survival showed statistical significance
between high-risk and low-risk groups (Figure 8C). The five-
immune-related gene signature was consistent with the single-
factor analysis of genes using Cox regression. The univariate
analysis revealed that age at initial pathological diagnosis,
anatomic neoplasm subdivision, cancer status, primary therapy
outcome, tumor residual disease, and risk score were significantly
correlated with overall survival (Figure 8D). The univariate

analysis revealed that age at initial pathological diagnosis, cancer
status, primary therapy outcome, and risk score were significantly
correlated with overall survival (Figure 8E). The risk score of the
prognostic model in OC was negatively correlated with the TMB
score (Figure 8F) (p = 0.0248).

The Independent Verification by GEO
Dataset
To validate the reliability of the established prognostic model
based on the TCGA database, a testing dataset that was derived
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FIGURE 7 | The K-M plot analysis revealed that 10 out of 118 DEIRGs were significantly associated with OC overall survival (p < 0.05), including CCL18, CXCL13,
HLA-DOB, HLA-DPB2, HLA-DQA2, HLA-DRB6, HLA.J, IFNG, IL18RAP, TNFRSF17. P-value was verified by log-rank test.

from 415 OC patients downloaded from the GEO dataset13, and
these 405 patients were stratified into a low-risk score group
(n = 207) and high-risk score group (n = 208) according to the
median risk score based on the immune-based prognostic model.
There was a significant difference in the OS rate between the two
groups, and the OS rate was significantly lower in the high-risk

13https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13876

score group compared to the low-risk score group (Figure 8G
and Supplementary Table 17).

DISCUSSION

The tumor microenvironment was comprised of an intricate
system of immune cells and stromal cells, which contained
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FIGURE 8 | Lasso regression identified the prognostic model of five-immune related gene signature. (A,B). Lasso regression complexity was controlled by lambda
using the glmnet R package. (C) Overall survival analysis between high-risk score and low-risk score groups based on TCGA dataset. (D) The univariate analysis of
risk factors in OC. (E) The multivariate analysis of risk factors in OC. (F) The association between TMB and risk score group. (G) Overall survival analysis between
high-risk score and low-risk score groups based on GEO dataset. Statistical significance was set as p < 0.05.

promising biomarkers of clinical outcome and novel targets for
therapeutic approaches (Garcia-Gomez et al., 2018). However,
the therapeutic responses and prognosis of non-cancer cells were
still poorly understood in OC. The abundance of macrophages
and CD8+ T cells in the tumor microenvironment were
significantly associated with prognosis and immunotherapy
response in various cancers (He et al., 2019). A large number of
studies have demonstrated that the presence of tumor-infiltrating
lymphocytes was associated with a favorable prognosis in
OC patients (Santoiemma and Powell, 2015). Anti-immune

checkpoint therapy, including PD-1, PDL-1, and CTLA-4,
significantly prolonged the survival time of patients with solid
tumors (Topalian et al., 2016). Unfortunately, it was a difficult
and laborious thing to quantify tumor-infiltrating immune cell
subsets with histological inspection in a large patient cohort.
The previous studies were limited to only one or two immune
cell types, so the results did not reflect overall characterizations
of tumor microenvironment cell infiltration due to various
immune cell types (Mami-Chouaib et al., 2018). Recently, next-
generation sequencing was used to identify key genetic or
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epigenetic changes in OC, and computational methods were
also developed to estimate the abundances of immune cells
and stromal cells based on the immunogenomic profiling
(Courcelles et al., 2020). Combining genomic data with those
novel computational methods provided an opportunity to dissect
the characterizations of tumor microenvironment cell infiltration
(Ye et al., 2019). In addition, it would be helpful to develop the
potential immune-related biomarkers that could help monitor
the immunotherapy response or search for new therapeutic
targets (Zeng et al., 2019).

