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This study aimed at exploring the gene expression and metabolites among multisite
adipose-derived mesenchymal stem cells (ASCs) and investigate the metabolic pathway
using a multi-omics analysis. Subcutaneous adipose-derived mesenchymal stem cells
(SASCs), perirenal adipose-derived mesenchymal stem cells (PASCs), and epididymal
adipose-derived mesenchymal stem cells (EASCs) were isolated from Sprague Dawley
rats. RNA and metabolites were extracted and sequenced using transcriptomics and
metabolomics analyses, respectively. There were 720 differentially expressed genes
(DEGs) in EASCs and 688 DEGs in PASCs compared with SASCs; there were 166
unique DEGs in EASCs, 134 unique DEGs in PASCs, and 554 common DEGs between
EASCs and PASCs. Furthermore, there were 226 differential metabolites in EASCs,
255 differential metabolites in PASCs, 83 unique differential metabolites in EASCs,
112 unique differential metabolites in PASCs, and 143 common differential metabolites
between EASCs and PASCs. The transcriptomics and metabolomics analyses identified
four hub genes, one in EASCs and three in PASCs. There are functional differences
among multisite ASCs that may be related to the hub genes Atac2, Rrm1, Rrm2, and
Gla. The relevant signaling pathways are the Ras signaling pathway, HIF-1 signaling
pathway, and the p53 signaling pathway. In conclusion, compared with SASCs, our
multi-omics analysis identified that EASCs with higher Acat2 expression may be
more correlated to fat metabolism and insulin resistance, while PASCs with abnormal
expression of Rrm1/2 and Gla may be more correlated with some malignant tumors
and cardiac-cerebral vascular disease.

Keywords: adipose-derived mesenchymal stem cells, gene expression, metabolites, RNA-seq, metabolomics

INTRODUCTION

Obesity, which poses a grave threat to humankind, has become one of the most important chronic
diseases. By 2016, more than 1.9 billion adults over 18 years of age were overweight worldwide,
of whom more than 650 million were obese (Chandramouli et al., 2019). Obesity has become an
increasing concern because it is a major risk factor for diseases including cardiovascular disease,
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hypertension, dyslipidemia, diabetes, and cancer (Lopez et al.,
2006; Renehan et al., 2008; Aune et al., 2016).

As early as 1956, Vague (1956) proposed that obesity as
an important risk factor for cardiovascular disease is related
to the distribution of adipose tissue in the human body, not
just the increase of total adipose tissue. There are two types
of adipose tissue in mammals: white adipose tissue (WAT),
which is the main form of energy storage in the body, and
brown adipose tissue (BAT). WAT is primarily composed of
subcutaneous adipose tissue (SAT) and visceral adipose tissue
(VAT). WAT can be enlarged by increasing adipocyte size
(hypertrophy) or adipocyte number (hyperplasia); adipocyte
hypertrophy is associated with adipose tissue dysfunction
and inflammation, whereas hyperplasia is involved in the
improvement of insulin sensitivity (Silva and Baptista, 2019).
Previous studies have shown that the expansion of SAT is
dominated by adipocyte hyperplasia, while VAT [including
omental, mesenteric, and perirenal adipose tissue (PAT)] is
primarily increased by adipocyte hypertrophy (Joe et al.,
2009). Compared with SAT and VAT secretes higher levels of
proinflammatory factors and lower levels of anti-inflammatory
factors; therefore, it is easier to break down to increase
plasma-free fatty acids (FFA). High concentrations of FFA can
inhibit insulin signaling pathways in skeletal muscle and liver,
induce insulin resistance, and increase the risk of diabetes
and cardiovascular diseases (McFarlane et al., 2001; Sharma
et al., 2001; Rocchini, 2002). Therefore, the accumulation of
VAT is more closely associated with cardiovascular disease,
insulin resistance, hypermetabolism, and cancer (Dobbelsteyn
et al., 2001; Fox et al., 2007; Tran et al., 2008; Tchernof and
Després, 2013; Silva and Baptista, 2019). In addition, compared
with other VATs [such as epididymal adipose tissue (EAT)],
PAT has some characteristics of BAT. In adults, PAT depot is
one of the most frequent depots where BAT have been found
(Svensson et al., 2014). Moreover, the expression of UCP1 in
PAT is related to blood pressure (Li et al., 2015). Whereas, some
investigators indicate that EAT maximum thickness is better
associated with cardiovascular risk factors (Kawamoto et al.,
2002; Nishina et al., 2003).

