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The body shape of a pig is the most direct production index, which can fully reflect
the pig’s growth status and is closely related to important economic traits. In this
study, a genome-wide association study on seven body size traits, the body length
(BL), height (BH), chest circumference (CC), abdominal circumference (AC), cannon
bone circumference (CBC), rump width (RW), and chest width (CW), were conducted
in Yorkshire pigs. Illumina Porcine 80K SNP chips were used to genotype 589 of
5,572 Yorkshire pigs with body size records, and then the chip data was imputed to
sequencing data. After quality control of imputed sequencing data, 784,267 SNPs were
obtained, and the averaged linkage disequilibrium (r2) was 0.191. We used the single-
trait model and the two-trait model to conduct single-step genome wide association
study (ssGWAS) on seven body size traits; a total of 198 significant SNPS were finally
identified according to the P-value and the contribution to the genetic variance of
individual SNP. 11 candidate genes (CDH13, SIL1, CDC14A, TMRPSS15, TRAPPC9,
CTNND2, KDM6B, CHD3, MUC13, MAPK4, and HMGA1) were found to be associated
with body size traits in pigs; KDM6B and CHD3 jointly affect AC and CC, and MUC13
jointly affect RW and CW. These genes are involved in the regulation of bone growth
and development as well as the absorption of nutrients and are associated with obesity.
HMGA1 is proposed as a strong candidate gene for body size traits because of its
important function and high consistency with other studies regarding the regulation of
body size traits. Our results could provide valuable information for pig breeding based
on molecular breeding.

Keywords: pigs, body size traits, ssGWAS, two-trait model, SNP effect

INTRODUCTION

Pork is widely used as an important animal protein resource and has become one of the main
sources of human protein. Commercial pigs (e.g., Duroc, Yorkshire, and Landrace pigs) have the
characteristics of fast growth, high feed utilization rate, high lean meat rate, and obvious economic
benefits. Therefore, it is not only used for a large number of breeding production, but also has been
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the focus of research. The body size trait is an important
phenotypic trait that can reflect the overall appearance of animals.
Compared with the description of physical appearance, body
size traits can objectively reflect the response of pigs to their
environment and other aspects (Ohnishi and Satoh, 2018). In pig
breeding, the body shape character index is often used as the most
direct production index of a pig. Body size is a typical quantitative
(or complex) trait; understanding the genetic mechanism of
body size differences among individuals can effectively help
control the growth and production of animals (Niu et al., 2013).
At present, there is a large amount of research on genetic
parameters of pig external traits, which accelerate the process of
genetic improvement of related traits. With the development of
molecular biotechnology, many studies have been carried out to
clarify the genetic basis of pig body size traits.

So far, 1172 QTLs have been found related to body size
traits in pigs according to PigQTLdb database1. Although a
range of research has been done in QTL mapping, wide
confidence intervals (covering more than 20 CM) for the
positions of QTL remain that have rarely been replicated
(Schreiweis et al., 2005; Soller et al., 2006). A new research era
was initiated with advances in single nucleotide polymorphism
(SNP) chip and sequencing technology, and genome wide
association study (GWAS) has become one of the most efficient
methods to detect genetic variation in livestock (Mackay et al.,
2009). Compared with traditional QTL localization, GWAS
has more advantages in mining the intensity of medium-
potency variation sites and defining the accuracy of genome
segments containing variation sites (Risch, 1996; Hirschhorn
and Daly, 2005; Klein et al., 2005; Simon-Sanchez et al.,
2009). Although a large number of genome-wide association
studies have been carried out in pigs, only a few GWAS
focused on identifying genes related to external traits. In
particular, the investigation on body height, cannon bone
circumference, rump width, and other important body size traits
are still lacking.

