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Breast cancer represents the number one cause of cancer-associated mortality globally.
The most aggressive molecular subtype is triple negative breast cancer (TNBC), of
which limited therapeutic options are available. It is well known that breast cancer
prognosis and tumor sensitivity toward immunotherapy are dictated by the tumor
microenvironment. Breast cancer gene expression profiles were extracted from the
METABRIC dataset and two TNBC clusters displaying unique immune features were
identified. Activated immune cells formed a large proportion of cells in the high
infiltration cluster, which correlated to a good prognosis. Differentially expressed genes
(DEGs) extracted between two heterogeneous subtypes were used to further explore
the underlying immune mechanism and to identify prognostic biomarkers. Functional
enrichment analysis revealed that the DEGs were predominately related to some
processes involved in activation and regulation of innate immune signaling. Using
network analysis, we identified two modules in which genes were selected for further
prognostic investigation. Validation by independent datasets revealed that CXCL9 and
CXCL13 were good prognostic biomarkers for TNBC. We also performed comparisons
between the above two genes and immune markers (CYT, APM, TILs, and TIS), as well
as cell checkpoint marker expressions, and found a statistically significant correlation
between them in both METABRIC and TCGA datasets. The potential of CXCL9 and
CXCL13 to predict chemotherapy sensitivity was also evaluated. We found that the
CXCL9 and CXCL13 were good predictors for chemotherapy and their expressions
were higher in chemotherapy-responsive patients in contrast to those who were not
responsive. In brief, immune infiltrate characterization on TNBC revealed heterogeneous
subtypes with unique immune features allowed for the identification of informative and
reliable characteristics representative of the local immune tumor microenvironment and
were potential candidates to guide the management of TNBC patients.
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INTRODUCTION

11.6% of all cancers in women were found to be breast cancer,
making it the most commonly diagnosed malignancy in this
population as well as the leading cause of cancer death (Bray
et al., 2018). Approximately 15% of all breast cancers are
triple-negative breast cancers (TNBC), which do not express
ER, PR, or HER2 (Fallahpour et al., 2017). Due to its genetic
profile, TNBC is often insensitive to anti-hormonal therapy or
monoclonal antibodies (Li et al., 2018; Buiga et al., 2019; Ma
et al., 2020). Chemotherapy remains the main treatment modality
for TNBC patients, which confers controversial outcomes on
patients despite some literature touting its benefits (Pomponio
et al., 2019; Steenbruggen et al., 2020). TNBC therefore is
synonymous with a poor outcome in breast cancer in contrast to
other subtypes, and is generally regarded as the most aggressive
breast cancer subtype.

Therefore, more efficient prognostic and therapeutic strategies
for TNBC are still urgently needed. Increasing evidence
highlights the critical role of the immune system in the initiation
and progression of cancers (Wang et al., 2018; Cai et al., 2019;
Tu et al., 2020). TNBC is associated with a high density of
tumor-infiltrating lymphocytes (TILs) defined by histopathology
evaluation, which represents a robust intratumoral inflammatory
response describing triple negative tumors as an immunogenic
neoplasia (Nederlof et al., 2019; Romero-Cordoba et al., 2019). In
addition to TIL count by immune pathological evaluation, other
methods recently emerged to assess the tumor immune landscape
such as deconvolution algorithm to define the proportion of
immune cells using genomic profiling (Loi et al., 2019), to
identify the gene expression signatures that distinguish the
immune-state, and then to be a potential prognostic factor
(Romero-Cordoba et al., 2019). Immune checkpoint molecules
are able to inhibit or activate the immune system. The expression
or functional enhancement of inhibitory immune components
(PD-1, CTLA-4, TIM-3, etc.) weakens the immune system
and increases susceptibility to cancers (Tuccilli et al., 2018;
Moore et al., 2019; Salgado et al., 2020). Recent research
has demonstrated that TNBC possesses higher immunogenicity
than other subtypes (Denkert et al., 2018). PD-1 and PD-
L1 were highly expressed in TNBC in contrast to other
subtypes, indicating that the patients benefit more from immune
therapies (Zhou et al., 2018). It is widely accepted that TNBC
patients respond well to immune checkpoint inhibitors such
as PD-1 inhibitors (Nanda et al., 2016; Voorwerk et al.,
2019). Nevertheless, PD-1 inhibitor sensitivity is not universal
amongst all TNBC samples given the irregular expression
of PD-1 and PD-L1 (Barrett et al., 2018). This challenges
the current genomic-based breast cancer classification. Further
delineation of comprehensive immunological signature patterns
may serve to develop an immunological-based classification
strategy and prime the field toward personalized therapy
(Kawashima et al., 2018; Li et al., 2020). Previous studies on
TNBC microenvironment subtypes are heterogenous (Costa
et al., 2018; Romero-Cordoba et al., 2019; Xiao et al., 2019;
Chen et al., 2020). However, a comprehensive landscape
of the TNBC microenvironment, its impact on therapeutic