Adipose tissue is mainly composed of adipocytes (90%),
nonadipocytes (preadipocytes, fibroblasts, endothelial cells,
immune cells, inflammatory cells, etc.), connective tissue matrix,
blood vessels, and nervous tissues (Ibrahim, 2010). Girousse
et al. (2019) stated that adipocytes mainly originate from
adipose-derived mesenchymal stem cells (ASCs), and Silva and
Baptista (2019) demonstrated the different pathophysiologic
properties of ASCs in different adipose deposits. A widely
different function among Subcutaneous adipose-derived
mesenchymal stem cells (SASCs), epididymal adipose-derived
mesenchymal stem cells (EASCs), and perirenal adipose-
derived mesenchymal stem cells (PASCs) were illustrated
including a higher potential of lipogenesis in EASCs and
PASCs (Jeffery et al., 2015, 2016). However, the contributions
of different original ASCs in different adipose deposits are
still not clear. We designed this study to investigate the
functional differences among different original ASCs by
multi-omics analysis.

RESULTS

Functional Annotation of DEGs Among
SASCs, PASCs, and EASCs
To explore the functional differences of SASCs, PASCs, and
EASCs, 720 differentially expressed genes (DEGs) between
EASCs and SASCs (FC >2.0, adjusted P-value (FDR) <0.05, 497
downregulated, and 223 upregulated), and 688 DEGs between
PASCs and SASCs (FC >2.0, FDR 0.05, 468 downregulated,
and 220 upregulated) were found by RNA-Seq. Using Metacore
system, the top 10 different enrichments in pathway maps, GO
processes, and process networks of DEGs in EASCs and PASCs
are shown in Supplementary Figures 1A,B. In addition, the
top scored network analyses of DEGs in EASCs were involved
in regulation of smooth muscle cell proliferation (25.6%),
regulation of cell population proliferation (48.8%), digestive
system development (20.9%), positive regulation of smooth
muscle cell proliferation (18.6%), and positive regulation of
developmental process (44.2%). Whereas, DEGs in PASCs were
most involved in negative regulation of GTPase activity (12.0%),
negative regulation of hydrolase activity (24.0%), oncostatin-M-
mediated signaling pathway (8.0%), leukemia inhibitory factor
signaling pathway (8.0%), and regulation of hydrolase activity
(34.0%) (Supplementary Figures 1C,D).

Upregulated DEGs
Specifically, the upregulated DEGs show different enrichment in
pathway maps: regulation of actin cytoskeleton organization by
the kinase effectors of Rho GTPases in common DEGs, role of
neuregulin 1 and thymosin beta-4 in myocardium regeneration
after infarction in PASCs, and transition and termination of DNA
replication in EASCs. Gene Ontology (GO) process enrichment
analyses show the common DEGs are most relevant to actin
cytoskeleton organization, the PASCs are strongly associated
with supramolecular fiber organization, and the EASCs are most
enriched in the mitotic cell cycle. In addition, actin filaments
in common DEGs, integrin-mediated cell-matrix adhesion in
PASCs, and mitosis in EASCs were seen in process networks
(Figures 1A,B).

In particular, the top scored network analyses of common
upregulated DEGs were found to be involved in positive
regulation of blood pressure by epinephrine-norepinephrine
(16.0%), regulation of systemic arterial blood pressure by
norepinephrine-epinephrine (16.0%), positive regulation of
heart rate by epinephrine-norepinephrine (14.0%), adenylate
cyclase-activating adrenergic receptor signaling pathway
(16.0%), and adrenergic receptor signaling pathway (16.0%)
(Figure 1C). The unique upregulated DEGs in PASCs
were most participated in the mitotic cell cycle (54.3%),
mitotic cell cycle process (50.0%), cell cycle (58.7%), mitotic
cell cycle phase transition (34.8%), and cell cycle phase
transition (34.8%) (Figure 1D). The unique upregulated
DEGs in EASCs showed the top scored network is a
cellular response to oxygen-containing compound (52.0%),
G protein-coupled receptor signaling pathway, coupled
to cyclic nucleotide second messenger (28.0%), adenylate
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FIGURE 1 | Functional annotation of upregulated DEGs among SASCs, PASCs, and EASCs. (A) The gene content is aligned between EASCs vs. SASCs with
PASCs vs. SASCs. The intersection set of experiments is defined as “common” and marked as a blue/white striped bar. The unique genes for the experiments are
marked as colored bars. (B) Top 10 pathway map analysis (left panel), Gene Ontology (GO) process analysis (middle panel), and process networks (right panel)
analysis sorting as differentially affected for different sets of DEGs. Star filling with different colors represent the significant enrichment. (C) Top scored network
analysis of common upregulated DEGs. (D) Top scored network analysis of unique upregulated DEGs in PASCs. (E) Top scored network analysis of unique
upregulated DEGs in EASCs.
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cyclase-modulating G protein-coupled receptor signaling
pathway (26.0%), response to organic cyclic compound
(48.0%), and cellular response to organic cyclic compound
(38.0%) (Figure 1E).