Marker density is one key factor affecting the efficiency
of GWAS as gene mapping mainly relies on the linkage
disequilibrium between causal mutation and markers (Brondum
et al., 2012). Whole genome sequence data can definitely
meet such requirements. In recent years, with the rapid
development of the new generation of sequencing technology,
the cost of sequencing has been reduced rapidly. On one
hand, the large number of samples and the subsequent
processing of sequence data are still time-consuming and
costly, limiting its utilization in genetic analysis. On the
other hand, genotype imputation provides an efficient tool
to improve the marker density of SNP chips based on
sequence data. It can accurately predict the genotypes of
polymorphic sites not covered by the widely used SNP
chip, allowing more genetic loci to be applied to association
analysis and improving the possibility of discovering new
pathogenic genes (Marchini and Howie, 2010; van Leeuwen
et al., 2015).In this study, we used imputation-based whole

1https://www.animalgenome.org/cgi-bin/QTLdb/SS/index

genome sequence data to carry out GWAS on seven body
size traits in pigs.

MATERIALS AND METHODS

Ethics Statement
The whole recording procedure of ear tissue samples was
carried out in strict accordance with the protocol approved
by the Institutional Animal Care and Use Committee
(IACUC) at the China Agricultural University. The IACUC
of the China Agricultural University approved this study
(permit number DK996).

Animals and Phenotypes
Yorkshire pigs born from 2013-2016 from one pig breeding
farm in Beijing were collected in this study. A performance
test on seven body size traits were carried out at the body
weight of about 100 kg for pigs. In total, 5,572 Yorkshire pigs
with phenotypic records and pedigree information were selected.
The seven body size traits included body length (BL), body
height (BH), chest circumference (CC), abdominal circumference
(AC), cannon bone circumference (CBC), chest width (CW),
and rump width (RW). Table 1 presents the descriptive statistics
of body weight and seven body size traits. There were 4898
records for AC and 5572 records for the other six body size
traits and body weight. The Shapiro test function in the Stats
package of R language was used to test if the phenotypic values
of the seven body size traits followed normal distribution, and
the results showed that all traits followed normal distribution.
Body weight had the largest standard deviation of 12.59 kg
and coefficient of variation of 12.43%; it was used as a
covariate considering its influence on the body size traits in
further analysis.

Genotype Data and Imputation
In this study, 589 out of 5572 Yorkshire pigs with body size
records were genotyped using the PorcineSNP80 Bead Chip
(Illumina, San Diego, CA, United States), which includes 68,528
SNPs across the whole pig genome. In order to improve the

TABLE 1 | Descriptive statistics for body weight and seven body size traits.

Trait1 N-obs2 Mean S.D. CV(%) Min value Max value

BL(cm) 5573 108.89 6.18 5.67 88 134

BH(cm) 5573 62.87 2.92 4.64 51 75

CC(cm) 5573 104.58 5.75 5.50 85 126

AC(cm) 4898 113.52 6.31 5.56 94 137

CW(cm) 5572 29.75 2.31 7.76 19 38

RW(cm) 5573 31.64 2.13 6.73 22 40

CBC(cm) 5573 17.98 1.03 5.73 13 23

BW(kg) 5573 101.31 12.59 12.43 61 150

1BL, body length; BH, body height; CC, chest circumference; AC, abdominal
circumference; CBC, cannon bone circumference; RW, rump width;
CW, chest width.
2N-obs, number of observations.
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marker density, the genotyped animals with another 6103 pigs
genotyped with PorcineSNP80 (Song et al., 2019) were imputed
to whole genome sequence data using Beagle 4.1 (Browning
and Browning, 2009). A wide collection of 289 sequenced
pigs all with average sequencing depths of ∼25X from six
different pig breeds were used as reference data for imputation
and each breed contained 24 to 94 pigs. The composition of
reference data and the SNP calling of these individuals were
described by Yan et al. (2017). After SNP calling, 46,766,110
SNPs were retained as the reference panel for imputation.
On average, the genotype concordance rate across all variants
was 92%, which is sufficient for further analysis (Song et al.,
2019). After imputation, in this study, the following genotype
quality control procedure was carried out using the PLINK
software (v1.90) (Purcell et al., 2007). SNPs with minor allele
frequency (MAF) lower than 0.01 and that deviated from the
Hardy - Weinberg equilibrium (P < 10−6) were excluded
and only variants located on autosomes were used for further
analysis. SNP with call rates less than 0.95 were removed.
Individuals with call rates less than 0.90 were excluded. In
addition, in order to decrease the influence of the dependence
of adjacent markers on the high false positive of GWAS analysis,
the SNP were further pruned, and the SNP with linkage
disequilibrium (r2) in slide window of 50 SNPs less than 0.9
were selected. Finally, all the genotyped animals and 784267
SNPs were retained.

