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Autism spectrum disorder (ASD) is a heterogeneous neuropsychiatric disorder with a 
complex genetic background. Analysis of altered molecular processes in ASD patients 
requires linear and nonlinear methods that provide interpretable solutions. Interpretable 
machine learning provides legible models that allow explaining biological mechanisms 
and support analysis of clinical subgroups. In this work, we investigated several case-
control studies of gene expression measurements of ASD individuals. We constructed a 
rule-based learning model from three independent datasets that we further visualized as 
a nonlinear gene-gene co-predictive network. To find dissimilarities between ASD subtypes, 
we scrutinized a topological structure of the network and estimated a centrality distance. 
Our analysis revealed that autism is the most severe subtype of ASD, while pervasive 
developmental disorder-not otherwise specified and Asperger syndrome are closely related 
and milder ASD subtypes. Furthermore, we analyzed the most important ASD-related 
features that were described in terms of gene co-predictors. Among others, we found a 
strong co-predictive mechanism between EMC4 and TMEM30A, which may suggest a 
co-regulation between these genes. The present study demonstrates the potential of 
applying interpretable machine learning in bioinformatics analyses. Although the proposed 
methodology was designed for transcriptomics data, it can be  applied to other 
omics disciplines.

Keywords: autism spectrum disorder, interpretable machine learning, transcriptomics, rule-based classification, 
autism spectrum disorder subtypes, data integration, gene expression

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that has been extensively 
studied over the past decades (Cox et  al., 1999; Marshall et  al., 2008; Lord et  al., 2018; Ozonoff 
and Iosif, 2019). The highly heterogeneous neurodevelopmental changes in ASD commonly 
lead to challenges in social interactions and communication and contribute to restricted and 
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repetitive behaviors (Sharma et  al., 2018). Diagnosis of ASD 
and its severity is typically performed with interviews of the 
proband and their family (Sharma et al., 2018). Epidemiological 
studies have shown that ASD has high heritability, but the 
genetic etiology is complex and heterogeneous (Tick et  al., 
2016; Feliciano et al., 2019). Transcriptomics studies have found 
that gene expression changes in blood of ASD subjects are 
linked to specific risk factors that may support the diagnosis 
(Gregg et  al., 2008; Xiong et  al., 2019).

Despite the fact that ASD is associated with the central 
nervous system, blood is frequently used for ASD research 
(Ansel et  al., 2017). Although brain tissue samples are more 
relevant to explore ASD biomarkers, it is difficult to obtain 
samples from living subjects; thus, they are usually extracted 
postmortem. Recent studies (Fiorentino et  al., 2016; Kealy 
et  al., 2018) have shown that the blood-brain barrier (BBB) 
is altered in patients with psychiatric disorders, including ASD. 
Furthermore, one of the major effects of BBB dysfunctions is 
changes in the immune system. It has been shown that the 
gene expression profile of NK cells was altered in peripheral 
blood of children with ASD (Enstrom et  al., 2009). Another 
transcriptomics data analysis of ASD subjects demonstrated 
similarities in functional enrichment between brain and blood 
(He et  al., 2019). The study revealed significant enrichment 
in terms of immune response, mitochondrion-related functions, 
and oxidative phosphorylation. In addition, various advantages 
of using blood to study ASD individuals have been well-
described by Ansel et  al. (2017).

Clinicians have discerned several subtypes of ASD that share 
common behaviors (Witwer and Lecavalier, 2008). Commonly 
diagnosed ASD subtypes are (i) pervasive developmental 
disorder-not otherwise specified (PDD-NOS), (ii) Asperger 
syndrome (AS), and (iii) autism. Earlier studies have investigated 
similarities among ASD subtypes. In Walker et  al. (2004), 
comparison of autistic symptoms revealed that PDD-NOS is 
less severe than autism and AS. In addition, AS and PDD-NOS 
were also shown to be  closely related in terms of social 
functioning level. A comparative study by Li et  al. (2019) 
tested genetic components and gene expression patterns of the 
ASD subtypes. These studies have shown that autism and 
PDD-NOS share broad similarity, while AS exhibits 
distinct patterns.

In recent years, different machine learning approaches have 
been successfully applied to mine knowledge from various 
types of omics (Oh et  al., 2017; Chand et  al., 2020; Maros 
et  al., 2020). These analyses have assisted in biomarker 
identification and better understanding of the underlying 
biological processes for various inherited disorders. As numerous 
studies have produced large datasets, there is a need to efficiently 
merge information from multiple sources to increase its statistical 
power and interpretability (Lagani et  al., 2016; Dong and 
Rekatsinas, 2018; Fajarda et al., 2020). In bioinformatics, machine 
learning is a powerful technique for data integration and analysis 
(Li et al., 2018). However, most of the commonly used algorithms 
are black-box approaches that frequently lead to poor 
interpretability of the classifier (Rudin and Radin, 2019). Various 
studies (Ali et  al., 2018; Orange et  al., 2018; Gao et  al., 2019; 

Matsui et  al., 2020; Sinkala et  al., 2020) performed a machine 
learning analysis on disease subtype classification by constructing 
models that its internal structure is difficult to explain. Herein, 
we  proposed the utilization of interpretable machine learning 
(IML; Molnar, 2020) to perform an integrative analysis on 
multiple transcriptomics datasets. IML algorithms allow for 
visibility of the internal decisions made by the system. In this 
work, interpretability is intrinsically determined by a set of 
IF-THEN rules that constitute a rule-based model. More 
importantly, such IML models can be  visualized in various 
graphical forms (Bornelöv et al., 2012; Anyango, 2016). Therefore, 
we  focused on graphic representations of IML models as a 
co-predictive undirected network that allowed us to explore 
dissimilarities among clinical subgroups.