Downregulated DEGs
To further explore the different functions among the
ASCs derived from three adipose deposits, we performed
multilevel analyses including pathway maps, GO processes, and
process networks with downregulated DEGs. First, common
downregulated DEGs were enriched in the classical complement
pathway about pathway maps, response to organic substance
about GO processes, and complement system about process
networks. Second, the unique downregulated DEGs of PASCs
were involved in SCAP/SREBP transcriptional control of
cholesterol and FA biosynthesis about pathway maps, response
to oxygen-containing compound about GO processes, and
feeding and neurohormone signaling about process networks.
Third, the unique downregulated DEGs of EASCs were
most relevant to oncostatin M signaling via Jak-Stat about
pathway maps, cellular response to organic substance about
GO processes, and amyloid proteins about process networks
(Figures 2A,B).

Similarly, the top scored network analyses of common
downregulated DEGs were found to be most associated with
peptide metabolic process (24.0%), mitochondrial translational
elongation (12.0%), mitochondrial translational termination
(12.0%), translation (20.0%), and gene expression (42.0%)
(Figure 2C). The unique downregulated DEGs in PASCs
were involved in cyclic nucleotide catabolic process (16.3%),
cAMP-mediated signaling (26.5%), purine ribonucleotide
catabolic process (16.3%), ribonucleotide catabolic process
(16.3%), and cyclic-nucleotide-mediated signaling (26.5%)
(Figure 2D). Additionally, the unique downregulated
DEGs in EASCs showed the top scored network is in
response to hormone (46.0%), response to the endogenous
stimulus (52.0%), response to organic cyclic compound
(46.0%), regulation of multicellular organismal development
(54.0%), and regulation of multicellular organismal process
(64.0%) (Figure 2E).

Analysis of Metabolic Pathways in
SASCs, EASCs, and PASCs
To reduce systematic and technical bias, metabolomics data were
normalized and the metabolic data were normally distributed
(Supplementary Figure 2). Principal component analysis (PCA)
suggested that SASCs vs. PASCs and SASCs vs. EASCs could be
distinguished, allowing for the determination of differentiated
metabolites (Supplementary Figure 2).

Two hundred and fifty-five differential metabolites in
PASCs were found compared with SASCs (FC >2.0, FDR
<0.05). MetaboAnalysis 3.0 was used to analyze the metabolic
pathways of significantly different metabolites. The results
showed that the differential metabolites were primarily involved
in seven metabolic pathways (Figures 3A,B). Similarly, 226
(FC >2.0, FDR <0.05) differential metabolites were identified
in EASCs, and the differential metabolites were primarily

involved in six major metabolic pathways (Figures 3C,D).
There were four common metabolic pathways between the
two comparisons.

Analysis of Unique Differential
Metabolites Between EASCs and PASCs
To further explore the differences of differential metabolites
of ASCs among the three adipose deposits, we analyzed the
differential metabolites of SASCs vs. EASCs and SASCs vs.
PASCs and found that compared with SASCs, there were
143 common differential metabolites between EASCs and
PASCs (FC >2.0, FDR <0.05) (Supplementary Table 1),
83 unique differential metabolites in EASCs (FC >2.0, FDR
<0.05) (Supplementary Table 2), and 112 unique differential
metabolites in PASCs (FC >2.0, FDR <0.05) (Figure 4A
and Supplementary Table 3). Pathway analysis revealed that
the unique differential metabolites in EASCs involved one
carbon pool by folate, methane metabolism, starch and
sucrose metabolism, galactose metabolism, porphyrin, and
chlorophyll metabolism (Figures 4B,C), whereas the unique
metabolites in PASCs mainly involved six metabolic pathways,
including ascorbate and aldarate metabolism; glycine, serine,
and threonine metabolism; starch and sucrose metabolism;
steroid biosynthesis; terpenoid backbone biosynthesis; porphyrin
and chlorophyll metabolism; and one carbon pool by folate
(Figures 4D,E).

