',\' frontiers
in Genetics

ORIGINAL RESEARCH
published: 17 May 2021
doi: 10.3389/fgene.2021.628136

OPEN ACCESS

Edited by:
Saurav Mallik,
Harvard University, United States

Reviewed by:

Shima Sadri,

Marquette University, United States
Aimin Lj,

Xi’an University of Technology, China
Koushik Mallick,

RCC Institute of Information
Technology, India

*Correspondence:
Xiaoyi Lv
xjuwawjo1@163.com

Specialty section:

This article was submitted to
Computational Genomics,

a section of the journal
Frontiers in Genetics

Received: 11 November 2020
Accepted: 20 April 2021
Published: 17 May 2021

Citation:

Jia D, Chen C, Chen C, Chen F,
Zhang N, Yan Z and Lv X (2021)
Breast Cancer Case Identification
Based on Deep Learning

and Bioinformatics Analysis.
Front. Genet. 12:628136.

doi: 10.3389/fgene.2021.628136

Check for
updates

Breast Cancer Case ldentification
Based on Deep Learning and
Bioinformatics Analysis

Dongfang Jia’, Cheng Chen’, Chen Chen’, Fangfang Chen’, Ningrui Zhang', Ziwei Yan’
and Xiaoyi Lv'2*

" College of Information Science and Engineering, Xinjiang University, Urumaqi, China, 2 Key Laboratory of Signal Detection
and Processing, Xinjiang University, Urumqi, China

Mastering the molecular mechanism of breast cancer (BC) can provide an in-depth
understanding of BC pathology. This study explored existing technologies for diagnosing
BC, such as mammography, ultrasound, magnetic resonance imaging (MRI), computed
tomography (CT), and positron emission tomography (PET) and summarized the
disadvantages of the existing cancer diagnosis. The purpose of this article is to use
gene expression profiles of The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) to classify BC samples and normal samples. The method proposed in
this article triumphs over some of the shortcomings of traditional diagnostic methods
and can conduct BC diagnosis more rapidly with high sensitivity and have no radiation.
This study first selected the genes most relevant to cancer through weighted gene co-
expression network analysis (WGCNA) and differential expression analysis (DEA). Then
it used the protein—protein interaction (PPI) network to screen 23 hub genes. Finally, it
used the support vector machine (SVM), decision tree (DT), Bayesian network (BN),
artificial neural network (ANN), convolutional neural network CNN-LeNet and CNN-
AlexNet to process the expression levels of 23 hub genes. For gene expression profiles,
the ANN model has the best performance in the classification of cancer samples. The
ten-time average accuracy is 97.36% (+0.34%), the F1 value is 0.8535 (+0.0260), the
sensitivity is 98.32% (£0.32%), the specificity is 89.59% (£3.53%) and the AUC is 0.99.
In summary, this method effectively classifies cancer samples and normal samples and
provides reasonable new ideas for the early diagnosis of cancer in the future.

Keywords: breast cancer, SVM, ANN, WGCNA, PPI

INTRODUCTION

Currently, breast cancer (BC) becomes one of the most common cancers among American women,
accounting for approximately one-third of all cancers. BC is the second leading cause of female
cancer deaths after lung cancer (DeSantis et al., 2014). According to a report released by the
International Agency for Research on Cancer in 2018, there were 9.6 million cancer-related deaths
in 2018, of which 11.6% were BC in women (Bray et al.,, 2018). There are many deaths from
BC, and its incidence is higher, especially in developed countries (Key et al., 2001). The most
important environmental factors that lead to a high incidence are exposure to ionizing radiation
and combined postmenopausal hormone therapy (Smith-Bindman, 2012). If people, unfortunately,
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have BC, doctors will use different treatment methods under the
different stages of the disease (Miller et al., 2019). In short, the
main methods include: radiotherapy (Balaji et al., 2016), surgery
(De La Cruz et al,, 2016), and chemotherapy (Ithimakin and
Chuthapisith, 2013; Karagiannis et al., 2017).