In this study, we  examined dissimilarities of ASD subtypes 
identified from IML modeling using three transcriptomics 
cohorts. Herein, we assumed interpretability of the IML modeling 
over its performance. We showed that IML modeling is capable 
of single-view integrative analysis of predefined ASD subtypes 
(Figure 1). Visualization of the ASD-control studies in a single 
network revealed a strong co-predictive mechanism between 
EMC4 and TMEM30A and other mechanisms. To analyze ASD 
subtypes, we  measured the distance among subnetworks 
representing ASD subtypes and established dissimilarities between 
autism, AS, PDD-NOS, and control. Based on the network 
structure and node connection parameters, we  found that AS 
is a milder form of ASD and autism is the most severe form 
of ASD. Finally, we performed functional profiling of the genes 
used for IML modeling to examine functional information in 
various databases. The results from this study showed that 
rule-based IML can be  applied on an integrative analysis and 
to estimate co-predictors of ASD. Furthermore, based on 
co-predictive genes, rule-based modeling can be  used for 
describing dissimilarities between ASD subtypes and control.

MATERIALS AND METHODS

Overview of the Workflow
Our methodology was designed to construct and analyze 
unbiased IML models. A schematic overview of the pipeline 
we  employed to construct and visualize the IML model is 
shown in Figure  2. This methodology can be  applied to data 
from any omics discipline that can be  transformed into a 
decision table, e.g., RNA-seq, DNA methylation, or mass 
spectrometry proteomics. Details of the analysis are described 
in the subsections below.

Datasets Description and Preprocessing
We collected three datasets of case-control studies of ASD 
that we  named DS1 (Kong et  al., 2012), DS2 (Kong et  al., 
2012), and DS3 (Alter et al., 2011). These three datasets contained 
gene expression levels measured with Affymetrix arrays. Datasets 
were selected based on sampling tissue being peripheral blood, 
contain a relatively high number of samples for IML modeling 
(more than 30 per decision class) and are publicly available 
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in the Gene Expression Omnibus (GEO) repository. In total, 
431 samples were collected and analyzed (Table  1).

Raw gene expression data were imported with the recent 
versions of R packages affy (DS1 and DS3) and oligo (DS2; 
Gautier et al., 2004; Carvalho and Irizarry, 2010). We performed 
Robust Multi-array Average (RMA) normalization and background 
correction on the datasets. Furthermore, each of the datasets 
was investigated for known and latent batch effects 
(Supplementary Figure S1). We performed a principal component 
analysis (PCA) and inspected the impact of clinical variables 
such as age, sex, or other unknown sources. We  found that 
DS3 may be affected by the age disproportionality of the subjects 
and the data was corrected for this factor using ComBat (Leek 
et al., 2012). To detect latent batch effects, we estimated surrogate 
variables. As a consequence, DS1 and DS2 were corrected for 
unknown biases with 2 and 17 significant surrogate variables, 
respectively. To adjust for detected biases, we  used the sva and 

limma packages (Smyth, 2005; Leek et  al., 2012). To evaluate 
highly ranked co-prediction mechanism in ASD, we  introduced 
DS4 (Gregg et  al., 2008), which was preprocessed using the 
same approaches as for other datasets (Supplementary Figure S2). 
DS4 was excluded from IML modeling due to small sample 
size of the control class (Table  1). Thus, control samples from 
DS4 were not used for validation of co-predictors. In addition, 
one of the control samples from DS4 was distinguished as an 
outlier (Supplementary Figures S2A,C) and removed.

Feature Selection
Microarray gene expression data measure the expression levels 
of up to about 60,000 genes. However, the considerably smaller 
number of samples introduces an ill-defined problem that 
we  solved employing feature selection. To reduce the high 
dimensionality of the data, we performed Monte Carlo feature 
selection (MCFS) that ranks the features based on their estimated 

FIGURE 1 | General workflow of the analysis.

FIGURE 2 | From data to network. Detailed pipeline of the analysis.
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relative importance (RI) from decision trees (Dramiński et  al., 
2008). To generate the ranking of the most important genes 
and exclude redundant signals, we  used the R package rmcfs 
(Dramiński and Koronacki, 2018). In order to avoid overfitting, 
we  used the results from rmcfs of all datasets in a cross-
validation (CV) manner (Krawczuk and Łukaszuk, 2016). To 
select the top features estimated by MCFS, we  chose a critical 
angle thresholding method (Supplementary Figure S3). Other 
methods for the selection of the RI threshold included mean, 
k-means, and the permutation-based approach. The permutation-
based method is the default for rmcfs; however, for DS2 and 
DS3 it returned only one feature, making it non-feasible to 
perform learning (Supplementary Figure S3A). In contrast, 
mean and k-means chose very relaxed thresholds which resulted 
in a very large number of features potentially introducing 
noise to the learning process (Supplementary Figure S3B). 
On the other hand, critical angle showed consistency by 
selecting a similar number of features across datasets 
(Supplementary Figure S3A). Finally, we constructed a merged 
feature ranking (FR) of the most relevant features sorted by 
their RI.