This present study provided the overall characterizations of
tumor microenvironment cell infiltration in OC and analyzed
immune cells, TMB, immune-related pathways, and immune-
related genes in OC, combining these with clinical characteristics.
Some of the findings in this present study were consistent with
the previous studies (Wei et al., 2016; Yuan et al., 2017). In
terms of immune cells, this study found an increasing trend
of B cells memory in OC patients with grade 3 compared
to grade 2, while B cells naïve showed a decreased trend in
OC patients with grade 3 compared to grade 2. One study
found that a population of interleukin-10(+) B [IL-10(+) B]
cells was preferentially enriched in the ascites, which was
associated with naive B cell and memory B cell phenotypes.
The frequencies of IL-10(+) B cells were negatively correlated
with those of interferon gamma-producing [IFN-g (+)] CD8(+)
T cells. It demonstrated an additional regulatory mechanism
of IL-10(+) B cells in the tumor microenvironment (Wei
et al., 2016). The role of tumor-associated macrophages in
the tumor microenvironment remains controversial due to two
different polarized subsets. This present study found that M1
macrophages had a significantly decreased trend among stages
II, III, and IV, while M2 macrophages had a significantly
increased trend among stages II, III, and IV. The meta-analysis
of nine studies, including 794 patients, found that the higher
ratio of M1/M2 macrophages in ovarian cancer tissues was
associated with a favorable overall survival (HR = 0.449, 95%
CI = 0.283–0.712, P = 0.001) (Yuan et al., 2017). The present
study also found that eosinophils, neutrophils, and T cells
follicular helper were significantly related to OC survival. One
comprehensive analysis of publicly available databases containing
13 studies with more than 2,000 patients revealed that neutrophils
were associated with poor overall survival (HR = 1.06, 95%
CI = 1.00–1.13) and progression-free survival (HR = 1.10,
95% CI = 1.02–1.13) (Liu et al., 2020). Further investigations
of quantitative immune cell infiltrations might contribute to
therapeutic advances in OC.

In terms of immune-related pathways, DEGs between
immunity-high and -low abundance groups of immune cell
infiltration were enriched in multiple immune-related pathways
according to GO and KEGG analyses; for example, PD-
L1 expression and PD-1 checkpoint pathway in cancer,
antigen processing and presentation, Fc gamma R-mediated
phagocytosis, T-cell receptor signaling pathway, and natural
killer cell-mediated cytotoxicity. The multiple enriched pathways
were closely related to tumorigenesis and progress in OC, and
some studies tried to use PD-1/PD-L1 pathway inhibitors in
cancer. It was reported that the PD-1 receptor and its ligand

(PD-L1) were over-expressed in tumor cells and immunology
system cells in OC patients. It is possible in the future to apply
PD-1/PD-L1 pathway inhibitors in the treatment of ovarian
cancer (Piêtak et al., 2018). The previous study also showed
that OC cell lines exhibited lower expression of transcripts
involved in antigen processing and presentation to immune
cells compared to normal tissues. In addition, treatment with
clinically relevant low doses of DNMT inhibitors (that remove
DNA methylation) increased expressions of antigen processing
and presentation and Cancer Testis Antigens in these cells. It
indicated that the increase of antigens and antigen presentation
might be one mechanism to sensitize patients to immune
therapies (Siebenkäs et al., 2017). Due to the important role of
T cells in the immune surveillance of OC, we paid increased
attention to adoptive T-cell therapies as an immunotherapeutic
approach for OC. Chimeric antigen receptors, constructed by
incorporating the single-chain Fv fragment to a T-cell signaling
domain, such as CD3 æ or the Fc receptor ã chain, endowed
T cells with non-major histocompatibility complex-restricted
specificity. It suggested that chimeric antigen receptor therapy
might be possible to translate from basic research into clinical
care of OC (Zhang et al., 2017). Tumor cells pretreated
with anti-epidermal growth factor receptor inhibitors showed
the increased sensitivity toward NK cell-mediated antibody-
dependent cellular cytotoxicity. These data implicated that
combination therapies with targeted drug and immune agents
would be an effective therapy (Mallmann-Gottschalk et al., 2019).
Further investigations of the immune-related pathways might
contribute to therapeutic advances in OC.