The early diagnosis of cancer can improve the effectiveness
of treatment. Currently, imaging diagnosis of cancer includes
Mammography, Ultrasound, magnetic resonance imaging (MRI),
computed tomography (CT), and positron emission tomography
(PET). Among them, mammography, CT, and PET have the
risk of radiation; Mammography, Ultrasound, and CT have low
sensitivity (Wang, 2017). Pathological diagnosis of cancer is not
suitable for rapid diagnosis due to the shortage of doctors and the
large workload of manual diagnosis (Cui et al., 2019). The cancer
sample classification method based on gene expression profile
can conduct BC diagnosis more rapidly with high sensitivity and
have no radiation (Zhang et al., 2020).

With the rapid development of bioinformatics, we can solve
problems at the molecular level (Can, 2014). Gene modules
related to clinical features can be screened out by WGCNA, which
plays a key role in discovering genes related to human cancer
(Saris et al., 2009; Yang et al., 2014; Li et al., 2018). At present,
WGCNA has been applied to the analysis of various cancers,
e.g., bladder cancer (Di et al., 2019), BC (Jia et al., 2020), and
lung cancer (Niemira et al,, 2019). Gene differential expression
analysis (DEA) is another method of analyzing marker genes and
has been applied to detect marker genes of various cancers, e.g.,
colorectal cancer (Hamfjord et al., 2012). The gene DEA software
packages include Cuftdiff (Trapnell et al., 2013), edgeR (Robinson
etal, 2010), and limma (Smyth, 2004). The appropriate software
package can be chosen according to the research needs (Rapaport
et al,, 2013). Currently, WGCNA and DEA can be used together
to screen out gene clusters related to the research target (Huang
et al., 2019). PPI network can be used to analyze the interaction
relationship between proteins. Simultaneously, it can be used to
screen out hub genes related to cancer tissue proteins (Liu et al.,
2009). The expression level of hub genes can be analyzed by deep
learning (Khan et al., 2001; Rahman and Adjeroh, 2019; Zeng
et al., 2019; Mallik et al., 2020). This analysis can achieve good
results at the genetic level. Therefore, we can use it to classify
cancer samples and normal samples. This study is also of great
significance to the diagnosis of cancer in the future.

MATERIALS AND METHODS

Materials

Breast cancer gene expression profiles were downloaded from
The Cancer Genome Atlas (TCGA)' and Gene Expression
Omnibus (GEO)? databases.

When the BC data set was downloaded based on the HT Seq-
counts workflow through the TCGA database, 1,222 samples
were obtained, including 1,109 cancer patients and 113 normal
controls. Besides, another batch of gene expression profile data

Thttps://portal.gdc.cancer.gov/repository
Zhttps://www.ncbi.nlm.nih.gov/geo/

was from the GEO database, and its gene chip was GSE15852
including 43 normal and 43 cancer samples.

With reference to the selection of DEM, we designed a way
to screen gene expression (Mallick et al., 2020). Primarily, we
extracted the corresponding gene expressions according to the
gene ID from the original data. Then, we replaced the missing
gene expression with 0 and merged the same data. According to
the count-per-million (cpm < 1), some invalid values and the
impact of sequencing depth were excluded. In the end, 14,902
gene expressions of each sample were selected from TCGA, and
12,548 genes of each sample were selected from GEO.

Methods

This study first selected the genes most relevant to cancer through
weighted gene co-expression network analysis (WGCNA) and
DEA. Then it used the protein—protein interaction (PPI) network
to screen 23 hub genes. Finally, it used the support vector
machine (SVM), decision tree (DT), Bayesian network (BN),
artificial neural network (ANN), convolutional neural network
CNN-LeNet and CNN-AlexNet to process the expression levels
of 23 hub genes.

The workflow of this study is shown in Figure 1. We describe
the methods used in the figure as following.