responses, and TME-related prognostic markers are still not
well-characterized.

In this study, we evaluated the relative quantity of immune-
microenvironment heterogeneity in TNBC tissues and its
characteristics. The patients were clustered into two immune
clusters based on the ssGSEA result. The prognostic significance
and the potential immune related gene signatures were then
characterized. Finally, we evaluated the ability of these signatures
to predict patient chemotherapeutic response.

MATERIALS AND METHODS

TNBC Datasets and Preprocessing
Publicly available TNBC gene-expression data sets and
the corresponding clinical datasets were extracted from
the Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC), The Cancer Genome Atlas (TCGA),
and from the Gene Expression Omnibus (GEO) (Curtis
et al., 2012). cBioPortal was used to download METABRIC
and TCGA genomic data. Sample amount, baseline data,
and clinical endpoints of all GDC datasets were assessed
using R and R Bioconductor packages. Sample inclusion
criteria were those that contained information regarding
overall survival.

The independent dataset GSE12276 from the GEO database
and TCGA dataset was used in the validation of univariate
Cox regression of CXCL9 and CXCL13. The datasets GSE25055,
GSE58812, and GSE103091 were used in the validation of
multivariate Cox regression analysis.

Two cohorts (GSE18728 and GSE137356) were used to assess
TNBC patient response to chemotherapy. The robust multichip
average (RMA) was used to normalize affymetrix-generated raw
CEL files which were downloaded from the GEO dataset.

Calculation of Microenvironment Cell
Abundance
The GSVA R package (version 1.24.0) was used to implement
single sample gene set enrichment analysis (ssGSEA)
(Hanzelmann et al., 2013). Enrichment scores of 782 genes
representing 28 types of immune cells were calculated to
determine the normalized enrichment score of 27 types of
immune cells represented by 782 gene signatures which were
collected from a wide range of existing literature (Newman
et al., 2015; Senbabaoglu et al., 2016; Wang et al., 2020). The
Cell Type Identification by Estimating Relative Subsets of
Known RNA Transcripts (CIBERSORT) algorithm allowed
for estimation of infiltrating immune cell composition
(Newman et al., 2015). CIBERSORTX method1 was also
used. The ESTIMATE algorithm was performed to calculate
the ESTIMATE, stromal, immune, and tumor purity scores
for TNBC patients in the bulk gene expression profiles
(Yoshihara et al., 2013).

1https://cibersortx.stanford.edu/
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Collection of Immune-Related Data
The cytotoxic activity (CYT) score for each patient was
determined as an average of the PRF1 and GZMA expression
levels, which were known to be closely related to CD8 + T
cell activation in tumors (Rooney et al., 2015). The Tumor
Inflammation Signature (TIS) score was derived from the
average of log2- transformed gene expression of the determined
marker genes (Ayers et al., 2017). To investigate tumor
infiltrating T cells, the proportion of tumor infiltrating
lymphocytes (TILs) was also calculated (Bindea et al.,
2013). Relative antigen presentation machinery (APM)
was calculated using a validated gene expression signature
(Zhang et al., 2018).