Integrative Analysis of Multi-Omics Data
We analyzed the association between DEGs and differential
metabolites among three ASC adipose deposits. In EASCs,
the heat map and association analysis network diagram
show the top 20 DEGs and differential metabolites and
the correlation between DEGs and metabolites by Pearson
correlation analysis with P-value <0.05 (Figures 5A,B),
including 18 differential metabolites and 19 DEGs. The results
showed that the acetyl coenzyme A acetyltransferase 2 (Acat2)
gene (the top 10 nodes ranked by MCC and degree ≥6,
Supplementary Figure 3 and Supplementary Table 4) was
associated with nine metabolites in 10 metabolic pathways,
including seven downregulated and two upregulated metabolites
in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
Markup Language (KGML) network analysis (Figure 5C).
Similarly, the correlation analysis between DEGs and differential
metabolites in SASCs and PASCs showed that 20 DEGs were
closely related to 9 differential metabolites. KGML network
analysis showed that the Rrm1/Rrm2 gene (the top 10 nodes
ranked by MCC and degree ≥6, Supplementary Figure 3 and
Supplementary Table 5) was closely related to 11 metabolites
in six metabolic pathways, including five downregulated and
six upregulated metabolites; the Galactosidase alpha (Gla)
gene (the top 10 nodes ranked by MCC and degree ≥6,
Supplementary Figure 3 and Supplementary Table 5) was
closely related to four metabolites in six metabolic pathways,
including one downregulated and three upregulated metabolites
(Figures 6A–C).
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FIGURE 2 | Functional annotation of downregulated DEGs among SASCs, EASCs, and PASCs. (A) The gene content is aligned between EASCs vs. SASCs with
PASCs vs. SASCs. The intersection set of experiments is defined as “common” and marked as a blue/white striped bar. The unique genes for the experiments are
marked as colored bars. (B) Top 10 pathway map analysis (left panel), Gene Ontology (GO) process analysis (middle panel), and process networks (right panel)
analysis sorting as differentially affected for different sets of DEGs. Star filling with different color represent the significant enrichment. (C) Top scored networks
analysis of common downregulated DEGs. (D) Top scored networks analysis of unique downregulated DEGs in PASCs. (E) Top scored networks analysis of unique
downregulated DEGs in EASCs.
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FIGURE 3 | Analysis of metabolic pathways in SASCs, EASCs, and PASCs. (A) Analysis of metabolic pathways of differential metabolites between SASCs and
PASCs. The color depends on the P-value, and the size of the circle represents the degree of correlation. (B) Top 25 enrichment of differential metabolites between
SASCs and PASCs, and the P-value represents the enrichment level, the darker the orange, the greater the P-value; the length of the bar represents the amounts of
metabolites. (C) Analysis of metabolic pathways of differential metabolites between SASCs and EASCs. (D) Top twenty-five enrichment of differential metabolites
between SASCs and EASCs.
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FIGURE 4 | Analysis of unique differential metabolites in SASCs, EASCs, and PASCs. (A) A Wayne chart of differential metabolites between SASCs vs. EASCs with
SASCs vs. PASCs. (B) Analysis of metabolic pathways of unique differential metabolites between SASCs and EASCs. (C) Overview of the enrichment of unique
differential metabolites between SASCs and EASCs. (D) Analysis of metabolic pathways of unique differential metabolites between SASCs and PASCs. (E) Overview
of the enrichment of unique differential metabolites between SASCs and PASCs.
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FIGURE 5 | Combined analysis of DEGs and expression of differential metabolites in SASCs and EASCs. (A) A heat map of the top 20 DEGs and differential
metabolites in SASCs and EASCs; the horizontal axis represents DEGs, and the vertical represents regulated metabolites. In the figure, red indicates a positive
correlation, and blue indicates a negative correlation. The deeper the color, the greater the correlation. (B) The PPI network of the DEGs and differential metabolites.
The red line indicates a positive correlation, the green line indicates a negative correlation, and the thickness of the line represents the correlation coefficient.
(C) KGML network analysis of DEGs and differential metabolites in SASCs and EASCs. The circles represent genes, hexagons represent metabolites, and diamonds
represent pathways. Red indicates upregulated genes or metabolites, and green indicates downregulated genes or metabolites. ***P < 0.001, correlation;
**P < 0.01, correlation; *P < 0.05, correlation.
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FIGURE 6 | Combined analysis of DEGs and differential metabolites expression in SASCs and PASCs. (A) The heat map of the top 20 DEGs and differential
metabolites in SASCs and PASCs. (B) The PPI network of the DEGs and differential metabolites. (C) KGML network analysis of DEGs and differential metabolites.
***P < 0.001, correlation; **P < 0.01, correlation; *P < 0.05, correlation.
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Analysis of Common DEGs and
Metabolites Among SASCs, EASCs, and
PASCs
There were 554 common trend DEGs (FC >2.0, FDR
<0.05) (Supplementary Table 6) and 143 common differential
metabolites (FC >2.0, FDR <0.05) (Supplementary Table 1)
among SASCs, EASCs, and PASCs. GO analysis of common
DEGs showed the top 10 significantly enriched BPs, CCs, and
MFs (Figure 7A). The results of the KEGG analysis showed that
common DEGs participated in several information processing
pathways including apoptosis, the TGF-beta signaling pathway,
Rap1 signaling pathway, cytokine–cytokine receptor interaction,
regulation of actin cytoskeleton, PI3K-Akt signaling pathway,
focal adhesion, and lysosome (Figure 7B). Common differential
metabolites were primarily involved in five metabolic pathways,
including phenylalanine, tyrosine, and tryptophan biosynthesis;
phenylalanine metabolism; purine metabolism; valine, leucine,
and isoleucine biosynthesis; and nicotinate and nicotinamide
metabolism (Figures 7C,D). Figures 8A,B shows the results
of the correlation heat map and correlation network map of
common DEGs and differential metabolites.

