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Experimental and epidemiologic studies have shown that lead (Pb) is able to induce
epigenetic modifications, such as changes in DNA methylation profiles, in chromatin
remodeling, as well as the expression of non-coding RNAs (ncRNAs). However, very
little is known about the interactions between microRNAs (miRNAs) expression and DNA
methylation status in individuals exposed to the metal. The aim of the present study was
to investigate the impact of hsa-miR-148a expression on DNA methylation status, in
85 workers exposed to Pb. Blood and plasma lead levels (BLL and PLL, respectively)
were determined by ICP-MS; expression of the miRNA-148a was quantified by RT-
qPCR (TaqMan assay) and assessment of the global DNA methylation profile (by
measurement of 5-methylcytosine; % 5-mC) was performed by ELISA. An inverse
association was seen between miR-148a and % 5-mC DNA, as a function of BLL and
PLL (β = −3.7; p = 0.071 and β = −4.1; p = 0.049, respectively) adjusted for age,
BMI, smoking, and alcohol consumption. Taken together, our study provides further
evidence concerning the interactions between DNA methylation profile and miR-148a,
in individuals exposed to Pb.

Keywords: epigenetics, miRNA, ncRNA, occupational exposure, toxicity, lead

INTRODUCTION

Previous studies have shown that exposure to toxic metals, such as lead (Pb), induces alterations in
gene expression, by modulation of epigenetic status and, consequently, may influence Pb-induced
toxicity (Senut et al., 2012; Kim et al., 2014; Nye et al., 2014). In this context, it is noteworthy
that an increasing number of studies is being conducted to understand the impact of disturbances
on epigenetic status induced by Pb exposure, with special focus on DNA methylation and on the
expression of non-coding RNAs (nc-RNAs), mainly micro-RNAs (miRNAs).

Earlier epidemiological studies showed associations between Pb exposure and changes in
DNA global methylation profiles (Pilsner et al., 2009; Nye et al., 2015; Sen et al., 2015; Devóz
et al., 2017). However, the molecular mechanisms underlying these events are still unclear.
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Experimental evidences give support to the fact that Pb-
induced alterations of the activity of DNA methyl transferases
(DNMTs) may be related to these observations (Schneider
et al., 2013; Sanchez et al., 2017; Sobolewski et al., 2018).
DNMTs play a key role in the maintenance of genes’ promoter
region methylation, especially in CpG islands. It is well known
that hypo- and hypermethylation of CpG islands in promoter
regions are associated with an increase or decrease of mRNA
transcription, respectively (for a review, see Ehrlich and Lacey,
2013; Moore et al., 2013).

The identification of molecular biomarkers that may precede
the adverse health effects related to the exposure of toxicants
significantly increased in the last decade. This approach is
particularly interesting and cost-effective, since it provides
evidence about underlying toxic effects, being possible to draw
safety decisions prior to acute toxicity responses (for a review, see
Califf, 2018; Turesky and Lu, 2020). In this context, the detection
of miRNAs seems to be a promising tool for biomonitoring
individuals who are exposed to chemical compounds, such as
toxic metals and organic pollutants (Kotsyfakis and Patelarou,
2019; Sisto et al., 2019). Several studies showed clear associations
between the expression of miRNAs and the increase in cancers
(Sohel, 2020). On the other hand, a few studies have been
performed aiming to assess the impact of toxic metals, such as
Pb, arsenic (As), cadmium (Cd) and mercury (Hg) on miRNAs
expression (Wallace et al., 2020); moreover, most of them were
carried out using in vitro or in vivo laboratory models (Xu
et al., 2015; Bihaqi, 2019; Wallace et al., 2020) and fewer studies
have assessed the impact of Pb on miRNA expression profile in
individuals exposed to the metal.

For example, Xu et al. (2017) observed an inverse association
between expression of miR-520c-3p, miR-211, and miR-148a and
high blood lead levels (BLL), while miR-572 levels increased in
individuals with high BLL, in workers from China. In another
study, Kong et al. (2012) assessed the association between the
exposure to toxic metals, including Pb and miRNAs expression,
in adolescents from Hong Kong, and an inverse association was
observed between miR-21 and miR-221 and urinary Pb and As
levels, when compared to the non-exposed ones.

As described above, there are few studies focusing on the
disturbances of miRNA expressions induced by Pb exposure,
in humans. Therefore, the aim of the present study was to
investigate the impact of Pb exposure on the expression of miR-
148a and its association with DNA methylation, in individuals
exposed to metal, from automotive battery plants.