Differentially Expressed Genes (DEGs)
Between the Tumor Immune Clusters
DEGs between high infiltration clusters and low clusters were
identified using the R package limma.

DEGs were determined by significance criteria (| logFC| > 1,
P < 0.01) as previously implemented. The adjusted P-value
for multiple testing was quantified utilizing the Benjamini–
Hochberg correction.

Enrichment Analysis
The DEGs identified above were used for functional
enrichment analyses, which were performed using the
online gene annotation and analysis tool Metascape2

(Zhou et al., 2019), as well as the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) tool. Network
analysis was done using Search Tool for the Retrieval of
Interacting Genes (STRING3) online database (combined
score >0.9). Cytoscape 3.7.2 was utilized to visualize the
interactive network.

Statistical Analysis
The R program (version 3.5.0) was used to carry out all
statistical analyses. The single sample gene set enrichment
analysis (ssGSEA), implemented in the GSVA R package
(version 1.38.0), was also introduced to calculate the normalized
enrichment score (NES) of TNBC samples. The limma R package
(version 3.22.5) was used to analyze differentially expressed
gene (DEG) for the read count data from TNBC samples.
The ggplot2 (version 2.2.1) and pheatmap (version 1.0.12)
were used to draw the heatmaps and other plots. The R
package ggpubr (version 0.4.0) was used to plot the vinlioplot.
The R package forestplot (version 1.10.1) was used to plot
the forest plot.

The Kaplan-Meier method was used to gain an estimate of the
survival curves. The survival differences were assessed utilizing
the two-sided log-rank test. Correlation between immune factors
was calculated using Pearson’s correlation coefficients. The
Kaplan–Meier survival curves were visualized through the use of
the survfit function in the R package survival (version 3.2–7).

2http://metascape.org
3http://string-db.org

RESULTS

Comprehensive Immune-Cell Infiltrate
Profile in Triple Negative Breast Cancer
To assess the range and types of immune cell infiltration,
the ssGSEA method was used to estimate the enrichment of
27 types of immune cells for 299 TNBC patients derived
from the METABRIC dataset who had existing transcriptome
and clinical features data. By applying the unsupervised
hierarchical agglomerative clustering, the TNBC tumors were
subsequently re-classified into two heterogeneous clusters: low
infiltration (176) and high infiltration (123) (Figure 1A). We
further demonstrated the infiltrate abundance of some immune
cells to validate our microenvironment clustering. The group
with stronger immune cell activity were noted to be more
highly enriched with macrophages and B cells as well as
CD8+ and CD4+ cells (Figures 1B–E); the low infiltration
subtype had a relatively lower abundance of immune-active cells
(Figures 1B–E). In addition, the ESTIMATE algorithm was used
to obtain the stromal scores, estimate scores, and immune scores.
Significant differences between the scores from the two immune
clusters were observed (Supplementary Figures 1A–C). To
determine if genotype-predicted immune phenotypes correlated
with tumor cell immune cell infiltrate profiles, levels of APM,
CYT, TIL, and TIS between two immune subtypes were evaluated
(Supplementary Figures 1D–G). CYT scores were markedly
higher in the high infiltrate cluster compared to the low infiltrate
cluster (p < 2.2e−16) (Supplementary Figure 1D). Similarly,
significantly higher APM, TILs, and TIS were observed in the
high infiltration cluster (Supplementary Figures 1E–G).

Prognostic Analysis of Microenvironment
Phenotypes
The prognostic ability of the tumor microenvironment was also
assessed in this study. Survival analyses demonstrated distinct
clinical outcomes between the two TNBC subtypes. Those
of the high infiltration cluster were noted to have markedly
better overall survival (OS) in contrast to the low infiltration
cluster (p = 0.00019; Figure 2A). Univariate Cox regression
was conducted to analyze the relationships between 27 human
immune cell phenotypes and patient outcomes. We found that
the expression of several immune cell phenotypes significantly
correlated to overall survival. For example, activated CD8 + T
cells and natural killer cells were significantly correlated to
better overall survival (CD8 + T cells: P = 0.038, HR = 0.348,
95% CI = 0.129−0.943); natural killer cells: P < 0.001,
HR = 0.045, 95% CI = 0.008−0.251). At the same time, high
levels of macrophages were also associated with good prognosis
(macrophages: P < 0.001, HR = 0.041, 95% CI = 0.010−0.175).