DISCUSSION

Adipose tissue, which is divided into BAT and WAT, including
SAT and VAT, is the main metabolic store in the human
body. Compared with VAT, the enlargement of the SAT can
be beneficial to patients by improving insulin sensitivity and
reducing the risk of type II diabetes (Hoffstedt et al., 2010;
Arner et al., 2011; Dalmas et al., 2015). Conversely, excessive
accumulation of VAT increases the risk of diseases such as type
II diabetes and cardiovascular disease.

According to previous studies, VAT secretes higher levels of
proinflammatory factors and lower levels of anti-inflammatory
factors, decomposes FFA, and increases plasma more easily
than SAT. As reported, high concentrations of FFA can inhibit
insulin signaling pathways in skeletal muscle and liver, induce
insulin resistance, and eventually increase the risk of diabetes
and cardiovascular diseases. In addition, blood pressure can
be elevated by activation of the renin-angiotensin-aldosterone
system, the sympathetic nervous system, and mechanisms related
to insulin resistance (McFarlane et al., 2001; Sharma et al., 2001;
Rocchini, 2002). Therefore, measuring waist circumference to
quantify VAT can be used as an independent risk factor for type
II diabetes, cardiovascular disease, and cancer (Dobbelsteyn et al.,
2001; Tchernof and Després, 2013).

In this study, SASCs, EASCs, and PASCs were extracted from
three different adipose deposits in rats, and transcriptomics
and metabolomics analyses were used to reveal that there
were 720 DEGs in EASCs and 688 DEGs in PASCs compared
with SASCs. In addition, there were 166 unique DEGs in
EASCs (Supplementary Table 7), 134 unique DEGs in PASCs
(Supplementary Table 8), and 554 common DEGs between
EASCs and PASCs. Furthermore, there were 226 differential
metabolites in EASCs, 255 differential metabolites in PASCs, 83

unique differential metabolites in EASCs, 112 unique differential
metabolites in PASCs, and 143 common differential metabolites
between EASCs and PASCs.

Collectively, we found that immune response and cytoskeleton
remodeling in pathway maps, response to organic substance
and response to organic cyclic compound in GO processed,
and cytoskeleton and cell adhesion in process networks are
common in EASCs and PASCs. Interestingly, cytoskeleton
remodeling was the most enrichment of upregulated DEGs both
in EASCs and PASCs, while immune response was the most
enrichment of downregulated DEGs both in EASCs and PASCs.
Also, KEGG analysis (Supplementary Figure 4) showed ASCs
derived from different deposits of VAT were both involved in
cytokine–cytokine receptor interaction, Rap1 signaling pathway,
regulation of actin cytoskeleton, PI3K-Akt signaling pathway,
lysosome, and focal adhesion. The PI3K-Akt signaling pathway
has been reported to primarily regulate the transcription,
translation, proliferation, growth, survival, and other basic
functions of extracellular signals. These new findings proved that
the functions of ASCs derived from different deposits of VAT
were similar, while different functions of immune response and
extracellular matrix remodeling vary compared with the ASCs
derived from SAT. As reported previously, the adipose tissue
from subcutaneous and visceral showed a significant difference
in immune response in obesity and other metabolic diseases
(Sharma et al., 2001; Klimcakova et al., 2011). Compared with
our studies, these differences may be most relevant to the
different ASCs from SAT and VAT. Whereas, further studies
on this point are required for confirmation. Furthermore, the
function of extracellular matrix remodeling was reported as a
critical microenvironment in different sites of adipose tissue
(Mori et al., 2014), and, by standard 2D culture or 3D culture,
Strieder-Barboza et al. proved that adipocytes from different sites
of adipose tissues have different metabolic profiling in murine
obesity (Strieder-Barboza et al., 2020).

Under the conditions of obesity, excessive FFAs will lead
to glucose and lipid metabolism disorders, which eventually
weaken the PI3K-AKT signaling pathway, thereby inducing
insulin resistance (Bathina and Das, 2018), which will further
affect the PI3K-AKT signaling pathway. This ultimately leads
to a vicious cycle of obesity and type II diabetes. In addition,
the abnormality of the PI3K-AKT signaling pathway is the most
common genomic abnormality in breast, ovarian, bladder, and
other cancers (Serra et al., 2008; Aziz et al., 2018; Costa et al.,
2018; Liu et al., 2018). Rap1 is a small G protein of the Ras
superfamily that is present in a variety of important cellular
processes, which regulate cell survival and proliferation through
the regulation of PI3-AKT. Ras proteins can act as molecular
switches that control the integrity of actin cytoskeleton, regulate
cell proliferation, cell differentiation, cell adhesion, apoptosis,
and cell migration. Overactive Ras signaling can lead to cancer
(Goodsell, 1999). The Ras signaling pathway activates the
mitogen-activated protein (MAP) kinase cascade and the PI3K-
AKT-mTOR pathway, participates in cell growth and division,
stimulates protein synthesis, and inhibits cell apoptosis. In
conclusion, VAT-derived ASCs may make patients with excessive
VAT more susceptible to insulin resistance by activating the
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FIGURE 7 | Analysis of common DEGs and metabolites among SASCs, EASCs, and PASCs. (A) Enriched GO terms of common DEGs among SASCs, EASCs, and
PASCs. (B) Enriched KEGG pathways of common DEGs. (C) Analysis of metabolic pathways of common differential metabolites among SASCs, EASCs, and
PASCs. (D) Top 25 enrichment of common differential metabolites.
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FIGURE 8 | Correlation heat map and correlation network map of common
DEGs and differential metabolites. (A) A heat map of the top 20 common
DEGs and differential metabolites among SASCs, EASCs, and PASCs.
(B) The PPI network of common DEGs and differential metabolites. Notes:
***P < 0.001, correlation; **P < 0.01, correlation; *P < 0.05, correlation.

