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Combination therapies proved to be a valuable strategy in the fight against cancer, thanks

to their increased efficacy in inducing tumor cell death and in reducing tumor growth,

metastatic potential, and the risk of developing drug resistance. The identification of

effective combinations of drug targets generally relies on costly and time consuming

processes based on in vitro experiments. Here, we present a novel computational

approach that, by integrating dynamic fuzzy modeling with multi-objective optimization,

allows to efficiently identify novel combination cancer therapies, with a relevant saving

in working time and costs. We tested this approach on a model of oncogenic K-ras

cancer cells characterized by a marked Warburg effect. The computational approach

was validated by its capability in finding out therapies already known in the literature for

this type of cancer cell. More importantly, our results show that this method can suggest

potential therapies consisting in a small number of molecular targets. In the model of

oncogenic K-ras cancer cells, for instance, we identified combination of up to three

targets, which affect different cellular pathways that are crucial for cancer proliferation

and survival.

Keywords: fuzzy modeling, multi-objective optimization, global optimization, cancer, therapeutic targets,

combination chemotherapy

1. INTRODUCTION

Combination therapy has become a fundamental tool in the fight against several types of cancers.
The treatment of patients with combined therapeutic agents gives several advantages with respect
to single drug treatments. Targeting different cellular pathways in a synergistic or additive manner
increases the efficacy and the outcome of the therapy, by inducing programmed cell death in
tumor cells, and by reducing tumor growth, metastatic potential or the risk of developing drug
resistance (Mokhtari et al., 2017; Palmer and Sorger, 2017). However, the identification of effective
combination therapies is complex, costly and time consuming, with the major bottleneck being
represented by the in vitro experimental phase necessary to identify potential drug targets (Ilag
et al., 2002). This is further hindered by the lack of a complete understanding of the cellular
mechanisms involved in the onset and development of cancer, which are characterized by emergent,
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non-linear dynamic behaviors that arise from the interactions
between a huge number of different molecules and processes
within the cell (Gottesman et al., 2016).

Mathematical models of combination cancer therapies have
the makings of predicting potentially better treatment outcomes
based on novel combinations of drug regimens (see e.g., Wang
and Deisboeck, 2014; Bulusu et al., 2016; Malinzi et al., 2021).
Specifically, in the context of targeted therapies, mathematical
and computational approaches are becoming more and more
relevant to face various challenges related to drug target
identification (Smith, 2003; Brubaker and Lauffenburger, 2020)
and, in particular, in the context of precision oncology, where
different types of data are integrated and analyzed to identify
effective treatments for cancer (Senft et al., 2017). Among
the computational methods currently available in the literature
(Barillot et al., 2012), dynamic models proved to be notably
successful in drug target identification (Smith, 2003; Brubaker
and Lauffenburger, 2020). Their integration with experimental
data can elucidate new emergent properties in physiological
and pathological conditions, reveal possible counter-intuitive
mechanisms, and predict the response to an extensive number
of perturbations, therefore reducing the duration and costs of
the experimental research (Kitano, 2002; Faeder and Morel,
2016). Several types of dynamic models were employed to
study and explore drug targets in cancer cells (Sun and Hu,
2018): the most common include ordinary or partial differential
equations (Jackson and Byrne, 2000; Kirouac et al., 2017), and
stochastic and Markovian processes (Komarova, 2006; Haeno
et al., 2012). Agent-based models (Vaidya et al., 2019) and
logic-based models (Flobak et al., 2015; Morris et al., 2016) are
also present in the literature. Despite the plethora of available
modeling formalisms, the investigation of complex cellular
systems, such as cancer cells, still presents some shortcomings.
The definition of computational models is often limited by
the lack of quantitative information (e.g., kinetic parameters
or copy number of proteins), and the analysis of all system’s
perturbations might be computationally burdensome, due to the
size of the search space or the presence of a plethora of locally
optimal solutions.

To overcome these drawbacks, in this paper we propose
a novel computational strategy that combines dynamic fuzzy
modeling (Nobile et al., 2020) and evolutionary multi-objective
optimization (Deb, 2007) to identify new therapeutic targets
in cancer cells. Dynamic fuzzy models (DFMs) make use of
fuzzy logic (Yen and Langari, 1999) to represent complex
systems composed by heterogeneous components, taking into
account qualitative and semi-quantitative data, and providing
an interpretable description of the system under investigation.
The simulation of DFMs allows to predict the evolution over
time of the state of the system, without the need of precise and
quantitative kinetic information. Evolutionary multi-objective
optimization is here coupled withDFMs to identify combinations
of the system’s components that need to be perturbed in order to
lead to an expected behavior; in this work, we exploit the Non-
dominated Sorting Genetic Algorithm (NSGA-II) (Deb et al.,
2002). As a case study, we considered the DFM presented in
Nobile et al. (2020), which describes oncogenic K-ras cancer

cells characterized by a marked “Warburg effect,” and grown in
glucose depletion. This DFM was previously validated against
data obtained from both mouse fibroblasts transformed by
oncogenic K-ras expression (NIH3T3 K-ras cells) and a human
K-ras-mutated breast cancer cell line (MDA-MB-231) (Nobile
et al., 2020). In this work, we use NSGA-II to identify the
combination of components of this DFM that represent potential
therapeutic targets, and that satisfy the following goal: maximize
the induction of apoptosis andminimize the initiation of necrotic
processes, while minimizing the number of perturbations.