Differential Expressed Genes With
Immune Clustering
To explore differential expressed genes (DEGs) between high
and low infiltration clusters, the limma package algorithm
was performed on the METABRIC dataset. A total of 110
genes, including 31 downregulated and 79 upregulated genes,
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FIGURE 1 | Microenvironment phenotypes of TNBC. (A) Hierarchical clustering of TNBC immune infiltration phenotypes based on the ssGSEA score of 28
microenvironment cell subsets. Signature scores of (B) CD8 T cell, (C) CD4 T cell, (D) B cell, and (E) Macrophage among clusters. The boxplot is depicted within the
violin plot.

were found in the high infiltration cluster. Cluster analysis
and heatmap including 110 DEGs are shown in Figure 3A.
Functional enrichment analysis, including GO and KEGG
pathways, was performed using Metascape online tools. As
illustrated in Figures 3B,C, DEGs were mostly enriched in
immune response-related terms such as lymphocyte activation
(GO:0046649) and natural killer cell mediated cytotoxicity
(hsa04650). Finally, a PPI network of 110 DEGs was established
and two network modules including nine genes were identified
using Metascape (Figure 3D).

Evaluation of the Modular Genes Using
Breast Cancer Cohorts
In order to evaluate the nine genes from the modules determined
by the METABRIC analysis, we used additional TNBC cases
obtained from an independent dataset (GSE12276). Survival
analyses were performed grouped by the expression level of
the nine genes, respectively. Survival curves suggested that

patients with elevated CXCL9 and CXCL13 levels experienced
significantly improved OS (CXCL9 P = 0.0277; CXCL13
P = 0.0322; Figures 4A,B). The prognostic roles of CXCL9 and
CXCL13 are consistent in the TCGA dataset (CXCL9 P = 0.0142;
CXCL13 P = 0.0106; Figures 4C,D).

To identify the roles of CXCL9 and CXCL13 across dominant
determinants of immune cell infiltration, the association
between their expressions and a variety of immune inhibitors
(Programmed Cell Death 1, Programmed Cell Death 1 Ligand,
Cytotoxic T-Lymphocyte Antigen 4, Lymphocyte Activation
protein 3, and programmed cell death 1 ligand 2 (PD-1/PD-
L1/CTLA4/LAG3/PD-L2) were analyzed. In the METABRIC
dataset, there is a strong correlation of these immune inhibitory
genes with both CXCL9 and CXCL13 (Figures 5A–J). Also, some
immune tumoral features (such as CYT, APM, TILs, and TIS)
were also significantly correlated to the expression level of CXCL9
and CXCL13 (Figures 5K–R). In order to validate the above
results, we repeated the same analysis using TNBC samples in
the TCGA database. Consistent with the METABRIC dataset, a
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FIGURE 2 | Prognostic significance of microenvironment clusters and cells in
TNBC. (A) OS Kaplan–Meier curves of each cluster. (B) A univariate Cox
proportional hazards model was used to estimate the prognostic value of
each cell subset. For each cell type, the line length represents 95%
confidence interval. HR < 1.0 represent that a cell type is a favorable
prognostic biomarker.

significant positive correlation of these two genes with immune
checkpoints, as well as immune tumoral features, were observed
(Supplementary Figure 2).