MATERIALS AND METHODS

Population and Study Design
A cross-sectional study with 85 male individuals (>18 years
old) was carried out from automotive battery plants, in Paraná
State, Brazil. An interviewed-administrated questionnaire was
applied in order to collect socio-demographic, lifestyle, and
health information, such as age, body mass index (BMI), time
of exposure (working time), medical history, medication use,
smoking, and alcohol intake. Participants who drank alcoholic

beverages at least five times per week were considered alcohol
users and those who had smoked at least five cigarettes per day
for the previous 5 years were classified as smokers (Barcelos et al.,
2013, 2015a,b; de Oliveira et al., 2014; Gomes et al., 2018).

The present study was approved by the Ethics Committee
of University Federal of São Paulo, Santos, Brazil (approval
number: 0292/2018), and the corresponding methods were
carried out in accordance with the approved guidelines. All
participating workers were advised about the content of the
investigation and signed the written informed consents before
starting the study.

Quantification of Pb in Blood and in
Plasma
Samples were taken on site, in the infirmary station of each
plant. Blood samples were collected by a qualified nurse using
evacuated tubes: (I) for Pb determination and DNA isolation:
Vacutainer Trace-Elements and Vacutainer PST (BD, Franklin
Lakes, NJ, United States) and (II) for miRNA isolation: PAXgene
Blood RNA Tubes (PreAnalytiX, Hombrechtikon, Switzerland);
plasma samples were obtained by centrifugation (10 min
at 1,200 g). Transportation of the samples was carried out
using Styrofoam boxes with dry ice until they arrived at the
laboratory; samples were kept at −80◦C till further handling
and analyses.

Total BLL and PLL levels were determined by inductively
coupled plasma mass spectrometry (ICP-MS; ELAN
DRC II, Perkin Elmer, Norwalk, CT, United States) as
previously described by Batista et al., 2009a,b). Results are
expressed as µg dl−1.

hsa-miR-148a-5p Expression
Assessment
Total RNA was extracted from whole blood using MagMax
for Stabilized Blood Tubes RNA Isolation Kit (Applied
Biosystems, Foster City, CA, United States) according to the
manufacturer’s instructions. The quality of the RNA was verified
by measuring the 260/280 and 260/230 nm ratio (Nanodrop
2000, Invitrogen, California, CA, United States). Samples were
quantified using Qubit RNA BR Assay Kit (Invitrogen, California,
CA, United States) on a fluorimeter (Quibit 3.0, Invitrogen,
California, CA, United States), according to the manufacturer’s
recommendations.

TaqMan Advanced miRNA Assay (Applied Biosystems,
Foster City, CA, United States) was used for cDNA synthesis.
Monitoring of miR-148a expression was assessed using TaqMan
Advanced miRNA Assay (assay #478718_mir; Applied
Biosystems, Foster City, CA, United States), according to
the manufacturer’s instructions; moreover, quantification of
expression of has-miRNA-miR-16-5p was used as an endogenous
control (assay #477860_mir; Applied Biosystems, Foster City,
CA, United States). miRNAs were quantified using the relative
quantification method [2−(1 Ctx − 1 Ctr) = 2−1 Ct]. All RT-
qPCR reactions were performed in a QuantStudio 3 Real Time
PCR System Thermal Cycler (Applied Biosystems, Foster City,
CA, United States).
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TABLE 1 | General characteristics of study population.

N Mean ± SD Median Range

Age (years) 85 37 ± 11 35 19–69

Exposure period (years) 85 3.2 ± 3.4 1.7 0.2–20

BMIa [kg (m2)−1] 85 27 ± 3.9 26 18–39

Smoking (yes) 85 (10) – – –

Alcohol (yes) 85 (26) – – –

Pb in blood (µg dl−1) 85 19 ± 11 17 2.6–48

Pb in plasma (µg dl−1) 85 0.54 ± 0.65 0.35 0.018–4.0

% 5-mC DNAb 85 3.0 ± 1.0 3.0 5.3–1.1

abody mass index; b% of methylcytosine in genomic DNA.

Global Methylation Assays
Genomic DNA (gDNA) was extracted from peripheral
blood using the ReliaPrep Blood gDNA Miniprep System
(Promega, Wisconsin, WI, EUA) according to the manufacturer’s
instructions. The quality of the DNA was verified by measuring
the 260/280 and 260/230 nm ratio (Nanodrop 2000, Invitrogen,
California, CA, United States). Subsequently, gDNA was
quantified by use of the Qubit dsDNA BR Assay Kit (Invitrogen,
California, CA, United States) in a fluorimeter (Qubit 3.0,
Invitrogen, California, CA, United States).