FR Adjustment
To correct for inconsistency between feature selection and 
classification techniques, we  adjusted the number of the most 
relevant features given by the MCFS. To account for the diversity 
between rmcfs and R.ROSETTA algorithms, we  introduced 
correction of the threshold of the most important features. 
To find the new number of features, we  estimated accuracy 
and area under the ROC curve (AUC) for several models 
using diverse numbers of top features (Supplementary Figure S4). 
By taking the original FRs from rmcfs, we  iteratively added 
features, one by one, with respect to their decreasing RI. The 
process started with the number of features given by a critical 
angle threshold from rmcfs and proceeded until the ranking 
reached 50 features. Each FR was used to construct a decision 
table and perform rule-based classification. Finally, to avoid 
overestimation we  chose the number of top features from the 
model with the nearest local maximum of the highest model 
quality (Supplementary Figure S4). As a result of FR adjusting, 
the final models gained slightly more features relevant from 
the rule-based modeling perspective. The final FR consisted 
of 50 genes.

Rule-Based Classification
In this work, we  based the IML approach on the rough set 
theory (Pawlak, 1982; Pawlak and Skowron, 2007). In the 
rough set theory, the data universe consists of examples, which 
may also be  called objects or samples, and variables also 
called attributes or features. By marking the last attribute as 
a decision class, the structure called a decision table is 
constructed (Pawlak, 2002). The rough set-based approach 
assumes that examples with exactly the same information are 
indiscernible (Skowron and Dutta, 2018). In this study, objects 
are represented by the ASD samples and attributes by the set 
of the most informative genes selected from adjusted FRs. 
Importantly, rough set-based models estimate reducts that 
determine minimal sets of attributes (Komorowski, 1999). 
Moreover, reducts are the main components for estimating 
rules that represent a co-predictive mechanism of features. 
In this type of IML, the set of rules constitutes the model 
legibility. A single rule is represented as an IF-THEN formula 
in natural language. Specifically, IF certain conditions are 
fulfilled THEN a prediction is made. Rules are often accredited 
by the fundamental measures of support, coverage and accuracy 
(Tsumoto, 2002; Molnar, 2020). The rule support (RS) is the 
number of samples that fulfill the rule conditions or prediction. 
We discern between the left-hand site rule support (RSLHS) 
that corresponds to the IF-part of the rule (conditions) and 
the right-hand site rule support (RSRHS) that corresponds to 
the THEN-part of the rule (prediction). The rule coverage 
(RC) is decision class-specific fraction of samples that match 
the rule. For example, if 30 out of 100 samples fulfill the 
THEN-part of the rule then RCRHS of such rule is 0.3. The 
RC is defined as support divided by the total number of 
samples for a given decision class that is represented as:

RC(rule)
RS(rule)

nd
=

where RS is the LHS or RHS support of the rule and nd is 
the total number of samples for a decision class.

The rule accuracy (RA) describes the predictive power of 
the rule based on RS. For example, if the IF-part of the rule 
corresponds to 10 samples and THEN-part corresponds to 9 
then RA is 0.9. Specifically, RA is calculated as:

RA(rule)
RS

RS

(rule)

(rule)

RHS

LHS

=

TABLE 1 | Overview and accession numbers of the datasets used in the analysis.

Dataset Author GEO series Affymetrix array No ASDs No controls No genes Tissue ASD subtypes

DS1 Kong et al., 2012 GSE18123 Human Genome U133 Plus 2.0 66 33 54,676 Peripheral blood PDD-NOS

AS

autism
DS2 Kong et al., 2012 GSE18123 Human Gene 1.0 ST 104 82 33,298 Peripheral blood PDD-NOS

AS

autism
DS3 Alter et al., 2011 GSE25507 Human Genome U133 Plus 2.0 82 64 54,676 Peripheral blood 

lymphocytes
Autism

DS4 Gregg et al., 2008 GSE6575 Human Genome U133 Plus 2.0 35 12 54,676 Peripheral blood Autism
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where RSRHS is the right-hand site support and RSLHS is the 
left-hand site support for a rule.

Based on these basic measurements, other statistical values 
can be  estimated, such as rule value of p (Garbulowski et  al., 
2020). Additionally, the length of a rule is also an important 
factor. If the rule consists of two or more conditions, then a 
co-predictive mechanism occurs for these features. Herein, 
we  used rule-statistic measures for pruning and assessing the 
IML model quality.

To construct legible classifiers, we used a rule-based framework 
that receives a decision table as input and generates IML model 
as output. The modeling was performed with R package 
R.ROSETTA, which is a wrapper of the ROSETTA system (Øhrn 
and Komorowski, 1997; Garbulowski et  al., 2020). The IML 
modeling was performed using 10-fold CV and the standard 
voting method. The datasets were discretized using equal 
frequency binning with three levels on the training set, and 
subsequently the cuts were applied to the test set. The Johnson 
reduction method was used to generate the reducts and rules 
for the models. Furthermore, we used undersampling to account 
for uneven distribution of samples in each class across datasets. 
After balancing the data, R.ROSETTA recalculated all the 
statistical values for rules according to the information from 
nonsampled examples. The result of recalculation allowed finding 
the exact samples that correspond to rules, known as support 
sets. These were further used to link rules with their 
clinical subgroups.

The final rule-based models were constructed from the 
merged FR sets. However, due to differences between microarray 
platforms (Table  1) the overlap between sets of genes was 
incomplete. Thus, two genes were not used for classification 
in DS1 and DS3, and nine genes were not used for classification 
in DS2 (Table  2).