CXCL9 and CXCL13 Are Predictive for
Therapeutic Response
Two groups of breast cancer datasets, GSE137356 and GSE18728,
were used to determine if CXCL9 and CXCL13 expressions

could predict chemotherapy response. In the GSE18728 dataset,
correlation between baseline gene expression and tumor
response to treatment by docetaxel and capecitabine neoadjuvant
chemotherapy were assessed (Korde et al., 2010). We used CXCL9
and CXCL13 to predict patients’ response to chemotherapy.
The area under the curves (AUC) of the CXCL9 and CXCL13
were 0.746 and 0.734, respectively (Figures 6A,B). To examine
whether expressions of CXCL9 and CXCL13 changed in
patients with different chemotherapy response, we obtained
gene expression data from GSE137356, in which TNBC patients
were treated with adjuvant doxorubicin and cyclophosphamide.
Figures 6C,D depicts that those demonstrating better clinical
response also possessed significantly raised CXCL9 and CXCL13
levels, suggesting that CXCL9 and CXCL13 could potentially
predict a better response to chemotherapy.

DISCUSSION

Amongst the latest to be researched of the multitude of factors
known to affect TNBC growth is the degree of tumor infiltration
by immune cells. Next-generation sequencing represents useful
tools that can be used to meticulously scrutinize the tumor
microenvironment. Previous researchers have established profiles
of the types of cells occupying the TNBC microenvironment
(Burstein et al., 2015; Bonsang-Kitzis et al., 2016; He et al.,
2018; Romero-Cordoba et al., 2019; Xiao et al., 2019). However,
few studies identified potential prognostic biomarkers from this
pool or have further investigated the relationships between
chemotherapy response and immune heterogeneity of TNBC.

In the current investigation, well-characterized TNBC datasets
were utilized to determine the heterogeneity of the infiltrating
cell subpopulation. Our study revealed the existence of two
phenotypically distinct TNBC microenvironments and their
clinical significance. We found that those of the high infiltration
cluster have a higher proportion of majority immune cells, such as
CD8+, CD4+, and B cells, as well as macrophages, which usually
act as the main initiator of immune responses against the primary
tumor (Figure 1A). Conversely, the low infiltration subtype had a
relatively lower abundance of immune-active cells (Figures 1B–
E). We obtained a similar result using the CIBERSORTX
method (Supplementary Figure 3). The ESTIMATE algorithm
which calculated immune/stromal/ESTIMATE scores was also
used and significant differences between two clusters were
observed (Supplementary Figure 2). ESTIMATE is a well-
established algorithm used to performed prognostic assessments
and exploration of genetic alterations in many neoplasms (Xu
et al., 2019). CYT is an important marker of tumor inflammation
that is indicative of a microenvironment rich in T cells,
thereby imparting effective anti-tumor immunity (Wang et al.,
2019). Higher expressions of CYT were predicted to improve
prognosis (Senbabaoglu et al., 2016). Our result showed that
the high infiltration cluster had higher expressions of CYT
(Supplementary Figure 2D). TNBC survival has been linked
to TIL levels (Loi et al., 2014; Romero-Cordoba et al., 2019).
Thus, TILs have been considered to be able to predict TNBC
response to chemotherapy. We found that APM, TILs, and TIS
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FIGURE 3 | Differentially expressed genes between immune microenvironment clusters and related functional annotations (A) Heat map of 110 DEGs suggested
distinct mRNA expression profiles in the METABRIC dataset. (B) Functional enrichment analysis including GO and pathways was performed using 110 DEGs.
(C) The network of the top 20 clusters of enriched terms. (D) Two PPI network modules including nine genes were identified.

were also found to be at higher levels in the high infiltration
cluster (Supplementary Figures 2E–G).

Given the distinct tumor immunophenotypes and their
impact on chemotherapy response, we further investigated their
clinical implications. Those of the high infiltration cluster had
significantly better overall survival than the other two clusters
(Figure 2A). These findings reflect prior investigations that have
concluded that better clinical outcomes were noted in TNBC with
higher activity of immune cells (He et al., 2018; Romero-Cordoba
et al., 2019; Xiao et al., 2019; Wang et al., 2020). Clinical prognosis
was improved when a higher amount of immune cell infiltrate
was present in the tumor (Figure 2B).