Statistical Models
Genetic Correlation
According to the information of 5,572 pigs in this study, the
restricted maximum likelihood method (AI-REML) in DMU v6.0
software (Jensen and Madsen, 2000) was used to estimate the
genetic correlations of seven body size traits.

The animal model was used to estimate the genetic
parameters:

y = µ+ Xb+ Z1a+ Z2t+ e,

with

E
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where, y is the vector of phenotypic values of each body
size trait; µ is the population mean; b is the fixed effect of
herd-year-season; a is the vector of additive genetic effects;
t is the covariate vector of body weight effects; and e is a
vector of residual error effects. X, Z1, and Z2 are incidence
matrices associating b, a, and t with y, respectively. A is the
genetic relationship matrix, five generations of pedigree were
traced back to construct A, and σa

2 is the additive genetic
variance. I is the identity matrix of appropriate dimension,
σt

2 is the variance of body weight effect, and σe
2 is the

residual variance.
As the following two-trait model was constructed, the same

designs and similar methods were used to combine seven body

size traits to construct a matrix equation to form a seven-trait
model, which was mainly used to calculate the genetic correlation[
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where all letter representations are the same as the single trait
model above and the subscript numbers 1 and 2 represent the
two body size traits.

Subsequently, genetic correlations were calculated based on
the variance components as follows:

rA =
cov(a1, a2)

σa1σa2

where, rA is the genetic correlation between trait 1 and trait 2,
a1 and a2 represent the additive genetic values of trait 1 and
trait 2 for the same individuals, cov (a1, a2) and σa1, σa2 refer
to the genetic covariance of two traits and the genetic standard
deviation of trait 1 and trait 2, respectively.

Genome-Wide Association Study
In this study, single-step GWAS (ssGWAS), which can
simultaneously use all the SNP information and utilize the
ungenotyped animals with phenotypic records (Wang et al.,
2012), was implemented to identify significant SNPs associated
with body size traits. Considering the genetic correlations
between body size traits, the two-trait model is used for the traits
with high genetic correlation, while the single-trait model is used
for the rest of the traits.

Single-trait ssGWAS
The single-trait ssGWAS model was used for three body size
traits: BL, BH, and CBC.

y = Xb + γW + Zg + e

where y is the vector of phenotypic values, b is the vector of
fixed effects including herd-year-season-sex, W is the covariate
of body weight, γ is the regression coefficient associating W,
g is the vector of additive genetic effects, following a normal
distribution of N

(
0, Hσ2

g

)
, in which H is the matrix of additive

genetic relationships incorporating both pedigree and genomic
information, σ2

g is the additive genetic variance and estimated
from the pedigree-based BLUP (PBLUP), e is the vector of
random residuals with distribution of N(0, Iσ2

e ), in which I is
the identity and σ2

e is the residual variance. X, W, and Z are the
incidence matrixes associating b, w, and g with y, respectively.

The genotyped and ungenotyped animals were considered
simultaneously based on a H matrix (Aguilar et al., 2010). The
inverse of the H matrix was written as follows:

H−1
=

[
0 0
0 G−1

w − A−1
22

]
+ A−1

where A−1 is the inverse of the numerator relationship matrix,
A−1

22 is the inverse of the pedigree-based relationship matrix
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for the genotyped animals, and G−1
w is the inverse of the

genomic relationship matrix;, G weight markers were obtained
by reciprocals of expected marker variance (VanRaden, 2008).