Quantification of the global DNA methylation status was
performed using the 5-mC DNA ELISA Kit (Zymo Research,
Irvine, CA, United States), according to the manufacturer’s
recommendations; absorbance was read at 405 nm (Biotek
Elx800—Winooski, VT, United States). Results are expressed as
% DNA global methylation (% 5-mC DNA).

Data Interpretation
Age (years), body mass index (BMI), BLL, PLL, miR-148a
expression, and % 5-mC DNA were analyzed as continuous
variables; alcohol consumption (yes or no) and smoking (yes
or no) were assessed as categorical ones. Due to their skewed
distribution, BLL and BMI were sqrt transformed, while PLL data
were log10-transformed.

Descriptive statistics were run for reporting the general
characteristics of the participants. Non-parametric correlations
(Spearman’s rho) were performed in order to examine the

associations between age, BMI, alcohol consumption, smoking,
exposure period, BLL, PLL, % 5-mC DNA, and miR-148. Then,
multivariate linear regression models were performed to assess
the associations of Pb biomarkers, miR-148a and % 5-mC DNA,
adjusted for age, BMI, alcohol consumption, and smoking.

Analyses were run using SPSS 23 Statistics software (IBM;
Armonk, NY, United States), and a p < 0.050 was set
as significant.

RESULTS

The general population characteristics, Pb concentrations, and
% 5-mC DNA for all participants enrolled in the present
study are summarized in Table 1. The age ranged from 19
to 69 years (mean 37 ± 11 years), while the mean exposure
period was 3.2 ± 3.4 years (from 2 months to 20 years). Alcohol
was consumed by 31% of the participants, and 12% of the
individuals were declared as smokers. Mean BLL was 19± 11 µg
dl−1 (ranging from 2.6 to 48 µg dl−1), and mean PLL was
0.54± 0.65 µg dl−1, reaching values up to 4.0 µg dl−1.

Table 2 presents the Spearman’s correlations between age,
BMI, alcohol consumption, smoking, biomarkers of Pb exposure,
% 5-mC, and miR-148a expression. As expected, BLL and
PLL were strongly correlated to each other (p < 0.0010);
also, a significant correlation was seen between age and BMI
(p = 0.010). On the other hand, none of the assessed variables
were significantly correlated with any of the biomarkers related
to metal exposure (p > 0.050).

Tables 3, 4 summarize the impact of miR-148a expression
on % 5-mC DNA through data obtained by multivariate linear
regression analyses, adjusted by age, BMI, alcohol consumption,
smoking, and BLL or PLL. It can be seen that the content of 5-mC
DNA tended to decrease as the miR-148a expression increases, as
a function of BLL (β =−3.7; p = 0.071); however, this observation
did not reach statistical significance. Further, it can be observed
that miR-148a expression is able to decrease the % 5-mC DNA, as
a function of PLL (β =−4.1; p = 0.049).

Finally, no effects of other variables (age, BMI, alcohol intake,
and smoking) were seen on % 5-mC DNA (Tables 3, 4), and no
significant interaction terms (IT) between the biomarkers of Pb

TABLE 2 | Spearman’s correlations between age, body mass index (BMI), alcohol consumption, smoking, working time, blood and plasma lead levels (BLL and PLL,
respectively), % DNA global methylation (% 5-mC), and expression of miR-148a.

Age BMI Alcohol Smoking BLL PLL % 5-mC miR-148a

Agea –

BMIb 0.28* –

Alcoholc 0.12 0.12 –

Smokingd 0.018 0.085 0.069 –

BLLe
−0.087 −0.21 0.016 −0.021 –

PLLe
−0.039 −0.21 −0.061 0.080 0.86** –

% 5-mCf
−0.10 0.10 0.022 0.039 −0.050 −0.086 –

miR-148ag
−0.062 −0.031 0.069 0.053 0.070 0.053 −0.099 –

ayears; bkg (m2)−1; Cno alcohol consumption was taken as reference; dnon-smokers were taken as reference; eµg dl−1; f % of methylcytosine in genomic DNA; grelative
expression of miR-148a. *p < 0.050; **p < 0.010.
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TABLE 3 | Impact of miR-148a expression on % DNA global methylation (% 5-mC
DNA) of Pb-exposed workers from automotive battery factories. Adjusted for age,
BMI, alcohol consumption, smoking, and blood lead levels (BLL).