In terms of mutation gene distribution and immune-related
genes in OC, the top 30 gene mutations were plotted, including
TP53, TNN, MUC16, CSMD3, NF1, TOP2A, USH2A, HMCN1,
RYR2, FAT3, MUC17, LRP1B, APOB, BRCA1, FLG, MACF1,
CDK12, DNAH3, RB1, AHNAK, COL6A3, KMT2C, LRP2,
LRRK2, SYNE1, MDN1, MYH4, SYNE2, TENM1, and DST.
This present study also identified the five-immune-related-gene-
signature prognostic model (CCL18, CXCL13, HLA-DOB, HLA-
DPB2, and TNFRSF17) with lasso regression, and such model-
based high-risk and low-risk groups were significantly related to
OC overall survival. Mutations in the tumor genome can cause
tumors to express mutant proteins that are tumor-specific and
not expressed on normal cells (neoantigens). These neoantigens
are an attractive immune target because their selective expression
in tumors may minimize immune tolerance as well as the risk of
autoimmunity (Yarchoan et al., 2017). This present study found
that immune-related score was positively correlated with TMB,
indicating that identification and targeting of tumor neoantigens
would help cancer immunotherapy. Some high mutation genes in
OC were also identified, including TP53, TNN, MUC16, CSMD3,
NF1, TOP2A, USH2A, HMCN1, RYR2, FAT3, MUC17, LRP1B,
APOB, BRCA1, FLG, MACF1, CDK12, DNAH3, RB1, AHNAK,
COL6A3, KMT2C, LRP2, LRRK2, SYNE1, MDN1, MYH4,
SYNE2, TENM1, and DST. For example, MUC16 inhibited
cytolysis via human NK cells as well as the formation of NK-
tumor conjugates. Mice implanted with MUC16-knockdown
OVCAR-3 showed a more than twofold increase in terms of
survival compared to controls (Felder et al., 2019). CCL18, one
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of the cytokines, displayed chemotactic activity for naive T cells,
CD4+ and CD8+ T cells, and non-activated lymphocytes but
not for monocytes or granulocytes. The overexpression and
silencing of CCL18 affected adhesion, invasion, and migration
in OC cells, which suggested that CCL18 has potential as
a clinical marker for early diagnosis of OC and as a target
molecule in the treatment of OC (Yang et al., 2019). Further
investigations of the mutation gene distribution and immune-
related genes may contribute to therapeutic advances of OC.
Furthermore, the associations of top mutation gene expression
with drug sensibility were obtained, and those mutation genes
were potential targets. Some drugs were significantly related
to OC mutation genes, including drugs dasatinib, zoledronate,
epothilone B, pelitrexol, vemurafenib, dabrafenib, PD-98059,
tamoxifen, and nelarabine. Some drugs have proven to be
effective in OC (Chou et al., 2005; Xiao et al., 2015; Hou et al.,
2017; Woo et al., 2017). For example, dasatinib, as a tyrosine
kinase inhibitor, has been tested for its antitumor activity in
six ovarian cancer cell lines with and without combination
with paclitaxel. Its combination with paclitaxel or dasatinib
alone showed anti-ovarian cancer properties by inducing cancer
cell apoptosis (Xiao et al., 2015). A case of metastases from
gastric cancer to the ovary reported that alkaline phosphatase
levels remarkably decreased after treatment with zoledronic
acid. According to follow-up data of the patient treated with
S-1 plus oxaliplatin and zoledronic acid, the cancer status
continued to remain in good condition (Woo et al., 2017). One
study developed a new class of epothilones, 26-trifluoro-(E)-
9,10-dehydro-12,13-desoxy-epothilone B (Fludelone). Results
in vitro experiment indicated that Fludelone can be used
against SK-OV-3 (ovary) xenograft tumors, which indicated
that Fludelone could be a promising compound for cancer
chemotherapy in OC (Chou et al., 2005). The cisplatin-resistant
ovarian cancer cell line (SKOV-3/DDP) exhibited increased
resistance via the increased phosphorylation of ERK and the
enhanced epithelial mesenchymal transition (EMT) process.
The specific ERK inhibitor PD-98059 efficiently impaired
the cisplatin-resistance of ovarian cancer cells and decreased
cell proliferation and migratory area by inhibiting the ERK
pathway and EMT process (Hou et al., 2017). Those drug
sensibility-associated mutation genes were the potential drug
therapeutic targets in OC.