We then explored if distinct intrinsic tumor
microenvironments were present across TNBC tumors. Other
studies have suggested the use of “hot” and “cold” classification of
tumor cells (Galon and Bruni, 2019). The latter is used to indicate
non-inflamed tumors while the former suggests inflamed T-cell
rich tumors (Galon and Bruni, 2019). This pattern of immune

classification was also observed in our study. The high infiltration
cluster was marked by a higher degree of cytotoxic and non-
cytotoxic T cell infiltration, better prognosis, and other immune
factors which were considered to be characteristic of “hot”
tumors. Conversely, cold tumors have been described to be
immunologically quiescent. We also investigate the T-cell
function in TCGA dataset. We found that both CD4 + and
CD8 + T cell did not show a significant correlation with the
overall survival (Supplementary Figures 4A,B), but higher
PD1 expression is negatively correlated to OS (Supplementary
Figure 4C). Higher and sustained expression of inhibitory
multiple inhibitory receptors, such as PD1, is a hallmark of
exhausted T cells (Canale et al., 2018).

In order to identify markers with potential prognostic
value associated with TME, DEGs between high and low
infiltration clusters were analyzed. A total of 110 DEGs
were identified (Figure 3A). Functional annotation revealed
that these DEGs were predominately enriched in processes
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FIGURE 4 | Prognostic validation of CXCL9 and CXCL13 in independent cohorts. K-M analysis suggested that patients with elevated CXCL9 and CXCL13 levels
significantly correlated with better OS in (A,B) GSE12276 and (C,D) TCGA.

involved in activation and regulation of innate immune
signaling such as lymphocyte activation (GO:0046649)
and natural killer cell mediated cytotoxicity (hsa04650).
Modular analysis of Metascape identified two modules
including nine genes. We perform multivariate Cox regression
analysis on module 1, which included six genes. Using the
METABRIC dataset, we identified risk score using the following
formula: [Expression level of CCL19∗(0.021529)] + [Expression

level of CCL5∗ (−0.01437)] + [Expression level of
CXCL9∗ (0.065614)] + [Expression level of CXCL12
∗ (−0.10719)] + [Expressionlevel of CXCL13∗
(0.05269)] + [Expression level of C3∗ (−0.14915)].
Supplementary Figure 5A shows the comparisons of
survival differences between the two groups in the training
set (METABRIC; P = 0.047). Moreover, such findings
were further verified in the testing set (Supplementary
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FIGURE 5 | Correlation of CXCL9 and CXCL13 with local immune features and checkpoints across METABRIC TNBC samples. (A–J) showed the comparison of
checkpoints (PD-L1/CTLA4/LAG3/PD-1/PD-L2) and the (K–R) showed the comparison of immune features.

Figures 5B–D corresponding to GSE25055, GSE103091, and
GSE58812, respectively).

We next evaluated the relationship between OS and the
above nine genes using univariate Cox regression. Survival
analysis using an independent verification set indicated that
two (CXCL9 and CXCL13) of the nine genes were significantly
related to TNBC prognosis. Nodal biomarkers (also known as
single molecular biomarkers) are sensitive molecules specific
to their respective disease that exist in isolation (Lin et al.,
2019). To determine if genomic variables were correlated with
immune cell infiltrate profiles, levels of macrophages, B cells,
CD8+, and CD4+ T cells between high and low expression
group of CXCL9 and CXCL13 were evaluated. We found that
the expression of CXCL9 and CXCL13 were positively correlated
to the immune cell infiltrates (Supplementary Figures 6A–H).
To further evaluate the role of CXCL9 and CXCL13 in tumor
immunity, we performed comparisons between the above two
genes and immune markers (CYT, APM, TILs, and TIS), as well
as checkpoint expression, and found that a statistically significant
correlation existed between them in both the METABRIC and
TCGA dataset, suggesting that a higher expression of CXCL9 and
CXCL13 were associated with enhanced immune cell infiltrate.