Variables % 5-mC DNA

βc p 95% CI

Age −0.014 0.23 −0.30; 0.0090

BMIa 0.020 0.55 −0.48; 0.89

Alcoholb

No −0.12 0.65 −0.66; 0.42

Yes – –

Smokingb

No −0.13 0.72 −0.88; 0.61

Yes – –

BLLa
−0.023 0.44 −0.83; 0.037

miR-148a −3.7 0.071 −7.8; 0.32

asqrt-transformed; byes was taken as reference; Cunstandardized beta (β)
coefficients for covariates in the model.
Math model: % 5-mC DNA = α + β1 × age + β2 × BMI + β3 × alcohol + β4 ×
smoking + β5 × BLL + β6 × miR-148a.

exposure and miR-148a were able to induce disturbances of DNA
methylation profile (IT for BLL∗miR-148a: β = 0.43; p = 0.45; IT
for PLL∗miR-148a: β = 2.3; p = 0.54; not in Tables).

DISCUSSION

It is well stablished that Pb exposure is able to induce several
adverse health effects, such as cardiovascular disorders (Lustberg
and Silbergeld, 2002), kidney injuries (Weaver et al., 2005),
and cognitive dysfunctions (Shih et al., 2007); previous data
showed that BLL as low as 10 µg dl−1 can cause hypertension,
tremors, and renal dysfunction (National Toxicology Program,
2012), and BLL up to 20 µg dl−1 induces several neurological
injuries, in adults (Murata et al., 2009). Moreover, recent studies
suggest that exposure to the metal is associated with changes
in epigenetic status and, consequently, may modulate the toxic
effects related to Pb exposure (Senut et al., 2012; Kim et al., 2014;
Nye et al., 2014).

We previously showed that Pb exposure is able to decrease
the DNA global methylation profile of leukocytes from peripheral
blood, in a subgroup of this study population (Devóz et al.,
2017). Moreover, other studies also showed the impact of Pb-
induced disturbances on the DNA methylation profile. For
example, Zhang et al. (2019) observed alterations in DNA
methylation profile of 356 significant CpG sites of blood cells,
and these changes were related to the levels of exposure to
the metal, in workers from car battery facilities, in China;
Li et al. (2013) demonstrated that individuals exposed to Pb
levels similar to those found in our study (21 µg dl−1) had
lower % of DNA methylation assessed by LINE-1 than the
non-exposed ones (3.7 µg dl−1). Besides, associations between
Pb exposure and DNA hypomethylation were also seen in
animal laboratory models (Dou et al., 2019; Nakayama et al.,
2019).

Studies performed with laboratory models showed that
Pb is able to inhibit the DNA methyl transferase (Dnmts)

TABLE 4 | Impact of miR-148a expression on % DNA global methylation (% 5-mC
DNA) of Pb-exposed workers from automotive battery factories. Adjusted for age,
BMI, alcohol consumption, smoking, and plasma lead levels (PLL).

Variables % 5-mC DNA

βd p 95% CI

Age −0.015 0.21 −0.038; 0.0080

BMIa 0.016 0.65 −0.52; 0.84

Alcoholb

No −0.10 0.70 −0.64; 0.43

Yes – – –

Smokingb

No −0.18 0.62 −0.93; 0.53

Yes – – –

PLLc
−0.38 0.15 −0.89; 0.14

miR-148a −4.1 0.049 −8.1; −0.010

asqrt-transformed; byes was taken as reference; C log10-transformed;
dunstandardized beta (β) coefficients for covariates in the model.
Math model: % 5-mC DNA = α + β1 × age + β2 × BMI + β3 × alcohol + β4 ×
smoking + β5 × PLL + β6 × miR-148a.

activities. For example, Sanchez et al. (2017) observed that
zebra fish exposed to the metal throughout embryogenesis
(500 ppb, i.e., 500 µg l−1) had lower Dnmt1 activity than non-
exposed animals, while Nakayama et al. (2019) showed that
Wistar rats exposed to Pb- and Cd-contaminated soil (3,750
and 6.0 mg kg−1 bw, respectively) had higher Dnmt3a and
Dnmt3b mRNA expression in testis than the control subjects
(Nakayama et al., 2019).