The integration between DFM and NSGA-II allowed to
automatically and efficiently explore a search space consisting in
more than 108 possible perturbations. Our results show that this
approach was able to find potential novel therapeutic treatments
consisting of combinations of no more than 3 cellular targets, in
addition to a set of perturbations that were already validated in
the literature. We envision that such a computational approach
could be used to guide the development of novel combination
therapies in cancer cells, but also in different multi-factorial
diseases (e.g., neurodegeneration).

2. METHODS

In this section, we describe the methods used to predict novel
combinations of therapeutic targets: dynamic fuzzy modeling
(section 2.1), and multi-objective optimization by means of
NSGA-II (section 2.2).

2.1. Dynamic Fuzzy Modeling
Cells are complex systems whose functioning depends on the
interplay among a huge number of molecules involved in
different processes (e.g., gene regulation, signal transduction,
metabolic pathways). In principle, detailed mechanistic models
of these interactions could be exploited to simulate the emergent
cellular dynamics (Spolaor et al., 2019) by means of, e.g.,
differential equations, Markov chains, or integrated multi-
paradigm models as proposed by Karr et al. (2012). However,
mechanistic modeling is generally unfeasible because of the
lack of precise quantitative data related to kinetic parameters
and molecular amounts, which are generally difficult or even
impossible to measure in vivo. As a consequence, it is hard
to find an accurate model parameterization, which represents
an indispensable piece of information to faithfully reproduce
the system’s behavior. In addition, biological knowledge is
often described in qualitative terms, using natural language
expressions such as “when the concentration of glucose is high,
glycolysis is highly active.” Complex biological systems are
also characterized by multiple scales of temporal, spatial and
functional organization, leading to extremely high computational
efforts for their simulation and analysis (see e.g., Karr et al., 2012;
Tangherloni et al., 2017).

Dynamic Fuzzy Models (DFMs) have been introduced to
tackle all these issues and to provide a qualitative description of
all the possible states that any system’s component can assume
over time (Yen and Langari, 1999; Aldridge et al., 2009; Nobile
et al., 2020). Thanks to DFMs, it is possible to account for the
heterogeneous nature of biological systems, and to bypass the
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problem of assigning quantitative data to the state of activity and
functioning of whole cellular processes. As such, DFMs can be
efficiently used to describe and simulate the emergent behavior of
systems characterized by uncertainty. Moreover, DFMs exploits
knowledge-based rules to harmonize data obtained frommultiple
sources (omics data, microscopy imaging, etc.), and integrate
different data types (protein and processes activation/inhibition,
post-translational modifications, etc.).

In DFMs, a directed graph is employed to represent the set of
the system’s components and their functional interactions (e.g.,
positive or negative regulations); a linguistic variable and a list of
linguistic terms (e.g., low, medium, and high) are used to describe
each system’s component; membership functions are associated
with each linguistic term to handle the intrinsic uncertainty of
the state of the variables. The interactions among the variables
of a DFM are modeled using fuzzy rules, that is, conditional
statements expressed in natural language, written in the form:

IF x IS a THEN y IS b.

The left-hand side of a fuzzy rule is called antecedent: it is
a predicate involving linguistic variables (in the example, the
system’s component x) and their associated linguistic terms (in
the example, the linguistic term a). The right-hand side of a fuzzy
rule is called consequent: it represents the conclusion drawn
given the premises in the antecedent. In the example,y represents
an output variable, while b could be a fuzzy set (e.g., in the
case of Mamdani fuzzy inference systems Mamdani and Assilian,
1975), a real number (e.g., in the case of 0-order Sugeno fuzzy
inference systems), or a function of the variables appearing in
the antecedent (e.g., in the case of higher-order Sugeno fuzzy
inference systems) (Sugeno, 1985).

The set of linguistic variables and fuzzy rules constitute
together a Fuzzy Inference System (FIS), and the process of
calculating the rules’ output is known as fuzzy inference (Yen
and Langari, 1999; Yager and Zadeh, 2012). A DFM can be
considered as a fuzzy network (FN) (Gegov, 2010), that is, a
network of interacting FISs. In a FN, nodes represent linguistic
variables, while the connections among them represent fuzzy
rules, whose outputs are fed as variable inputs to downstream
linguistic variables. Thus, a DFM allows to represent the system’s
components and their mutual regulations, including feedback
loops, and provides a qualitative description of the underlying
mechanisms driving the overall behavior of the system. Given
the fact that FISs were designed to deal with uncertainty in
their input values, the variables of a DFM are inherently robust
against small perturbations of their input values (Johansen,
1994). Nevertheless, even if each FIS is locally robust to small
perturbations of their input values, the robustness of the global
behavior of a DFM with respect to the addition and/or deletion
of interactions is difficult to predict, since it depends on the actual
topology of the system under investigation.