As an IFN-γ inducible chemokine, CXCL9 is a significant
mediator of interaction between the host and tumor. Raised levels
of CXCL9 correlated with higher amounts of tumor-infiltrating

natural killer (NK) cells and longer postoperative survival
(Fukuda et al., 2020). CXCL13 is secreted by TFH cells, and is
involved in a positive feedback mechanism that enhances levels
of memory, cytotoxic, T helper 1 (TH1), and TFH T cells, as well
as B cells, in breast cancer (Gu-Trantien et al., 2017).

We further investigate the relationship between TILs
and clinical outcome. We found that high TILs cluster have
markedly better overall survival (OS) in contrast to the low
cluster (Supplementary Figure 7A). We also found that the
“TILs-low and CXCL9/13-low” class had the worst survival,
and the other three groups did not display a significant
difference (Supplementary Figures 7B,C). Interestingly,
although higher levels of TILs and CXCL9 were protective
factors of TNBC, the “TILs-high and CXCL9/13-high” did
not display a significantly better survival (Supplementary
Figures 7B,C), suggesting that there may be an intricate
interaction in the tumor microenvironment. Several studies
have shown that CXCL9 had both positive and negative effects;
on the one hand, overexpression of CXCL9 has shown to
reduce tumor progression by inhibiting angiogenesis. On the
other hand, CXCL9 can act directly on tumor cells expressing
the CXCR3 receptor to promote cell migration and epithelial
mesenchymal transition (Neo and Lundqvist, 2020). It is still
necessary to explore CXCL9-induced signaling cascade via
CXCR3 in CD8+ T cells.
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FIGURE 6 | The expression of CXCL9 and CXCL13 could predict the therapeutic benefit. ROC curves were generated to validate the ability of (A) CXCL9 and
(B) CXCL13 to predict chemotherapy response using GSE18728. Comparison of the expression of (C) CXCL9 (D) and CXCL13 in GSE137356 by the tumor size
after chemotherapy.

The primary modality of treatment in breast cancer is
chemotherapy, an agent that is strongly affected by the
immune microenvironment. Published reports indicate that
breast cancer patients with higher TILs demonstrate a more
complete pathological response post- neoadjuvant chemotherapy
(Loi et al., 2014). To evaluate the chemotherapy-response upon
CXCL9 and CXCL13, two breast cancer cohorts that possessed
information regarding chemotherapy response were extracted
from the GEO dataset. We found that CXCL9 and CXCL13 were
good predictors of chemotherapy response and their expressions
were higher in patients who responded well to chemotherapy
than the non-responsive ones (Figure 6).

In summary, we discerned two distinct TNBC subtypes
(high or low immunity) and identified two markers associated

with prognosis and chemotherapy response. This data further
enhances the concept and supports the clinical importance of
TNBC immune heterogeneity. However, there are still some
limitations in our study. More sufficient datasets are needed
to validate the immune signatures and more experimental
research is necessary to fully elucidate the biological or medical
mechanisms underlying immune heterogeneity.
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(C) B cell, and (D) Macrophage estimated by CIBERSORTx.

Supplementary Figure 4 | Prognostic validation of T cells. Both CD4 + (A) and
CD8 + T cell (B) did not show a significant correlation with the overall survival, but
PD1 expression is negatively correlated to OS (C).

Supplementary Figure 5 | Multivariate Cox regression analysis of 6 genes in
module 1. Survival curves of patients in high-risk group and low-risk group of the
training set (A), the testing set (B) GSE25055, (C) GSE103091, and (D)
GSE58812 are shown.

Supplementary Figure 6 | The relationship between gene expression and
microenvironment cytotypes. Levels of macrophages, B cells, CD8 +, and
CD4 + T cells between high and low expression group of CXCL9 (A–D) and
CXCL13 (C–H) were evaluated.

Supplementary Figure 7 | Kaplan–Meier curves for immune infiltration -specific
survival based on TILs and CXCL9/13 expression classes. The K-M curves for
(A) TILs (B) TILs and CXCL9 and (C) TILs and CXCL13.
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