PI3K-Akt signaling pathway, thus increasing the risk of multiple
tumor diseases in obese patients.

Phagosomes, which are individually involved in EASCs, are
associated with inflammation by producing proinflammatory
cytokines, such as IL-1β, IL-6, TNF-α, and IL-12 (Aderem, 2003);
PI-3 kinase and PLC are also involved in triggering inflammation.

The unique signaling pathways of PASCs were the HIF-
1 signaling pathway, p53 signaling pathway, cell cycle, and

apoptosis. Previous studies indicated that the HIF-1 signaling
pathway is associated with multiple tumor progressions (Zhong
et al., 1999; Talks et al., 2000), and dysregulation of cell cycle
components may also lead to tumorigenesis, which results in
cell proliferation by p53 or other signaling pathways (Champeris
Tsaniras et al., 2014). Inhibition of apoptosis can also lead to
a variety of cancers, inflammatory diseases, and viral infections
(Kaczanowski, 2016). Therefore, the increased risk of cancer in
obese or overweight patients may be related to PASCs.

In our combined multi-omics analysis of SASCs and EASCs,
the hub gene Acat2 was found to be associated with nine
metabolites in 10 metabolic pathways. Acat2 is a cellular enzyme
that converts cholesterol and fatty acids into cholesterol esters
and is mainly expressed in the liver and intestine (Anderson
et al., 1998). Studies have shown that atherosclerosis is reduced
in mouse atherosclerosis models when Acat2 is deficient (Willner
et al., 2003); Acat2-deficient mice are resistant to diet-induced
hypercholesterolemia or cholesterol stone formation (Buhman
et al., 2000). Lower levels of Acat2 activity in the human liver
can delay the development of atherosclerosis (Parini et al., 2004);
therefore, improving the stability of Acat2 may be an effective
treatment strategy for type II diabetes (Wang et al., 2017).
Consistent with the above findings, the higher expression of
Acat2 in EASCs rather than SASCs may be more related to fat
metabolism and insulin resistance.

In the multi-omics analysis of SASCs and PASCs, three
hub genes, Rrm1, Rrm2, and Gla, were mainly involved. In
2002, the International Agency for Research on Cancer (IARC)
reported that obese and overweight patients had an increased
risk of colon cancer, postmenopausal breast cancer, endometrial
cancer, renal cancer, and esophageal cancer (Basen-Engquist
and Chang, 2011). In 2003, a cohort study by Calle (Calle
et al., 2003) involving 9,000,000 adults in the United States
showed that obesity also increases the risk of other cancers,
such as liver cancer, pancreatic cancer, non-Hodgkin lymphoma,
and myeloma. In early reports, Rrm1 and Rrm2 are regulatory
subunits of ribonucleotide reductase, negative rate-limiting
enzymes for DNA synthesis and repair, playing crucial roles
in cell proliferation, invasion, migration, angiogenesis, aging,
and tumorigenesis (Nordlund and Reichard, 2006). Rrm1 and
Rrm2 are widely found in 25 different human tissues, which
is normal at low expression levels. However, Rrm1 and Rrm2
are overexpressed in various malignant tumors, acting as tumor
drivers (Chen et al., 2019). At present, the mechanism by which
obesity is associated with the risk of multiple malignant tumors
is still unknown. We speculate that the increased risk of some
malignant tumors may be associated with the overexpression of
Rrm1 and Rrm2, and the main signaling pathways involved may
be related to the HIF-1 signaling pathway, p53 signaling pathway,
cell cycle, and apoptosis.