The linguistic variables belonging to a DFM can be partitioned
into two disjoint sets of outer and inner variables:

• The outer variables can be classified as input or output
variables: input variables correspond to the components that
trigger the dynamics of the system and appear only in the

antecedents of rules, while output variables represent the
components of interest for the analysis of the system (for
instance, some experimentally measurable component) and
appear only in the consequent of rules;

• The inner variables can appear on both sides of fuzzy rules,
and they are used to represent mutual regulations among the
system’s components.

The state of the input variables is time-dependent, controlled by
means of user-defined functions that influence the evolution over
time of the whole system. On the contrary, the state of all other
variables change according to the synchronous evaluation of the
fuzzy rules.

In this work, we exploit a 0-order Sugeno inference engine to
update the state of the variables, as implemented in the Simpful
library (Spolaor et al., 2020a). To evaluate the next state of a
variable over time, the Sugeno method performs an aggregation
of the output values produced by the rules, weighted according
to the firing degrees of the antecedents of each rule (see Sugeno,
1985 for additional information). After the Sugeno inference,
the state of all non-input variables is updated and the dynamic
simulation of the DFM proceeds to the following time step. The
process is iterated until the simulation time reaches the user-set
maximum value tmax.

Given a DFM, an elementary perturbation of the system is
defined as a tuple π = (L,F , tb, te), where L is a linguistic
variable whose state in π is set to the value calculated using
the time-dependent function F along the perturbation interval
(tb, te), where 0 ≤ tb < te ≤ tmax. Multiple perturbations can be
applied to the system in order to simulate the effect of multiple
and simultaneous treatments: in this case, the global perturbation
of the system is a defined as a list of k elementary perturbations
5 = (π0, . . . ,πk). It is worth noting that, during a perturbation,
the Sugeno inference is disabled and the state update is performed
only by the function F for any perturbed variable L. We refer
the interested reader to (Nobile et al., 2020) for additional details
about the definition, simulation and analysis of DFMs.

2.2. NSGA-II
DFMs can involve a large number of variables, leading to a
combinatorial explosion of the possible system’s perturbations
to be tested. Global optimization algorithms can be employed
to efficiently explore this huge space of perturbations, with the
advantage of limiting the amount of simulations needed to test
the system’s response to any specific perturbation. In Nobile et al.
(2020), for instance, the optimization task of the DFM of K-
ras cancer cells was executed by means of Simulated Annealing
(SA), a single-objective meta-heuristics proposed by Kirkpatrick
et al. (1983). Specifically, the fitness function exploited in SA
relied on a very simple penalty factor to limit the number of
elementary perturbations appearing in the final solution. So
doing, we could identify optimal solutions that correspond to
simple drug combinations.

In this work, we consider a different approach for the
prediction of combination therapies, using the Non-dominated
Sorting Genetic Algorithm (NSGA-II), a population-basedmulti-
objective elitist global optimization method proposed by Deb
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et al. (2002). The multi-objective approach is aimed at identifying
the so-called Pareto front of dominant solutions, both from the
point of view of the treatment effectiveness and of the number
of perturbations (see section 4). A solution is said to be Pareto-
dominant when there are� conflicting objectives to be optimized
and no objective (e.g., effectiveness) can be improved without
affecting at least another one (e.g., number of perturbations). As
in the case of other multi-objective meta-heuristics, in NSGA-II
the population P of candidate solutions converges to the Pareto
front of dominant solutions, i.e., the set of optimal solutions
that cannot be further improved without affecting one of the
� objectives.

Formally, domination is defined as follows: a solution y1 ∈ P

dominates1 another solution y2 ∈ P if:

• fi(y1) ≤ fi(y2) for all i ∈ {1, . . . ,�};
• fj(y1) < fj(y2) for at least one index j ∈ {1, . . . ,�},

where fk, for k = i, j, denotes the k-th objective (also named
fitness function).

Thus, given an arbitrary population P , a ranking of non-
dominated solutions can be calculated in order to obtain a list
of Pareto fronts. Pareto dominance induces a partial ordering on
the candidate solutions, and NSGA-II exploits this ordering to
perform dominance-based selection and crossover.

The functioning of NSGA-II can be summarized as follows.
The optimization process starts by generating a random
population P consisting in Q individuals; then, at the beginning
of each generation, NSGA-II calculates a merged population
P
merge = P ∪ E , corresponding to the union of the current

population P and the set E of dominant individuals found
so far. Non-dominated sorting is performed to obtain the
Pareto fronts in P

merge. Individuals belonging to the best non-
dominated sets are directly selected and added to a temporary
population P

temp for the application of genetic operators. Since
it is generally the case that |Pmerge| > |P|, some individuals
of one of the Pareto fronts cannot be directly selected to be
included in P

temp, to prevent an excessive amount of individuals
in the next generation. In this case, NSGA-II limits the new
population to exactly Q individuals by selecting only a subset
of the individuals of this front. Such selection is carried out
by using a crowded-comparison operator ≺n, which calculates
the crowding distance of each putative solution. Thanks to
the crowding ranking, NGSA-II can deterministically select the
most “diverse” individuals and complete the generation of the
new population, maintaining a high level of diversity in the
population. As soon as P

temp is composed by Q individuals,
NSGA-II applies the crossover and mutation operators to create
the next generation P

new of candidate solutions that will replace
the previous population P . The process iterates until a halting
criterion is met; in this work, the algorithm stops after a fixed
number of generations ITmax. A schematic representation of the
functioning of NSGA-II is shown in Supplementary Figure 1.