Merging Datasets
The main advantage of IML-based analysis is to obtain legible 
models that can be easily analyzed. Data integration is an important 
task that unifies different datasets and increases the statistical 
power of the analysis (Lenzerini, 2002). In this study, we proposed 
two merging steps for (i) the most important features and (ii) 
IML models (Figure  2). Respective adjusted FRs were merged 
into a single FR that consisted of all the important features 
selected by MCFS. As datasets were produced with different 

microarray platforms, we  compared the positions of probes and 
remapped probe IDs across platforms. The positions were compared 
using the R package GenomicRanges (Lawrence et  al., 2013) and 
the UCSC Genome Browser (Kent et  al., 2002). To merge IML 
models, we  aggregated rules from all models. For rules that 
occurred multiple times its RS and support sets were summed 
up. In consequence, RA, RC, values of p, and other statistics 
measures of rules were normalized to merged cohorts and 
recalculated. The result of the pipeline (Figure  2) that included 
these merging steps is a single model built from multiple datasets. 
The model was further used to create the rule-based networks.

Co-predictive Network
In this step, we  visualized the merged IML model of ASD as 
a rule-based network using the VisuNet R package (Anyango, 
2016; Smolinska, 2021). The network displays co-predictive 
mechanisms of features that are defined as nodes and edges. 
Each node is described by the RS or RC and its connection 
parameter. The filtration methods in VisuNet help show the 
most relevant elements of the network. Furthermore, VisuNet 
allows presenting gene expression levels with predefined colors 
of nodes. Thus, it assists toward better interpretation of the 
IML models. Herein, such a graphic representation was used 
to display co-predictive genes for the merged ASD model.

The two main points of interest while analyzing rule-based 
networks are hubs and large nodes. A hub is a node that 
connects to multiple other nodes, and it is marked with a 
thick blue border. The interpretation of a hub may suggest a 
feature that frequently participates in co-prediction, in other 
words, a feature that is a good predictor in combination with 
many other features. Large nodes represent features that are 
supported by many samples.

Network Comparison
Network Structure
To analyze the network structure, we investigated the connection 
parameter. For an edge that connects two nodes, a connection 
value is defined as:
 

connection x,y RS rule RA rule

rule R x,y

( )= ( )× ( )
∈ ( )
∑

where x and y are features with their discretization levels of 
the rule, RS is the rule support, and RA is the rule accuracy.

The connection value for the edge is unity-based normalized. 
For nodes, the connection is defined as the sum of all connections 
between the given node and all other connected nodes. Herein, 
the connection can be  interpreted as a nonlinear association 
between two or more genes. To examine the contribution of 
genes for discerning among ASD subtypes, we  used node 
connection values for clustering. As the connection values were 
not normally distributed, we performed clustering with Kendall 
correlation metrics (Abdi, 2007). We  scaled all connection 
values between 0 and 1, and then, for clustering, we  selected 
all the nodes that describe genes on their discrete 
expression levels.

TABLE 2 | Characteristics and results of IML models built on the original and 
merged FRs.

FR Model characteristic DS1 DS2 DS3

Original Number of features 19 13 18
Number of rules 358 790 565
Accuracy 78% 75% 69%
AUC 0.83 0.80 0.78

Merged Number of features 48 41 48
Number of rules 367 481 623
Accuracy 75% 70% 67%
AUC 0.82 0.75 0.72
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In-Between-Network Distance
To characterize dissimilarities between clinical subgroups, we linked 
rules from the merged model with various clinical variables such 
as ASD subtypes, age, and sex (Supplementary Table S1). Using 
the R.ROSETTA package, we recalculated the model and extracted 
support sets for each rule that were further translated to the 
particular clinical subgroup. Dissimilarities between subgroups 
were based on estimating the centrality distance for the networks 
(Borgatti and Everett, 2006; Roy et  al., 2014). In particular, 
centrality betweenness distance is estimated based on the shortest 
path between two given nodes. We  tested several approaches of 
estimating in-between graph distance with the NetworkDistance 
R package (You, 2020). To validate our findings, we  performed 
a permutation test by shuffling the decision of the rules for each 
network 500 times. Additionally, as the proportion of the recalculated 
rules among the decision classes was imbalanced, we  iteratively 
sampled equal numbers of rules 20 times and averaged the 
distance for balanced networks. We  assumed that the distance 
for random networks cannot be  greater than the distance for 
original networks; thus, we  estimated left-tailed values of p.

Functional Profiling
The functional profiling of the genes from merged FR was 
performed with the web-based toolset g:Profiler that performs 
enrichment analysis (Reimand et  al., 2007). We  used a large 
collection of sources for sets of gene including gene ontology 
(GO) for molecular function, cellular component and biological 
processes, Kyoto Encyclopedia of Genes and Genomes (KEGG), 
Reactome, TRANSFAC, miRTarBase, Human Protein Atlas, 
CORUM protein complexes, human phenotype ontology, and 
WikiPathways. The functional enrichment analysis was performed 
using g:GOSt with the false discovery rate (FDR) set to 5%. 
The profiling could be  executed for the set of 40 out of 50 
genes that were identified by the tool (Supplementary Table S2).