Gla is widely found in 27 different tissues in the human body,
including the adrenal gland, bone marrow, brain, adipose tissue,
heart, kidney, liver, lung, lymph node, uterus, placenta, spleen,
stomach, and other tissues. Gla gene inactivity or deficiency
will lead to Fabry disease, mainly affecting the heart, kidney,
gastrointestinal tract, pancreas, skin, lung, and nervous system,
ultimately leading to multiple organ damage. Patients showed
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nerve injury in the early stage of Fabry disease, with the main
symptoms of paroxysmal burning pain in the extremities in
childhood and then relief in adulthood. With the increase of age,
the severity of kidney injury increases. Some patients present
with renal failure at approximately 30 years old (Germain, 2010)
and die from uremia or complications of cardiovascular and
cerebrovascular diseases between 40 and 50 years old (Li et al.,
2019). The downregulation of Gla gene expression in PAT may
lead to renal failure and some cardiovascular and cerebrovascular
diseases through the renin-angiotensin-aldosterone system and
renal parenchymal injury.

MATERIALS AND METHODS

Experimental Animals
Six, 6-week-old male Sprague Dawley rats (Vitronix, China)
were purchased from Vital River Biological Co., (Beijing, China).
Then the rats were raised under SPF conditions according to the
breeding regulations and adapted to the environment for 3 days.
All experiments were conducted with the approval of the Animal
Experimental Ethics Committee. All procedures were approved
(approval number IACUC-1712010) by the Experimental Animal
Care and Use Committee of Nanjing Medical University and
conducted in accordance with the Guide for the Care and Use of
Laboratory Animals (NIH publication No. 85-23, revised 1996).

Isolation and Culture of Adipose-Derived
Mesenchymal Stem Cells
Rats were starved for 12 h before isolating ASCs. First, rats were
anesthetized with 2% isoflurane to induce sacrifices, soaked in
75% ethanol for whole-body disinfection, removed from alcohol,
and placed on a sterile ultra-clean table. The limbs were fixed,
and the SAT was obtained from the groin. Perirenal and EAT was
obtained from the kidney and testis, and the tissue was rinsed
in precooled PBS. The washed adipose tissue was transferred
into the cell platform, muscle and lymph tissue were removed,
tissue was cut into 1–2 mm pieces, and collagenase type I
was added. After digestion, all the suspensions collected were
filtered through a nylon filter (Dutscher, 100 µm), centrifuged
at 1,000 rpm for 5 min, and the supernatant was discarded.
DMEM/F12 medium containing 10% fetal bovine serum (FBS)
was added to the sample. Then the suspension was evenly
spread in culture dishes and cultured into a 37◦C incubator for
2 h. The upper-medium was discarded, high glucose medium
containing 10% FBS was added, and SASCs, PASCs, and EASCs
were obtained. After culturing at 37◦C in an incubator for 3 days,
RNA and metabolites were extracted from the third passage
(P3) cells and sequenced by transcriptomics and metabolomics,
respectively (Figure 9).

RNA Extraction and Transcriptome
Sequencing
P3 SASCs, PASCs, and EASCs were cultured in 12-well plates
with six replicates in each group. Each well was ground with
1 ml Trizol solution, placed at room temperature for 5 min,

and then aspirated. RNA was separated using chloroform
(mixture:chloroform = 5:1) and precipitated by isopropanol and
absolute ethanol. Finally, RNA was precipitated with DEPC
water, and then stored at −80◦C for subsequent transcriptome
sequencing (Guangzhou Ruibo company, Guangzhou, China).
In order to ensure the accuracy of sequencing data, the
RNA samples were detected by agarose gel electrophoresis,
Nanodrop One/Onec, Qubit 2.0, and Agilent 2100 to estimate
the effectiveness, concentration, purity, and integrity of RNA
samples, and the cDNA library could be constructed only after the
detection results meet the requirements. The HiSeq 3000 System
(Illumina R©) was used for sequencing that generated 150 bp
paired-end reads. Before data analysis, the adaptor was removed
by cutadapt software (version 3.1), and the low-quality sequence
was removed by FastX-Toolkit software (version 0.0.13). The
alignment was performed with TopHat softwar (version 2.1.1) (–
read-mismatches = 2, –read-gap-length = 2), and the reference
genome was rn6 (comparison efficiency >80%). Based on Bowtie
v2, transcriptome sequencing reads were compared with the
reference genome and splicing junction between exons were
identified. Fragments per kilobase of transcript per million
reads mapped (FPKM) was used as an index to measure gene
expression. The differential expression analysis was performed
by DEGseq, which was based on binomial distribution and
combined with Fisher’s exact test and likelihood ratio test, and
the genes with fold change >2 and FDR <0.05 were identified as
DEGs. KOBAS v2.0 R language package was used for functional
enrichment analysis. The upregulated or downregulated DEGs
were subjected to network analyses1 as previously described
(Schuierer et al., 2010).

Metabolite Extraction and Metabolomic
Sequencing
P3 SASCs, PASCs, and EASCs were cultured in 10 cm diameter
cell culture dishes with six replicates in each group. When
the cells grew to 90% their original size, the metabolites were
extracted as follows: the cells were washed three times with PBS,
then 0.5 ml of 80% (HPLC grade) methanol was added. After
repeated blowing and washing of the residual cells, as much of
the cell mixture was collected as possible, centrifuged at room
temperature at high speed, and the supernatant was dried with
nitrogen and stored at −80◦C for liquid chromatography-mass
spectrometry (LC-MS/MS).