1We hereby assume that all objectives must be minimized. This formalization
of domination can be straightforwardly modified to consider the case of the
maximization of (some) objectives by changing the signs of their objective values.

3. MULTI-OBJECTIVE IDENTIFICATION OF
OPTIMAL TREATMENTS

In this work, we exploit the DFM of programmed cell death
in K-ras cancer cells defined in Nobile et al. (2020) as a
case in study to test the effectiveness of the multi-objective
approach. This model describes the behavior of tumor cells
in glucose starvation, and it is characterized by the presence
of heterogeneous interacting components ranging from ions
(e.g., calcium), metabolites (e.g., ATP), proteins (e.g., BCN1,
Bcl2), cellular processes (e.g., unfolded protein response), and
phenotypes (i.e., survival, apoptosis, necrosis, autophagy, and
attachment). Moreover, the model describes the role of protein
kinase A (PKA) in promoting cancer cell survival during glucose
starvation. PKA corresponds to an input variable that can
be set either to the “low” or to the “high” state, in order
to mimic its inactivation or hyperactivation, respectively (see
Nobile et al., 2020 for more information). The model was
previously validated against data obtained from both mouse
fibroblasts transformed by oncogenic K-ras expression (NIH3T3
K-ras cells) and a human K-ras-mutated breast cancer cell line
(MDA-MB-231). A schematic representation of the components
involved in the model and their interactions is shown
in Figure 1.

The main goal of this work is to present a novel
evolutionary methodology for the automatic identification of
optimal treatments, able to induce programmed cell death in
cancer cells, while keeping the complexity of the treatment (i.e.,
the number of perturbations) under control. In this context,
a treatment is modeled as a set of simultaneous perturbations
of the DFM. A perturbations is applied throughout the whole
simulation, i.e., from tb = 0 to te = tmax. The identification
of such treatments can be formulated as a multi-objective
combinatorial optimization problem, which is here tackled
using NSGA-II.

Each individual of the NSGA-II population represents a
putative global perturbation 5 of the system, encoded as a
sequence of D symbols from the alphabet 6 = {0, 1, 2}, where 0
means “unperturbed,” while 1 and 2 encode the “low” and “high”
linguistic terms, respectively. The “low” term represents the
inhibition of a system’s component, while “high” represents its
overexpression/hyper-activation. In this work, the solutions have
length D = 16, since the following variables of the model can
be perturbed: Attachment, Autophagy, BCN1, Bcl2, CI, Ca2+,
CHOP, DAPK, DeltaPsi, ERK, HBP, JNK, N-glycosylation, ROS,
Src, and UPR.

NSGA-II explores the search space of possible perturbations,
looking for the Pareto front of the most effective treatments.
Specifically, the following 3 objectives are considered in
this work:

• f↑apo :maximize the state increase of the variable Apoptosis;
• f↓nec :minimize the state increase of the variable Necrosis;
• f↓com : minimize the complexity of the solution, which is

calculated as the number of elementary perturbations in 5

(i.e., the elements of the candidate solutions that are different
from 0).
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FIGURE 1 | The interaction map of the programmed cell death model, showing the mutual regulation of the components. In the figure, single molecules are

represented by red circles; blue rounded rectangles represent proteins; orange rectangles denote processes; green hexagons represent the outputs of the model.

Positive and negative regulations are denoted as arrows and blunt-ended arrows, respectively. Figure adapted from Nobile et al. (2020).

The effect of the perturbation on a variable is calculated as
the difference between the initial state of that variable and the
state after some time 1. The effect of the crossover operator
exploited by NSGA-II is to randomly exchange the perturbations
between two selected individuals; the mutation operator
randomly changes one or more elements of an individual by
modifying the current symbol 0, 1, or 2 with another symbol
in 6.

Similarly to Nobile et al. (2020), we assume that
1 = 13, that is, the time point when half of the available
glucose has been consumed by the cell. The evaluation
interval of the perturbations, as well as the function
employed to model Glucose consumption, are shown in
Supplementary Figure 2. Formally:

• fapo(π) = xπ
apo(1)− xπ

apo(0)
• fnec(π) = xπ

nec(1)− xπ
nec(0)

where xπ
apo(t) and xπ

nec(t) denote, respectively, the simulated state
of the Apoptosis and Necrosis variables, using perturbation π at
the time step t.

The algorithm NSGA-II used in this work was implemented
using the Platypus library (Platypus library, 2020), version
1.0.2. The DFM of K-ras cancer cells was implemented using
the Simpful library (Spolaor et al., 2020a), version 2.0.10.
Matplotlib version 3.1.3 and numpy version 1.18.1 were also
used. The source code of the model and of the multi-
objective optimization method is available on GitHub, under
GPL license, at the following URL: https://github.com/sspola/
DynamicFuzzyModels.