The gene modules were screened by WGCNA. After the
gene expression profile was obtained, the WGCNA software
package in R (Langfelder and Horvath, 2008) was used to
configure the gene expression data of GSE15852 and TCGA-
BC as a gene co-expression network. The adjacency matrix of
WGCNA is Aj; = |Sij|5 (Ajj is the adjacency matrix between
gene i and gene j, S is the Pearson coefficient of similarity
matrix of all gene pairs, and B is the soft power value). A;; was
converted into corresponding dissimilarity of topological overlap
matrix (CD-TOM). Gene modules were classified by CD-TOM
hierarchical clustering. To explore the relationship between
gene modules and clinical features, this study calculated the
correlation coefficients between modules and clinical features.
The gene module with highest correlation coeflicient was selected
for the subsequent analysis.

The differentially expressed genes (DEGs) were screened by
limma. The limma in the R software package provides a solution
for the DEA of microarray data. This study used limma to screen
DEGs between normal tissues and BC tissues in the GSE15852
and TCGA-BC datasets, respectively. The P-value was adjusted
by the Benjamini-Hochberg method to control the false discovery
rate (FDR). Both |logFC| > 1.0 and adjusted P < 0.05 were
used as the thresholds for DEGs. All DEGs were visualized
by a volcano plot.

The PPI network selected hub genes from overlapping genes
and it was built by the STRING database. Public genes in
DEGs and co-expressed genes were used as overlapping genes,
and overlapping genes were visualized by the R package Venn
diagram. The overlapping genes were used for PPI network
construction, and hub genes were extracted according to the
maximal clique centrality (MCC) rule.

As classification model selection, in this study, SVM, BN, and
DT models were selected in machine learning, and ANN, CNN-
LeNet, and CNN-AlexNet were selected in deep learning. The
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FIGURE 1 | Workflow of this studly.

expression level of 23 hub genes of the sample was the entire
data set. The dataset was randomly classified into the training
set (70%) and the test set (30%). All algorithms were trained on
the training set, and the classification results were obtained from
the test set. With the average accuracy as the initial standard, we
selected the two models with higher accuracy. To get the best
classification model, a comparative analysis was performed in
the two models. In the end, we obtained the optimal model for
cancer diagnosis.

RESULTS

Weighted gene co-expression network analysis can be used to
screen out the gene modules related to cancer tissues. The

module-trait relationships of the GSE15852 and TCGA-BC
datasets are shown in Figures 2A,B, respectively. The genes were
divided into 10 parts. The genes of each part had been matched
with different colors. To select the gene module that best matches
the clinical characteristic, we chose the module with the highest
correlation coefficient. The MEbrown module, which contained
235 genes, was selected in the GEO. The MEturquoise module,
which contained 4,067 genes, was selected in the TCGA.

DEGs analysis can be used to screen out the differential
genes between cancer tissues and normal tissues. Heat plots of
GSE15852 and TCGA-BC (Figures 3A,C) were drawn. In the
heat plot, each cell represents the degree of gene expression, red
represents up-regulation, and green represents down-regulation.
We take log|FC| as the horizontal axis and —logjo(adj. P-value)
as the vertical axis to make volcano plots (Figures 3B,D). In the
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FIGURE 2 | Module-trait relationships in the (A) GEO and (B) TCGA. Each row represents a gene module. Each column corresponds to the clinical characteristics of
the cancer. Each grid contains the correlation coefficient and P-value of the gene module.
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FIGURE 3 | The differentially expressed genes (DEGs) were screened. Each column of the heat map represents the sample, the row represents the gene, and each
grid represents the degree of gene expression in the sample. The row of the volcano graph represents log|FC|, and the column represents —log10 (adjusted
P-value), and each point is the degree of gene expression. (A) Heat plot of DEGs in the GEO. (B) Volcano plot of DEGs in the GEO. (C) Heat plot of DEGs in the
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FIGURE 4 | Gene Venn diagrams between the two groups of DEGs and the two groups of co-expressed genes.
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volcano plot, red and green points are the differential genes. They
were screened out based on |logFC| > 1.0 and (adjusted P) < 0.05.
Finally, 739 differential genes of GEO and 1,290 differential genes
of TCGA were obtained.