For effective evaluation of the prognosis of OC patients,
lasso regression identified the five-immune-related gene
signature model (CCL18, CXCL13, HLA-DOB, HLA-DPB2,
and TNFRSF17). The risk score derived from this prognostic
signature model could be one of the risk factors for OC alongside
age at initial pathological diagnosis, anatomic neoplasm
subdivision, cancer status, primary therapy outcome, and
residual tumor disease. Those five immune-related genes in
the prognostic signature model played important roles in
immune and cancer (Gu-Trantien et al., 2017; Chenivesse
and Tsicopoulos, 2018). For example, CCL18, as one of the
Cys-Cys (CC) cytokine genes, displayed chemotactic activity
for non-activated lymphocytes, CD4+ T cells, naive T cells,
and CD8+ T cells but not for granulocytes and monocytes.
It might play a role in both humoral and cell-mediated

immunity responses. Finally, CCL18 was involved in immune
tolerance toward cancer to influence cancer cell activation and
migration (Chenivesse and Tsicopoulos, 2018). CXCL13, as a
B lymphocyte chemoattractant, has been widely implicated in
the pathogenesis of inflammatory conditions and autoimmune
diseases, which preferentially promoted the migration and
chemotaxis of B lymphocytes by stimulating calcium influx
(Kazanietz et al., 2019). Recent studies proved that CXCL13
could control the cancer cell phenotype in various solid tumors
and impact the migration, invasiveness, and growth of cancer
cells (Gu-Trantien et al., 2017). This generic method had been
used in other kinds of cancers, including lung cancer (Wu
et al., 2020), invasive ductal carcinoma (Bao et al., 2019), and
colon cancer (Wang et al., 2020). Comparative analysis of
all these constructed immune-related gene signature models
indicated that different cancers had their own individual
prognostic models. Thus, it was necessary to analyze the immune
microenvironment in different cancers. This was the first
time OC data were comprehensively analyzed on TCGA with
this generic method to construct five-immune-related gene
signature model (CCL18, CXCL13, HLA-DOB, HLA-DPB2, and
TNFRSF17). Dissecting the molecular and signaling events of
immune-related genes in OC and how those identified genes
dynamically control the interaction between cancer cell and
tumor microenvironment might be crucial to identify novel
effectors and therapeutic targets.

Scientifical Significance of the Related
Findings
Scientifical significance is different from statistical significance
in terms of the concept aspect, though both have a certain
overlapping (Zhan et al., 2017). When we got a statistically
significant finding, we must rationalize it in a biological system
from an angle of scientific significance. For this discovery study
based on large-scale omics data derived from ovarian cancers,
in order to guarantee the scientific significance of the related
findings in current manuscript, we assure that each statistical
result must be statistically significant with at least p < 0.05;
then, these statistically significant results were rationalized in the
biological system with a scientific explanation. For example, the
five-immune-related-gene prognostic signature model (CCL18,
CXCL13, HLA-DOB, HLA-DPB2, and TNFRSF17) constructed
with lasso regression based on the TCGA ovarian cancer database
was verified with a GEO ovarian cancer dataset, and these
genes were scientifically rationalized in the biological system of
ovarian cancers as described in the section of discussion. Another
example, for the mutation study, is that the top mutation gene
expressions of OC were statistically significantly associated with
drug sensibility, and those mutation genes were thought to be
potential targets in OC, such as the drugs dasatinib, zoledronate,
epothilone B, pelitrexol, vemurafenib, dabrafenib, PD-98059,
tamoxifen, and nelarabine. Some of these drugs have been proven
to be effective in OC, as described in the discussion. It clearly
demonstrates that the statistically significantly related findings
in the current study are also scientifically significant, which is of
important scientifical merit in the treatment of OC patients.
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CONCLUSION

Tumor microenvironment alterations participate in
carcinogenesis and development in OCs. Recent studies have
revealed that mutation gene distribution and immune-related
genes play critical roles in regulating the reprogramming of
immune status in cancer cells. In this study, ssGSEA was
a useful tool to quantify the relative abundance of immune
cell infiltration and recognize immune subtypes. Systematical
analysis of the relationships between immune subtype, clinical
characteristics, ESTIMATE results, and mutation information
could provide new insights into the clinical outcome prediction
of OC. Lasso regression identified the five-immune-related
gene signature model (CCL18, CXCL13, HLA-DOB, HLA-
DPB2, and TNFRSF17) to improve the prediction accuracy
for overall survival in OC. Further quantitative investigations
of cellular immune infiltrations in tumors may contribute to
therapeutic advances. Identification of combination roles of
multiple key molecules in recognition of heterogeneity and
complexity of tumor microenvironment cell infiltration will
reveal the potential mechanisms of tumor microenvironment
antitumor immune responses and determine more effective
immunotherapy strategies.
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