4. RESULTS

In order to investigate the effectiveness of our computational
methodology, we performed two different tests. In the first one
we considered two objectives, i.e., maximizing the apoptosis
while minimizing the complexity of the treatment (section 4.1).
In the second one we introduced a third objective, i.e., the
minimization of necrosis, in order to identify perturbations
favoring a controlled programmed cell death while mitigating
the inflammatory response (section 4.2). These two tests were
performed in both PKA low and high conditions, in order to
evaluate the effects of drug combinations when PKA is inactive
as well as hyperactivated.

The settings used in the 2-objectives optimization are: Q =

100 individuals, ITmax = 100 iterations, corresponding to a
budget of 10,000 DFM simulations for the fitness evaluation. The
settings employed for the 3-objectives optimization are the same
as above, with the exception of an increased number of iterations,
i.e., ITmax = 150, corresponding to 15,000 DFM simulations
for the fitness evaluations. All tests were performed exploiting
Platypus’ default settings for integer-valued problems; uniform
initialization of individuals; tournament selection with size equal
to 2; half uniform crossover (Picek and Golub, 2010); and bit flip
mutation (Davis, 1991).

4.1. Optimization With 2 Objectives: f↑apo
and f↓com
We first considered the multi-objective problem with 2
conflicting objectives, that is, maximizing the apoptosis (f↑apo)
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FIGURE 2 | Pareto dominant solutions obtained by NSGA-II using 2 objectives (f↑apo and f↓com) in PKA low (left) and high (right) conditions.

TABLE 1 | Optimal perturbations found by NSGA-II, using 2 objective functions, in

both PKA high and low conditions.

Condition Perturbation

PKA low Ca2+ is high

Ca2+ is high, Bcl2 is low

Ca2+ is high, Bcl2 is low, CI is low

PKA high Bcl2 is Low

ERK is low, UPR is high

ERK is low, UPR is high, CI is low

and minimizing the complexity of the treatment (f↓com). The
Pareto fronts generated at the end of the NSGA-II optimization
run in PKA low and high conditions are shown in Figure 2.
Concerning the complexity of the solutions, it is worth noting
that any set of perturbations including more than 3 elements
would be difficult to implement both in the laboratory practice
and as a therapy: specific drugs need to be used for each perturbed
component, and their dose and administration protocols must
be developed on cell cultures, a procedure that would lead to
a combinatorial number of experimental validations. Moreover,
an increase in the number of drugs might augment the chance
of side effects at the cellular or the organism level. For these
reasons, we decided to filter out from the Pareto front the optimal
solutions consisting in more than 3 elements, and to maintain the
six solutions reported in Table 1.

4.1.1. PKA Low

The solutions found for the PKA low condition consist of 3
components: Ca2+, Bcl2 and CI. Ca2+ represents the level of
the calcium ions in the cytoplasm of the cell. In physiological
conditions, calcium is stored in the mitochondria and in
the endoplasmic reticulum. A release of calcium ions in the
cytoplasm (“Ca2+ is high”) is connected to cellular stress, and
leads to programmed cell death via apoptosis (Krebs et al.,
2015). Bcl2 is a key protein regulator of programmed cell death,

which binds and inhibits other pro-apoptotic proteins of the
Bcl2 protein family; its inhibition (“Bcl2 is low”) allows the
initiation of apoptosis (Borner, 2003). Complex I (CI) is an
important protein complex responsible for energy production in
the mitochondrion. Tumor cells that rely on glucose for their
survival (i.e., cells displaying Warburg effect, Vander Heiden
et al., 2009) preferentially produce energy via glycolysis instead of
employing mitochondria and CI. However, the disruption of CI
in these cells creates harmful oxidative species that induce stress
and trigger apoptotic processes. Thus, its inhibition (“CI is low”)
favors apoptosis (Palorini et al., 2013).

Perturbations involving one among Ca2+, Bcl2, or CI are
known to trigger apoptosis, and were analyzed before (Borner,
2003; Li et al., 2003; Krebs et al., 2015) confirming the validity of
our findings; however, only few studies investigated the outcome
of the combinations of such perturbations. The interactions
between cytoplasmic calcium level and Bcl2 were object of study
in several cell types (Vervliet et al., 2016). On the contrary, to
the best of our knowledge, the combined effect of high calcium
level in the cytoplasm, inhibition of Bcl2 and inhibition of CI
is, and will require an experimental validation that is beyond
the scope of this work. According to the dynamics generated by
our model, both the set of perturbations “Ca2+ is high, Bcl2 is
low” (Figure 3, left panel) and “Ca2+ is high, Bcl2 is low, CI is
low” (Figure 3, right panel) increase the level of apoptosis with
respect to the unperturbed condition (see Figure 4, left panel,
for a comparison). It is also worth noting that the perturbation
involving 3 elements slightly increases the level of apoptosis with
respect to the perturbation involving 2 elements, at the cost of a
significant increase of necrosis.