This study extracted the overlapping genes of the above
four groups of genes, and the R package Venn diagram was
used to visualize the overlapping genes (Figure 4). We built
a protein interaction network of overlapping genes (Figure 5)
and the PPI network was used to extract the hub genes.
The hub genes were screened from the PPI network based
on the MCC. The MCC and degree of these genes were
listed in Table 1. The pink nodes in Figure 5 are hub genes.
Twenty-three genes were extracted including GNG11, ANXAL,
GNAIL, IGF1, VWE A2M, ACKR3, P2RY14, S1PR1, CED, CLU,
SERPINGI, PPARG, CEBPA, FABP4, JUN, ADIPOQ, EDNRB,
TE IL6, FOS, LPL, and LEP. The hub genes were submitted
into DAVID 6.8° for KEGG pathway analysis. KEGG analysis
revealed that hub genes were mainly enriched in “Pathways in
cancer” (Table 2).

We take the expression of 23 genes as the input of the model,
and then get the classification results. The accuracy of each model
in diagnosing BC is shown in Table 3. To choose the best model,

*https://david.ncifcrf.gov/summary.jsp

TABLE 1 | Maximal clique centrality and degree of hub genes.

Node name MCC Degree Node name MCC Degree
GNG11 134 9 PPARG 34 13
ANXA1 132 7 CEBPA 18 6
GNAI1 127 7 FABP4 18 8
IGF1 123 8 JUN 17 10
VWF 121 6 ADIPOQ 14 5
A2M 121 6 EDNRB 12 4
ACKR3 120 5 TF 12 6
P2RY14 120 5 L6 12 9
S1PR1 120 5 FOS 12 7
CFD 120 5 LPL 11 6
CLU 120 5 LEP 10 6
SERPING1 120 5

SVM and ANN were selected for comparative analysis. We set the
parameters of the two models as follows.

The range of the initial penalty parameter C of SVM was [—5,
15], the range of the kernel function parameter g was [—9, 3], and
the parameters were optimized through ten-fold cross-validation.

Artificial neural network had four layers, and the number of
nodes in each layer was 23, 10, 2, and 1, respectively. The first
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FIGURE 5 | Protein—protein interaction (PPI) network. Each node in the figure represents a protein, and the edge represents the interaction between the two proteins.
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TABLE 2 | Pathway enrichment analysis of hub genes.

KEGG pathway ID and term Count P-value Genes

hsa05200: Pathways in cancer 9 7.25 x 1076 CEBPA, IL6, JUN, EDNRB, PPARG, FOS, IGF1, GNG11, GNAI1
hsa05133: Pertussis 5 5.53 x 107° IL6, JUN, SERPING1, FOS, GNAI1
hsa04932: Non-alcohalic fatty liver disease (NAFLD) 5 8.22 x 1074 CEBPA, IL6, JUN, LEP, ADIPOQ
hsa03320: PPAR signaling pathway 4 8.94 x 10~* FABP4, ADIPOQ, LPL, PPARG
hsa04610: Complement and coagulation cascades 4 9.74 x 1074 CFD, VWF, SERPING1, A2M
hsa05142: Chagas disease (American trypanosomiasis) 4 3.17 x 1078 IL6, JUN, FOS, GNAI1
hsa04152: AMPK signaling pathway 4 5.09 x 1073 LEP, ADIPOQ, PPARG, IGF1
hsa05202: Transcriptional misregulation in cancer 4 1.18 x 1072 CEBPA, IL6, PPARG, IGF1
hsa05132: Salmonella infection 3 2.37 x 1072 IL6, JUN, FOS
hsa05323: Rheumatoid arthritis 3 2.65 x 1072 IL6, JUN, FOS

is the input layer, the second and third are the hidden layer, and
the fourth is the output layer. The optimization algorithm was
L-BFGS, and the learning rate was e ~>.

Ten experiments were performed for each model. The average
value of F1, sensitivity and specificity was taken. The F1 of
SVM is 0.8176 (£0.0477), the sensitivity is 97.69% (4-0.88%),
and the specificity is 83.80% (44.64%); the F1 of ANN is 0.8535

(££0.0260), the sensitivity is 98.32% (£0.32%), and the specificity

is 89.59% (43.53%). The results are shown in Table 4. The ROC
curve and AUC value of SVM and ANN are shown in Figure 6.
As shown in Figure 6, the AUC of SVM is 0.96, and the AUC of
ANN is 0.99.