Additionally, we evaluated the results of the functional profiling 
for specific ASD subtypes. We  selected top co-predictors from 
the network by estimating thresholds using the k-means method 
from R package mmand (Clayden et  al., 2020). Specifically, 
thresholds were estimated based on the node connection values 
from the rule-based networks. The list of estimated top 
co-predictors can be  found in Supplementary Table S3. In 
the next step, we calculated the fraction of genes that correspond 
to selected terms. For example, if 5 out of 10 top co-predictors 
intersected with genes included in a given term, the fraction 
is 0.5. Terms were selected according to ASD-associated terms 
found in literature. These include alterations related to the 
immune system (Ormstad et  al., 2018), calcium (Guan et  al., 
2020), metabolism (Shmais et  al., 2012; Frye et  al., 2013), 
mitochondrion (Rossignol and Frye, 2012), metal ions (Hagmeyer 
et  al., 2015), and membrane (Kitagishi et  al., 2015).

RESULTS

IML Modeling and Visualization
Following the pipeline (Figure  2), we  first applied MCFS and 
created a merged FR from the original FRs of the  

respective datasets. As mentioned in the FR adjustment subsection, 
the thresholds for selecting features were adjusted in order to 
increase the number of genes associated with the rule-based 
classification. While merging, we  found no overlapping genes 
between FRs. Next, we compared the difference in model quality 
introduced by merging FRs from the individual datasets. Models 
that were built on FRs computed from the same dataset resulted 
in a reasonable quality (Table  2). The average accuracy was 
74%, and the average AUC was 0.80. After introducing the 
merged FR for modeling, we  observed a moderate drop in 
quality. The latter suggests a reduction on the bias introduced 
by employing features applied on the IML of the same dataset. 
Models for DS1 and DS3 based on the set of merged FRs 
resulted in an increase in the number of rules as compared 
to the ones that were based on the dataset-specific FR, while 
the opposite occurred for DS2 suggesting overfitting in the 
original model (Table  2). Additionally, we  observed that DS3 
resulted in the lowest quality across models. It suggests that 
the quality of this dataset may be  lower than DS1 and DS2. 
Importantly, DS3 consisted only of autistic male subjects; thus, 
the data variability may be lower than for DS1 and DS2. Despite 
the fact that each dataset obtained a unique set of the most 
important features, contribution of all features from merged 
FRs has been observed in IML modeling and further in networks 
(Supplementary Figure S5). The weakest contribution has been 
observed from DS3 for ASD samples (Supplementary  
Figure S5A). For control, genes contributed equally in modeling 
(Supplementary Figure S5B).

The final IML model contained 1,448 rules (693 for ASD 
and 755 for control) that covered all samples and important 
genes from DS1, DS2, and DS3. A graphic representation of 
the IML model demonstrated the co-predictive mechanisms of 
genes for different expression levels toward ASD (Figure  3). 
Interestingly, a few hub nodes were distinguished on the network 
that corresponded to EMC4, GAS5|SNORD76, HERC4, and 
TMEM30A. This suggested that these genes were highly relevant 
co-predictors that discern between ASD and control subjects. 
Further analysis on the edges of the network highlighted a strong 
connection between low expression of EMC4 and high expression 
of TMEM30A (Figure  3) that we  explored in detail below.

Co-predictive Mechanisms
Most prominent is a co-regulation between EMC4 and TMEM30A 
(Figure  3, Supplementary Figure S6). In control samples of DS1 
and DS2, their correlation was close to 0 (Supplementary  
Figures S6A,B), while they were co-regulated in ASD samples for 
DS1 and DS2 (Supplementary Figures S6D,E). In contrast, we did 
not observe significant differences in DS3 (Supplementary  
Figures S6C,F). It may be  due to a lower quality of the IML 
model built from DS3. This in silico-identified co-predictive 
mechanism suggested that this dependency may consist a 
co-expression mechanism. Additionally, we  performed a statistical 
analysis on the particular genes in order to validate their expression 
changes between ASD and control (Supplementary Figures S6G–I). 
We observed that expression of both genes was significantly changed 
in DS1 (Supplementary Figure S6G) and DS2 (Supplementary  
Figure S6H). Furthermore, the respective studies, DS1 and DS2, 
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also found TMEM30A as a differentially expressed gene that was 
further confirmed with qRT-PCR (Kong et  al., 2012). We  also 
evaluated other co-predictive mechanisms that were visible in the 
network (Figure  3). These include MIA3-TMEM30A, LRR1-RLF, 
and RLF-COQ4 (Supplementary Figures S7–S9). These 
co-predictions were detected for DS1 and DS2 and validated with 
DS4 (Supplementary Figure S10). To investigate ASD subtypes 
for these co-predictive mechanisms, we  evaluated their support 
sets and its percentage distribution normalized to the total amount 
of ASD subtypes (Figure  4).

Dissimilarities of ASD Subtypes
We assumed that the concept of rule-based networks follows 
the same principles as any other undirected network. Thus, 
node‐ or edge-oriented properties can be  analyzed and the 
distance for networks can be estimated (Entringer et al., 1976). 
Previous studies have shown that measuring the distance between 
networks can assist on bioinformatics analysis (Notebaart et al., 
2008;Chen et  al., 2018). Since a rule-based network is a more 
descriptive way of evaluating IML models, we used its topological 

structure to perform an analysis on ASD clinical subgroups. 
To provide the dissimilarity values between the subgroups, 
we measured centrality distances for the networks and performed 
a permutation test (Borgatti and Everett, 2006; van Borkulo 
et  al., 2015). Among other methods (You, 2020), we  found 
that only betweenness centrality distance resulted in significant 
values of p from permutation tests.