4.1.2. PKA High

In addition to the Bcl2 and CI components identified in the case
of PKA low condition, the perturbations found for the PKA high
condition include the ERK protein and the Unfolded Protein
Response (UPR). ERK is a signaling protein involved in the
regulation of cell division; its inhibition (“ERK is low”) facilitates
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FIGURE 3 | Simulation of the DFM in the PKA low condition, using the perturbations “Ca2+ is high, Bcl2 is low” (left) and “Ca2+ is high, Bcl2 is low, CI is low” (right).

FIGURE 4 | Dynamics of the unperturbed DFM, in the case of low (left) and high (right) PKA expression.

the arrest of cell cycle and the initiation of apoptosis (Mendoza
et al., 2011), which is fundamental as the signaling of cell division
is altered in tumor cells. The UPR is a cellular process that is
activated when the cell faces severe stress, caused for example
by the lack of nutrients or the presence of oxidative species.
The sustained activation of this process (“UPR is high”) induces
apoptotic cell death (Hetz, 2012).

As mentioned above, single perturbations of Bcl2, ERK, UPR,
and CI have been studied before, given their role in regulating
survival and programmed cell death. The disruption of
mitochondrial membrane potential (possibly via CI impairment)
combined with the hyperactivation of UPR was already found as
a promising target combination in Nobile et al. (2020), and the
effects of such perturbation were proved in Liao et al. (2017) and
Szebeni et al. (2017). The interactions between the concurrent
inhibition of ERK and activation of UPR were also investigated
(Hu et al., 2004), but, to the best of our knowledge, no therapies
based on this perturbations exist. Notably, according to the
dynamics obtained with our DFM, this perturbation increases the
level of apoptosis significantly (Figure 5, left panel) with respect

to the unperturbed condition (see Figure 4, right panel, for
comparison). The solution consisting of 3 perturbed components
(“ERK is low, UPR is high, CI is low”) further increases the level
of apoptosis (Figure 5, right panel), once again at the cost of
a significant increase of the necrosis level. To the best of our
knowledge, the effectiveness of this three targets combination in
inducing cancer cell death has never been studied, and it deserves
additional experimental validation to assess its ability in inducing
apoptotic and/or necrotic cell death (that is beyond the scope of
this work).

4.2. Optimization With 3 Objectives: f↑apo,
f↓nec, and f↓com
When designing combination therapies, necrotic cell death
should be avoided since necrosis causes the release of cellular
contents in the extracellular space, triggering inflammation and
leading to tissue damage (Kroemer et al., 2009). Moreover,
despite the results obtained in the case of the 2 objectives
f↑apo and f↓com suggest novel putative targets for combination
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FIGURE 5 | Simulation of the DFM in the PKA high condition, using the perturbations “ERK is low, UPR is high” (left) and “ERK is low, UPR is high, CI is Low” (right).

FIGURE 6 | Pareto dominant solutions obtained by NSGA-II using 3 objectives (f↑apo, f↓nec, and f↓com) in the PKA low condition (left) and PKA high condition (right).

Solutions’ color is represented by RGB triplets, according to their fitness values (i.e., red as change in apoptosis, green as change in necrosis and blue as complexity

of the solution). Projections of the solutions on 2D planes are represented in gray.

therapies, the necrosis increase obtained as a counter effect
cannot be neglected. These considerations led us to perform an
additional analysis, adding the third objective f↓nec.

The Pareto fronts generated at the end of the NSGA-II
optimization run in PKA low and high conditions are shown
in Figure 6 (left and right panel, respectively). Following the
reasoning adopted in the previous analysis, we excluded solutions
consisting in more than 3 perturbed elements, obtaining 31
unique solutions for the PKA low condition, and 13 for the PKA
high condition. The complete list of solutions for both conditions
is given in Supplementary Tables 1, 2.

Given the large number of optimal solutions found, we
performed some additional filtering steps to exclude non-novel
and non-interesting solutions and perturbations that might result
in harmful treatments.. We inspected each solution by analyzing
both its fitness value for the 3 objectives and the dynamics

obtained by simulating that perturbation with the DFM, in order
to identify a subset of solutions that:

• Do not include only a single perturbed element, since single
perturbations of each element of our models have been already
extensively studied in the literature;

• Do not involve elements belonging to the same pathway
and/or immediately adjacent in the model (see Figure 1);

• Do not include perturbations that are difficult to implement
or harmful for the organism, that is, solutions containing an
increase in ROS (“ROS high”) or an hyperactivation of the Src
oncogene (“Src high”);

• Are characterized by a low value of f↓nec. These solutions are
generated in the extreme part of the Pareto front (i.e., they have
non-optimal values of f↓nec, but they reach optimal values of
f↑apo and f↓com), but they are not interesting for the purpose of
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TABLE 2 | Optimal perturbations found by NSGA-II, using 3 objective functions, in

both PKA high and low conditions.