F1 and AUC are indicators for evaluating classification
models. Sensitivity represents the ratio of correctly predicted
cancer samples, and specificity represents the ratio of correctly
predicted normal samples. From the experimental results, it
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TABLE 3 | Accuracy results of each model.

Model First (%) Second (%) Third (%) Average (SD)
SVM 97.28 96.73 96.46 96.82% (+0.34%)
ANN 97.82 97.00 97.27 97.36% (+0.34%)
CNN (LeNet) 91.01 89.65 90.46 90.37% (+0.56%)
CNN (AlexNet) 91.82 90.46 91.55 91.27% (+0.59%)
BN 93 93 93 93% (0)

DT 95.6 95.3 94.8 95.23% (+0.33%)
TABLE 4 | Model metrics.

Model F1 (SD) Sensitivity (SD) Specificity (SD)
SVM 0.8176 (+0.0477) 97.69% (+0.88%) 83.80% (+4.64%)
ANN 0.8535 (0.0260) 98.32% (+0.32%) 89.59% (+3.53%)

F1, Sensitivity and Specificity values are the average of 10 experiments.

can be seen that F1, specificity, and AUC of ANN are higher
than those of SVM. So, ANN is the best for the classification
of cancer samples.

DISCUSSION

This work innovatively combined comprehensive biological
information analysis and deep learning to classify BC samples
and normal samples. In our work, we screened out 23 hub
genes including SERPING1 and VWE. KEGG pathway
analysis demonstrated that CEBPA, IL6, JUN, EDNRB,
PPARG, FOS, IGF1, GNGI11, and GNAIl1 were enriched in
“Pathways in cancer.” In BC samples, the —logl0 (P-value) of
H19 _STAT1_SERPINGI and H19_GATA2_VWF are 3.20 and
4.06 (Li et al,, 2020). It is to say that SERPING1 and VWF are
related to BC. In short, it is effective to classify samples based on
the expression of these genes.

In the selection of classification models, we chose SVM
with better performance (Huang et al., 2018), the popular deep
learning models which are ANN, CNN-lenet, and CNN-AlexNet
(Min et al., 2017), and other models which are BN and DT. We
used the above models to classify the samples, and found that
ANN performs the best. The basic unit of the ANN is neuron.
To get better performance, the weight and bias of each neuron
were constantly updated during training. Classification results of
ANN indicated that the average accuracy is 97.36% (30.34%), the

1.04

0.8

0.6 -

True Positive Rate

0.4 {

0.2 4

0.0 4

—— SVM (AUC = 0.96)
ANN (AUC = 0.99)

T T T
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FIGURE 6 | The ROC and AUC of ANN and SVYM.
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F1 value is 0.8535 (£0.0260), the sensitivity is 98.32% (40.32%),
the specificity is 89.59% (£3.53%), and the AUC value is 0.99.
This model can be applied to the early diagnosis of cancer. In
this method, probes are firstly used to measure gene expression,
and then deep learning methods are used to classify cancer
samples. There is no instrument contact during the whole
diagnosis process, so there is no risk of radiation compared with
Mammography, CT, and PET. This method also improves the
sensitivity. Specifically, the sensitivity of this method is 98.32%
(40.32%), and the sensitivities of Mammography, Ultrasound
and, CT diagnosis are 67.8, 83, and 91%, respectively (Wang,
2017). The classification in this article is computer-assisted, and
pathological diagnosis requires manual operation throughout the
entire process, so this method is more suitable for rapid diagnosis.
In future, a large amount of single-cell sequencing data
needs to be researched. Research topics involve classification and
clustering tasks. The deep learning method used herein may be
applied to these data (Tian et al., 2019; Qi et al., 2020). With
the development of sequencing data and deep learning, we can
truly develop small-scale rapid detection equipment for cancer. It
provides opportunities for cancer prevention and treatment.
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