miRNAs are being widely used as epigenetic biomarkers,
since they can regulate various cellular and molecular pathways
(Gholamin et al., 2018; Rabieian et al., 2018). Currently, these
biomarkers are not limited to diagnosis or to therapeutic
monitoring response; miRNAs are also used as predictive tools
for underlying adverse health effects induced by exposure
to toxicants, predicting by molecular signaling the onset of
pathologies and prior to manifestation of symptoms and
complications. For example, miRNAs are widely used as a
prognostic biomarker for myocardial infarction (Wang et al.,
2016), and for type 1 and 2 diabetes (Nielsen et al., 2012;
Villard et al., 2015; Marchand et al., 2016). The monitoring of
miRNAs as predictive tools is particularly advantageous, due
their non-invasive collection (mostly plasma and saliva) and
good correlation to disorders of several inner organs and systems
(Condrat et al., 2020).

Alterations of miRNA expression profile can be a sensitive
indicator related to acute and/or chronic exposures to several
inorganic and organic toxicants. Chronic Pb poisoning is
a complex disease, due to interactions between genetic
backgrounds and environmental variables, and also because
of the long latency between the beginning of exposure to the
metal and the onset of adverse health effects (Mani et al., 2019).
In this context, biomonitoring alterations of miRNA expression
may be a useful tool for predicting cellular and systemic response
against Pb-induced toxicity (for a comprehensive review, see
Wallace et al., 2020).

We observed an inverse association between miR-148a
expression and % 5-mC DNA. Data from in silico and from
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in vitro studies showed that miR-148a has the DNMT1 gene as
target (Long et al., 2014; Zhan et al., 2015; Sengupta et al., 2018).
DNMT1 plays a key role on the maintenance of genes’ promoter
region methylation, especially in CpG islands. It is well-known
that hypo- and hypermethylation of CpG sites in promoter
regions are associated to an increase and decrease in mRNA
translation, respectively (for a review, see Ehrlich and Lacey,
2013; Moore et al., 2013). One hypothesis of our findings may
be explained to the premature degradation of DNMT1 mRNAs
induced by overexpression of miR-148a, which would impact the
global DNA methylation status.

Previous studies give further support to this explanation;
Lujambio et al. (2008) showed that miR-148a silencing was
associated with DNA hypermethylation in different metastatic
cell lines, while Sengupta et al. (2018) observed that miR-
148a suppressed DNMT1 expression, in prostate cancer cells.
Moreover, Wang et al. (2019) found similar results of those
previously reported by Lujambio et al. (2008) and Sengupta et al.
(2018), in an acute myeloid leukemia cell line, i.e., the increase
in miR-148a decreases the expression of DNMT1 (both mRNA
and protein), which may impact the DNA methylation profile,
suggesting that lower DNMT1 activity is related to a decrease in
the methylation levels of promoter region’s CpG islands of miR-
148a and, consequently, increases miR-148a expression, creating
a negative feedback system. It is important to note that these
studies were carried out in cancer cell lines, and the mechanisms
may differ in normal cells, as well as in complex organisms, such
as mammals and humans, for example.

To the best of our knowledge, we have found a few studies
related to Pb exposure and miRNA expression in humans,
suggesting that the metal is able to induce disturbances on
miRNA expression profiles. For example, in a study conducted
with workers from battery car plants in China, it was seen
that individuals who had higher BLL (higher exposure: BLL
mean 51 ± 6.4 µg dl−1) had lower expression of plasmatic
miRNAs miR-520c-3p, miR-211, and miR-148a, when compared
to those that were categorized as lower exposure persons (BLL
8.9 ± 1.5 µg dl−1), while opposite effect was seen concerning
miR-572 (Xu et al., 2017). In contrast, we did not find a
significant association between BLL and PLL, and miR-148a
expression. These contradictory results may be partly explained
by differences of studied populations, such as variation on
genetic background, dietary habits, and lifestyle; moreover, it
is important to highlight that the level of Pb exposure in the
study carried out by Xu et al. (2017) is much higher than those

found in our study (BLL mean 51 ± 6.4 vs. 19 ± 11 µg dl−1,
respectively) suggesting that high Pb levels may trigger metal–
epigenetic interactions.

Taken together, our study provides further evidence
concerning decrease in DNA global methylation induced by
miR-148a in workers exposed to Pb. The consequences may
result in impairment in the regulation of gene expression and,
consequently, modulate the adverse health effects induced by
exposure to the metal.
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