Condition Perturbation

PKA low Src IS low, UPR IS high

CI IS low, UPR IS high

DeltaPsi IS low, UPR IS high

ERK IS low, UPR IS high

Ca2+ IS high, ERK IS low, UPR IS high

DeltaPsi IS low, ERK IS low, UPR IS high

CI IS high, ERK IS low, UPR IS high

CI IS low, ERK IS low, UPR IS high

PKA high ERK IS low, UPR IS high

DAPK IS low, UPR IS high

DeltaPsi IS low, UPR IS high

Ca2+ IS high, ERK IS low

Ca2+ IS high, ERK IS low, N-glycosylation IS low

DeltaPsi IS low, ERK IS low, UPR IS high

this 3 objectives analysis, that is, identifying solutions with a
low increase in necrosis.

The remaining subset of solutions that were deemed to be the
most promising is listed in Table 2.

4.2.1. PKA Low

In addition to the model components pertaining the solutions
found in the previous 2-objectives analysis, in the case of the
PKA low condition, Src and DeltaPsi are here suggested as
possible therapeutic targets. Src is a tyrosine kinase, involved
in the control of several signaling pathways regulating cell
proliferation, differentiation, and motility. It plays a role in
the development of several cancer types, and its inhibition
(“Src is low”) is known to be effective in stopping cancer
cell proliferation (Yeatman, 2004). DeltaPsi represents the
mitochondrial membrane potential, that is, the transmembrane
potential existing across the mitochondrial membrane. The
maintenance of this potential is crucial for cell survival,
and its loss (“DeltaPsi is low”) initiates apoptotic processes
(Zorova et al., 2018).

The first solution, “Src IS low, UPR IS high,” confirms the
validity of our computational approach. As a matter of fact,
a vast body of literature and studies exist regarding therapies
based on Src inhibition, and its connections with the UPR—
as encoded in the solution—have also been studied before
(Fan et al., 2013; Yu et al., 2020).

By inspecting the solutions listed in Table 2, we can deduce
that our model suggests a crucial role of UPR in promoting a high
level of apoptosis, while keeping necrosis at a low level. Indeed,
UPR appears in all solutions found for the PKA low condition,
and also in most of the solutions found for PKA high.

Moreover, our model suggests a protective role of a functional
CI toward both apoptosis and necrosis, a phenomenon that
was already experimentally observed in Nobile et al. (2020)
and Palorini et al. (2013). This behavior can be observed when
comparing the dynamics obtained with the solutions “CI IS high,
ERK IS low, UPR IS high” and “CI IS low, ERK IS low, UPR

IS high,” shown in Figure 7. The inhibition of CI (Figure 7,
right panel) leads to a higher level of apoptosis, at the cost
of a significant increase in the level of necrosis, a behavior
that is reproduced with minimal differences also in the case of
the solution “CI IS low, UPR IS high” (dynamics not shown).
Given the role of CI in the avoidance of necrosis, we argue that
disruption of the mitochondrial membrane potential (DeltaPsi),
while keeping the functional state of CI intact, might be a better
target for therapy, as highlighted in what follows by the other
solutions containing this system’s component.

The solution “DeltaPsi IS low, UPR IS high” was already
predicted in the analysis performed in Nobile et al. (2020), and it
has been experimentally validated in previous studies (Liao et al.,
2017; Szebeni et al., 2017). The addition of ERK inhibition, as in
the solution “DeltaPsi IS low, ERK IS low, UPR IS high,” leads
to a significant increase in the level apoptosis when compared to
the unperturbed condition, especially in the condition of a high
availability of glucose (i.e., at the beginning of the simulation),
as it can be seen in the left panel of Figure 8. The solution
“ERK IS low, UPR IS high” was already obtained in the analysis
exploiting 2 objectives, as discussed in section 4.1, albeit in the
PKA high condition. We argue that the solutions “ERK IS low,
UPR IS high” and “Ca2+ IS high, ERK IS low, UPR IS high”
might as well represent good alternative therapies, displaying
a significant increase in the level of apoptosis (the dynamics
obtained with the latter solution are reported in Figure 8, right
panel). In particular, it should be noted that the solutions listed
above that are characterized by 3 perturbed elements target
different cellular processes and organelles (e.g., mitochondria,
endoplasmic reticulum, signaling pathways connected to the
extracellular environment). According to our model, these
perturbations are the most effective in increasing the apoptosis
level. However, to the best of our knowledge, there are no studies
available in the literature that tested these target combinations
on cell cultures, possibly due to the hindrance to performing
laboratory experiments comprising three different drugs.

4.2.2. PKA High

For the PKA high condition, the optimal solutions also include
the components DAPK and N-glycosylation. DAPK is a kinase
involved in the regulation of several types of programmed cell
death. It shows a dual role as an inducer of both apoptotic
and survival processes (de Diego et al., 2010; Zhao et al.,
2015). In our model, its inhibition (“DAPK is low”) results
in the suppression of necrosis. N-glycosylation consists in
the attachment of oligosaccharide chains to proteins in the
endoplasmic reticulum. This process is pivotal for a correct
protein folding of extracellular proteins and mediates cellular
attachment, thus its disruption (“N-glycosylation is low”) leads
to a decrease in cell survival (Gu et al., 2012).