We first recalculated the model according to the clinical 
subgroups (cf. section Materials and Methods) that allowed 
creating clinical subgroup-specific subnetworks. To validate if 
the network structure could be  used for finding differences 
between subgroups, we used node and edge connection values, 
which represent the connection power. Modeled distributions 
showed varying differences between subgroups; therefore, this 
confirmed that the network structure was capable of discerning 
subgroups (Figures  5A,B). To obtain an intuitive measure of 
these differences, we estimated the betweenness centrality among 
pairs of subnetworks and confirmed the robustness of the 
distances using permuted sets of networks (Figure  5C, 
Supplementary Figure S11).

FIGURE 3 | Rule-based network displaying top co-predictions of an IML model of case-control studies for autism spectrum disorder (ASD). The network was built 
with significant rules (false Discovery Rate, FDR-corrected p ≤ 0.05) for both classes together and illustrates top 5% of the 30 most strongly connected nodes. Edge 
and node connection values represent strength of the co-predictors in the classification procedure. Black dashed line divides network into subnetworks that 
correspond to ASD and control classes.
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Autism and control were the most dissimilar subgroups 
based on their subnetwork distances (Figure  5C). Comparison 
among all pairs of phenotypes sorted ASD subtypes in a 
decreasing fashion based on the distance from control, that 
is, autism, PDD-NOS, and AS (Figure 5C). The latter suggested 

that autism was the most severe form of ASD, PDD-NOS is 
milder than autism, while AS is the mildest form of ASD. 
This result is consistent with previous studies (Walker et  al., 
2004). Furthermore, network-based distance analysis suggested 
that PDD-NOS and AS are closely related subtypes (Figure 5C). 

A B

C D

FIGURE 4 | Top co-predictors derived from the ASD-control network. (A) Distributions of ASD subtypes of selected co-predictive mechanisms for (A) EMC4-
TMEM30A (B) MIA3-TMEM30A (C) LRR1-RLF, and (D) COQ4-RLF. Values were normalized to the total amount of objects for each ASD subtype.

A

C

B

FIGURE 5 | Histogram of the connection values for (A) nodes and (B) edges. Each histogram represents subnetworks that correspond to the particular ASD 
subtype and control. Modeled distributions were marked for each subgroup. Dotted lines represent the average values for each distribution. (C) In-between-network 
dissimilarity estimated as a centrality betweenness distance. Values of p were marked as ns (p > 0.05), *( p ≤ 0.05), **(p ≤ 0.01), and ***( p ≤ 0.001).
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FIGURE 6 | Network representation for particular ASD subtypes and control. To simplify the interpretation, subnetworks were pruned for the most strongly 
connected 20 nodes. Stars represent the strongest nodes estimated with the k-means algorithm based on node connection. A figure displays subnetworks for 
(A) control, (B) AS, (C), PDD-NOS, and (D) autism. (E) Heat map of the fraction of genes included in functional terms related to ASD. Terms were presented for 
following databases: gene ontology – biological process (GO:BP), gene ontology – cellular component (GO:CC), gene ontology – molecular function (GO:MF), 
Human Phenotype Ontology (HP), Human Protein Atlas (HPA), Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome (REAC) and WikiPathways (WP).
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FIGURE 7 | Clustering of the node connection values based on Kendal correlation. A heat map displays the result of clustering for particular ASD subtypes and 
control. Values were scaled between 0 and 1 column-wise. The rightmost panel shows discretization levels for gene expression values. A dark pink color indicates 
nodes with many connections (hubs), while light pink or white indicates weak connection or lack of the connection, respectively.
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In addition, we  investigated age and sex subgroups; however, 
the permutation test resulted in nonsignificant (p  >  0.05) 
associations (Supplementary Figures S12–S15).

We pruned subnetworks for various phenotypes to identify 
genes that discern between ASD subtypes and control 
(Figures  6A–D). We  observed genes that were shared across 
the subgroups such as UCP2 (control, PDD-NOS, autism, and 
AS) or highly expressed MTF2 (PDD-NOS and AS). We  also 
observed unique genes for specific subgroups such as TRPV6 
for autism or ATXN1 for AS. Furthermore, we  identified ASD 
subgroup-specific hubs, for example, GAS5|SNORD76 and MTF2 
for PDD-NOS or BAZ2A and MTCO2P12|COX2 for autism. 
To evaluate topological similarities of networks, centrality 
betweenness distance finds the shortest path between the given 
pair of nodes. For example, interactions for MTF2-ESCO1-
DYNLL2 (Figure  6C) and MTF2-DYNLL2 (Figure  6B) shall 
be considered as similar structures between PDD-NOS and AS.

To examine all genes that discerned among subgroups, 
we clustered ASD subtypes by node connection values. Patterns 
of co-predictive mechanisms grouped ASD subtypes and 
confirmed our previous findings (Figure 7). The control group 
was well-separated from the ASD subtypes. Furthermore, 
PDD-NOS and AS were clustered together, which again suggested 
a degree of similarity between subtypes. We  observed that 
genes (rows) were divided into four main branches that marked 
different gene groups, named 1, 2, 3, and 4 (Figure 7). Groups 
of genes in these branches could be  described as follows: (1) 
majority of highly connected genes for AS and stronger 
connections shared between PDD-NOS and AS; (2) majority 
of highly connected and lowly expressed genes for control; 
(3) majority of highly connected genes for autism and lowly 
connected genes for control, PDD-NOS and AS; and (4) majority 
of highly connected genes for PDD-NOS. Specifically, genes 
from group  4 indicate a few shared patterns between control, 
PDD-NOS, and AS, while genes from group  2 show no 
connections for AS.