Before metabolomic sequencing, the sample was reconstituted
with 10 µl of double-distilled water (HPLC grade). Then
metabolites were separated by reverse-phase LC (HP1100,
Agilent Technologies, Santa Clara, CA, United States) using
a reversed-phase XBridge C18 column (1.7 µm particle size,
1 × 150 mm, Waters, Milford, MA, United States) and 2 µl
of each sample was injected on the C18 column for analysis
with a 0.4-ml/min flow rate. A quality control sample was run
first followed by 10 test samples. Mobile phase A consisted
of H2O/0.1% formic acid and mobile phase B consisted of
acetonitrile with 0.1% formic acid which was followed by a
program: 1% B at 0–1 min, 15% B at 3 min, 70% B at 5 min,

1https://portal.genego.com
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FIGURE 9 | Workflow in our study. Subcutaneous adipose-derived mesenchymal stem cells (SASCs), perirenal adipose-derived mesenchymal stem cells (PASCs),
and epididymal adipose-derived mesenchymal stem cells (EASCs) were isolated from Sprague Dawley rats. RNA and metabolites were extracted and sequenced
using transcriptomics and metabolomics analyses.

85% at 9 min, 100% at 10–12 min, and subsequently return to
the initial conditions with 2 min for equilibration. Furthermore,
the MS program was conducted on a 6545 Quadrupole-Time of
Flight system (all devices from Agilent Technologies, Santa Clare,
CA, United States) as follows: both positive and negative ion
modes with drying gas 300◦C flow 6 L/min, sheath gas 340◦C
flow 11 L/min, nebulizer gas 35 psig, capillary voltage 4,000 V,
and fragmental voltage 135 V. The data collection (MS: 100–3,200
m/z, MS/MS: 30–3,200 m/z) was acquired by both centroid and
profile stored in autoMSMS scan mode with reference masses
at m/z 112.05087 and 922.009798 were set as online accurate
mass calibration.

MassHunter Workstation software (version B.07.00; Agilent
Technologies) was used to export mzdata format from the
acquired MS data (.d). Data pretreatment procedures were
performed by using XCMS Online2 for peak discrimination,
filtering, and alignment. A table of the intensities of all the
peaks was created with the retention time and the mass to ratio
for each ion after being aligned by time domain, automatic
integration, and extraction of the peak intensities. Then,
metabolites were qualitatively analyzed with MS/MS spectra by
retrieving and matching the data from Metlin, Massbank, and
Human Metabolome Database (HMDB).

The MS peak list was subjected to MetaboAnalyst 3.0 for
statistical analysis. PCA and pathway analysis were performed

2https://xcmsonline.scripps.edu/

with the web-based software MetaboAnalyst 3.03. Briefly, missing
values were replaced by 1/5 of min positive values of their
corresponding variables. Sample normalization by sum and data
scaling by auto scaling were applied (mean centered and divided
by the standard deviation of each variation) (Supplementary
Figures 2A,D). Fold change analysis was used to compare the
absolute value of change between two groups (Fold change
threshold: two). Nonparametric tests were employed according
to the normalized data (Adjusted P-value (FDR) cutoff <0.05).
The different metabolites were subjected to enrichment analysis
and pathway analysis in MetaboAnalyst 3.0 by KEGG.

Integrative Analysis of Multi-Omics Data
Top 100 DEGs and differential metabolites (top 50 upregulated
and top 50 downregulated) were selected for further correlation
analysis by calculating Pearson’s correlation coefficients on the
relative gene expression and metabolite content data between
different VASCs with SASCs (Supplementary Table 9). The
correlation value and P-value were used to assess the relationship
between metabolites with genes which are shown by Heatmap
and association analysis network diagram.

The DEGs and differential metabolites were subjected to
KEGG Mapper4 to get the common pathway. KGML file, a subset

3http://www.metaboanalyst.ca
4https://www.kegg.jp/kegg/tool/map_pathway3.html
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in the KEGG database, contains the relationships of the graph
objects and information about lineal homologous genes in the
KEGG genes database. The differences in genes and metabolites
in our study were subjected to the database, and the matched
network relationships were set as a basic network. Metabolome
and transcriptome relationships were visualized and interpreted
using Cytoscape (version 3.4.0), and hub genes were calculated
by CytoHubba (a Cytoscape plug-in for identifying hub nodes)
through MCC (the top 10 nodes ranked by MCC) and degree
(degree >6) algorithm.

CONCLUSION

In conclusion, similar to SAT, PAT, and EAT, functional
differences were found among SASCs, PASCs, and EASCs
in our study. The possible metabolic pathways of these
functional differences were found using both transcriptomic and
metabolomic analyses, and our data provide a theoretical basis
for future studies.
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