The solution “ERK IS low, UPR IS high” was obtained also
in the analysis exploiting 2 objectives, as discussed in section
4.1. The solutions “DAPK IS low, UPR IS high,” “DeltaPsi
IS low, UPR IS high,” and “Ca2+ IS high, ERK IS low”
show a significant increase in apoptosis with respect to the
unperturbed condition (Figure 4, right panel). We did not find
any experimental work involving a simultaneous inhibition of
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FIGURE 7 | Simulation of the DFM in the PKA low condition, using the perturbations “CI IS high, ERK IS low, UPR IS high” (left) and “CI IS low, ERK IS low, UPR IS

high” (right).

FIGURE 8 | Simulation of the DFM in the PKA low condition, using the perturbations “DeltaPsi IS low, ERK IS low, UPR IS high” (left) and “Ca2+ IS high, ERK IS low,

UPR IS high” (right).

DAPK and hyperactivation of UPR (as suggested by “DAPK IS
low, UPR IS high”), thus this solution might represent a novel
target combination. Disruption of mitochondrial membrane
potential and hyperactivation of UPR (“DeltaPsi IS low, UPR
IS high”) has already been validated as a promising anti-cancer
therapy, as discussed in sections 4.1.2, 4.2.1 and in Liao et al.
(2017), Szebeni et al. (2017), Nobile et al. (2020). The effects of
the interplay between cytosolic levels of Ca2+ and the activation
of ERK (“Ca2+ IS high, ERK IS low”) have been partially
characterized in different cell lines (Rodriguez-Mora et al., 2005),
but, to the best of our knowledge, they did not result in
any therapy approach. Notably, “Ca2+ IS high, ERK IS low”
(Figure 9, left panel) maintains the level of necrosis to 0, while the
dynamics obtained with “DeltaPsi IS low, UPR IS high” (Figure 9,
right panel) reach a higher value of both apoptosis and necrosis,
with respect to the other two solutions.

Similarly to what was already observed in the case of the
PKA low condition, the solutions consisting of 3 elements lead
to higher values of apoptosis with respect to solutions consisting

of 2 elements, especially in the condition of a high availability
of glucose (i.e., at the beginning of the simulation). This can
be observed for “Ca2+ IS high, ERK IS low, N-glycosylation
IS low” in Figure 10, left panel, and for “DeltaPsi IS low, ERK
IS low, UPR IS high” in Figure 10, right panel. As previously
stated, given that testing combinations of three drug targets
in cell cultures poses considerable challenges, no experimental
validation is available in the literature for these solutions.
However, based on our results, we argue that the perturbations
characterized by 3 elements, targeting different cellular processes
and organelles, are the most effective in increasing apoptosis level
in the PKA high condition as well, and they are worth additional
experimental testing in the future.

5. CONCLUSIONS

In this work, we presented a novel computational approach
to discover new putative combination therapies for cancer
treatment, by exploiting dynamic fuzzy modeling and the
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FIGURE 9 | Simulation of the DFM in the PKA high condition, using the perturbations “Ca2+ IS high, ERK IS low” (left) and “DeltaPsi IS low, UPR IS high” (right).

FIGURE 10 | Simulation of the DFM in the PKA high condition, using the perturbations “Ca2+ IS high, ERK IS low, N-glycosylation IS low” (left) and “DeltaPsi IS low,

ERK IS low, UPR IS high” (right).

NSGA-II algorithm for multi-objective optimization. Our results
show that our approach can generate model perturbations (i.e.,
combination of drug targets) that were previously described
in the literature as effective in inducing apoptosis, as well as
novel ones. Their effects on the dynamic behavior of the DFM
of oncogenic K-ras cancer cells suggest that such perturbations
are effective in inducing apoptosis in this type of cancer cells.
Worth of notice, higher values of apoptosis were obtained when
the perturbation involves the impairment of different cellular
processes, while lower values of necrosis were obtained by
introducing a third objective in the optimization phase. We
envision that this novel computational approach could be used to
efficiently identify, develop and test new combination therapies
for different types of cancer or other complex diseases (e.g.,
neurodegeneration) by exploiting existing FDA-approved drugs.

As a future extension of this work, we plan to test the
validity of the most promising solutions found with our
method, by means of tailored experimental studies. Indeed, the

main advantage of coupling computational and experimental
analyses is that we can reduce the time and cost constraints
of lab procedures. From the computational point of view, we
will extend our method by implementing a strategy for the
automatic selection of interesting solutions inside the Pareto
front (such as, for example, the ones presented in Branke
et al., 2004; Zio and Bazzo, 2011), in order to speed up
the analysis and reduce human bias when dealing with large
Pareto fronts. We also plan to define a new representation
of the candidate solutions in NSGA-II, in order to generate
only solutions with a user-defined number of perturbed
elements. Additionally, we will test the performance that
can be achieved by coupling DFMs with alternative multi-
objective optimization strategy to identify new combination
therapies, such as NSGA-III (Deb and Jain, 2013) and SPEA2
(Zitzler et al., 2001).

The multi-objective approach could also be applied to hybrid
models, obtained by coupling DFMs and mechanistic models
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(Spolaor et al., 2020b), in order to integrate precise quantitative
information about cellular components and processes when it is
available, and to obtain more comprehensive cancer cell models
(Spolaor et al., 2019).
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