Functional Profiling
To evaluate functions of the genes included for IML modeling, 
we performed functional profiling using g:Profiler for GO terms 
and biological pathways. From the GO annotations for molecular 
functions, we observed enrichment for binding molecules, such 
as metals, cations, ions, DNA nucleic acids, transcription factors, 
and zinc (FDR-corrected p  <  0.01). Additionally, enriched GO 
biological processes highlight transmembrane transport and 
metabolic processes. The GO enrichment analysis for cellular 
components led to general terms related to membranes and 
cellular structures. From the Human Protein Atlas, we observed 
that LRR1, ATXN1, TMEM30A, YTHDC2, EMC4, BPNT1, 
ZNF322, UCP2, ESCO1, and TRPV6 marked peripheral nerve 
as an enriched (FDR-corrected p  <  0.01) term, which agrees 
with the hypothesis that BBB is altered and brain-related genes 
can be picked up in blood. The most significant term (p < 0.01) 
for the Reactome pathway database was the immune system 
and was driven by genes including NLRP1, LRR1, TMEM30A, 
DYNLL2, HERC4, IL2RB, ZBTB16, and SH2D1B. The enriched 
term agreed with previous findings supporting that the immune 

system is disrupted in ASD patients. A full list of terms can 
be  found in Supplementary Table S2. To evaluate functional 
profiling for specific subtypes, we  selected top co-predictors 
(cf. section Materials and Methods) and visualized a fraction 
of functional genes in a heat map (Figure  6E). The analysis 
revealed that autism is again clearly distinguishable among 
other subtypes (Figure  6E) and was marked by membrane/
transmembrane, metal ion binding, calcium channel activity, 
and ion transport. Furthermore, milder subtypes of ASD and 
control clustered together. Accordingly, PDD-NOS and AS were 
clustered together (Figure  6E) and annotated by terms related 
to the immune system, zinc ion binding, and nitrogen metabolic 
process. We  also observed a high fraction of genes related to 
the peripheral nerve for all ASD subtypes (Figure  6E).

DISCUSSION

This study performed an IML analysis on multiple cohorts of 
control-case studies of ASD. Using the rule-based approach, 
we  detected gene co-predictors that allowed to estimate 
dissimilarities between ASD subtypes and control. In total, 
we  found 50 genes that were strong ASD predictors and were 
significantly enriched for functional pathways including the 
peripheral nerve and immune system. Results suggested that 
autism is the most severe form of ASD, while PDD-NOS is 
milder than autism and AS is the mildest form of ASD subtypes. 
Additionally, we  found that PDD-NOS and AS are the most 
similar ASD subtypes. Furthermore, our analysis revealed a 
strong co-prediction mechanism between EMC4 and TMEM30 
in the blood of ASD subjects.

Biomarkers that were detected in this analysis showed a 
satisfactory co-predictive power and distinguished ASD subtypes. 
One of the co-predictive mechanisms was the interaction 
between EMC4 and TMEM30A, which interestingly are primarily 
involved in phospholipid transportation (Chen et  al., 2011; 
Lahiri et al., 2014). The results of functional profiling uncovered 
that EMC4 and TMEM30A are also associated with the peripheral 
nerve. Discovering peripheral nerve-related genes in blood 
samples supports the statement that BBB is altered in ASD 
(Fiorentino et  al., 2016; Kealy et  al., 2018). Interestingly, two 
of the main hubs, HERC4 and TMEM30A, were included in 
immune system pathways. These findings suggested that core 
ASD co-predictors are linked to responses of the immune 
system and its signal can be  detected in blood, as it has been 
reported earlier (Enstrom et  al., 2009; He et  al., 2019).  
To examine nonlinear and linear associations, we  compared 
the most highly ranked co-predictors to the co-expression 
profiles. In the case of EMC4-TMEM30A and MIA3- 
TMEM30A, a co-regulation was notable (Supplementary  
Figures S6, S7, S10A,B). For LRR1-RLF and COQ4-RLF, the 
co-expression was weak; however, local strong evidence of 
co-prediction may not be  evident from linear co-expression 
analysis (Supplementary Figures S8, S9, S10C,D). To confirm 
that suggested co-predictors reflect true biological interactions, 
these shall be  further tested experimentally. Moreover, 
we observed that these co-predictive mechanisms are supported 
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with various ASD subtypes. However, autism was the most 
supportive subtype (Figure  4).

The rule including EMC4 and TMEM30A was significant in 
the IML models for DS1 and DS2 (FDR-corrected p  <  0.05). 
TMEM30A encodes one of the β subunits that forms heterodimer 
with P4-ATPases and takes part in the process termed as lipid 
flipping (Chen et  al., 2011). This process, which generates and 
maintains the phospholipid asymmetry in membranes, plays 
pivotal roles in membrane stability, vesicle trafficking, cell polarity 
and migration, and cell signaling (Yang et  al., 2018). As one of 
the heterodimer partners of P4-ATPases, TMEM30A is required 
for the P4-ATPases to exit the endoplasmic reticulum (ER) and 
undergo transit to specific subcellular locations (Yang et al., 2018). 
TMEM30A has recently been demonstrated to play an essential 
role in the central nervous system (Yang et al., 2018). TMEM30A 
deficiency in the cerebellum results in protein folding and transport 
defects, which further induced ER stress response and apoptotic 
cell death. EMC4 encodes a subunit of the conserved ER membrane 
protein complex (EMC), which is involved in phospholipid synthesis 
in the ER and in transfer-synthesized phospholipid from the ER 
to mitochondria (Lahiri et  al., 2014). Recently, EMC has been 
proved to be  a transmembrane domain insertase that inserts 
various proteins into membranes (Guna et al., 2018). The various 
protein substrates that failed insertion properly due to 
malfunctioning EMC probably contribute to many of EMC’s 
reported phenotypes, such as ER stress, aberrant membrane 
protein trafficking or degradation, and altered lipid homeostasis 
(Guna et  al., 2018). All these EMC-related phenotypes have also 
been proved to be  tightly related to proper function of the 
nervous system and contributed to ASD (Tamiji and Crawford, 
2010; Kitagishi et  al., 2015; Kawada and Mimori, 2018). The 
observed increased expression of TMEM30A together with the 
decreased expression of EMC4 in ASD patients might contribute 
to the morphology changes of the cell membrane in the red 
blood cells of ASD subjects (Giacometti et  al., 2017). Whether 
TMEM30A and EMC4 could be  further utilized in molecular 
diagnosing of ASD patients warrants further investigation.

Machine learning can provide novel insights into medical 
and biological questions, but it is not a panacea (Rajkomar 
et  al., 2019; Roscher et  al., 2020). In this study, we  focused on 
patterns that describe potential molecular mechanisms for ASD 
subtypes, rather than only on the estimation of high-quality 
models. Thus, in order to perform high-quality learning, 
we  encourage employment of other techniques such as deep 
learning (LeCun et  al., 2015). To generate highly accurate IML 
models, we  paid special attention to data preprocessing and 
important classification aspects such as removing batch effects 
and balancing the data, removing feature selection bias, adjusting 
FRs thresholds, and using CV for feature selection and 
classification. To test our methodology, we  used three datasets. 
However, the pipeline is not limited by the number of datasets 
and it would be interesting to add more transcriptomics datasets. 
The methodology can be  used with any omics-based data that 
can be  represented as a decision table. For example, analysis 
on multiple DNA methylation datasets could be also performed. 
Moreover, the pipeline is flexible so it can be  executed using 
other feature selection methods and rule-based algorithms. 

Furthermore, recent studies have highlighted the importance of 
using machine learning algorithms for multi-omics data analysis 
(Lin and Lane, 2017; Nicora et al., 2020). Herein, we demonstrated 
that the legibility of rule-based models can be  utilized for 
integrative analysis of single-type omics data. Thus, the results 
of our analysis established the backbone for designing a multi-
omics pipeline in the future.

There are some limitations in this study. In IML, the continuous 
space of the data is converted into a discrete space; thus, some 
information is lost. However, converting the data into a discrete 
space is a crucial step for rough set-based modeling. On the 
other hand, the discrete character of the data may prevent 
outliers from introducing bias to the analysis. Another limitation 
is that our analysis focused on existing ASD subgroups. In 
recent years, various studies (Ali et  al., 2018; Orange et  al., 
2018; Gao et  al., 2019; Matsui et  al., 2020; Sinkala et  al., 2020) 
aimed at finding novel disease subtypes that were characterized 
with specific molecular patterns. Thus, it would be  interesting 
to modify the pipeline to allow identification of novel clinical 
subgroups, which would be  especially interesting for PDD-NOS 
which is a subtype of unspecified ASD cases.

Our study aims at finding local and supervised co-regulation 
mechanisms; therefore, it is hardly comparable with co-expression 
mechanisms that frequently work in unsupervised and global 
way. In contrast, the concept of co-expression networks, for 
example, weighted correlation network analysis (Langfelder and 
Horvath, 2008), differs largely from the co-predictive networks 
in various aspects. The main difference is that co-predictive 
networks estimate dependencies in a supervised way, i.e., for 
a specific group of subjects in a given decision class. Thus, 
the rule-based approach reveals local dependencies. Unlike the 
rule-based approach, co-expression algorithms investigate global 
dependencies in an unsupervised manner (Butte and Kohane, 
1999). Another aspect is that the co-expression approach 
investigates all genes to find dependencies and then the threshold 
is estimated to select the most co-expressed genes from the 
network. In a co-predictive approach, only the most relevant 
genes are investigated and their contribution to the supervised 
learning process is estimated. Thus, the interpretability of 
co-predictive networks is specified by the IML model. 
Additionally, a single rule can detect two or more dependencies 
and its statistics are based on supervised measurements. 
Ultimately, co-predictive and co-expression networks may both 
suggest co-regulation; however, their definitions are not 
interchangeable and their statistics are not comparable.

In summary, we  showed that rule-based IML is a powerful 
technique for merging datasets and estimating dissimilarities 
between clinical subgroups. Our findings proved that IML rule-
based modeling is a powerful method for integrating datasets, 
finding significant co-predictive mechanisms and revealing 
dissimilarities between clinical subgroups. To our knowledge, 
no other studies have performed IML modeling with the rule-
based approach for merging the omics data and applied 
co-predictive networks for estimating subgroups dissimilarities. 
Thus, we  believe that our methodology and results shed light 
for a novel approach of interpreting classification mechanisms 
for bioinformatics analyses. We  hope that our pipeline will 
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support clinicians and researchers for better diagnosis and 
analysis of ASD and other inherited disorders in the future.
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