The SNP effects could be estimated by ssGWAS. The
proportion of genetic variance explained by single SNP was
calculated as follows:

Var
(
Zjûj

)
σ2

a
× 100%

where σ2
a is the total genetic variance, Zj is a vector of the gene

content of the jth SNP for all animals, and ûj is the estimated
marker effect of the jth SNP.

Two-trait ssGWAS
According to the genetic correlation estimations, four body size
traits with high genetic correlations (CC, AC, RW, and CW) were
carried out using two-trait ssGWAS model.[
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where
[

y1
y2

]
is the vector of observation values of trait I and II,

b1and b2 are the vector of fixed effects of herd-year-season-sex
of trait I and II, X1 and X2 are the incidence matrix associating

b1 and b2 with y1 and y2,
[

W1
W2

]
is the vector of covariate

of body weight of trait I and II, γ1 and γ2 are the regression

coefficient associating W1 andW2,
[

g1
g2

]
is the vector of additive

genetic effects of the two traits, following a normal distribution

of N (0, H ⊗ M) , where M =

[
σ2

g1 σ2
g12

σ2
g12 σ2

g2

]
is the additive genetic

variance and covariance matrix of the two traits, Z1 and Z2 are the

incidence matrix associating g1 and g2 with y1 andy2, and
[

e1
e2

]
is the vector of random errors with distribution of N (0, I ⊗ R),

where I is the identity matrix and R =
[

σ2
e1 σ2

e12
σ2

e12 σ2
e2

]
is the residual

variance and covariance matrix of the two traits.
In this study, for both the single-trait model and two-trait

model of ssGWAS, blupf90 (Aguilar et al., 2011)was implemented
to estimate genomic breeding values (GEBV), and afterwards,
based on GEBV, SNP effects and P-values were estimated via
postGSf90. The significance test of SNP effects was performed
using two-sided t-test and the P-value of each marker was
calculated as follows (Aguilar et al., 2019):

Pi = Pt

 ûi√
σ̂

2
i

/
n
, n− 1

 ,

where Pi is the distribution function of t distribution, ûi is ith
SNP effect, σ̂2

i is the genetic variance of ith SNP, and n is the
number of animals with ith SNP. In addition, the proportion of
genetic variance explained by the ith SNP could also be calculated
as σ̂

2
i

/
σ2

g. Manhattan plots of SNP variance were obtained by the
“qqman” R package(D. Turner, 2018).

In order to control false positives, the False Discovery Rate
(FDR) (Benjamini and Hochberg, 1995; Weller et al., 1998)
method for multiple testing was used as follows:

FDR = m∗PMax/n

where m is the number of times to be tested and n is the number
of significant SNPs at assigned FDR level, e.g., 0.05. PMax is
the genome-wide significance level empirical P-value of FDR
adjusted. Based on the P-values of SNPs obtained by ssGWAS,
the empirical P-value of FDR adjusted at the genome-wide
significance level of 0.05 was calculated on each trait in this study.

Identification of Candidate Genes
After identifying significant SNPs by ssGWAS, the genes located
in the 50Kb downstream and 50 Kb upstream region of the
significant SNPs were determined using BedTools (Quinlan and
Hall, 2010) and pig reference gene annotation (2Sus scrofa 11.1
genome version). The R package bioconductor3 was used to
identify the related pathways and perform functional annotation.
QTLdb4 was used to annotate significant SNPs located in
previously mapped QTLs in pigs. R package ’Cluster Profiler’ (Yu
et al., 2012) was used to carry out Gene Ontology (GO) and Kyoto
research on annotated candidate genes from the Encyclopedia of
Genes and Genomes(KEGG) enrichment analysis.

RESULTS

Genetic Correlations of Body Size Traits
Table 2 shows the genetic correlations of seven body size
traits. The genetic correlations ranged from −0.286 to 0.840
with standard errors ranging from 0.028 to 0.106. Among the
seven body size traits, chest circumference (CC) and abdominal
circumference (AC), and chest width (CW) and rump width
(RW) had the higher genetic correlations of 0.747 and 0.840
with standard errors of 0.055 and 0.028, respectively. The genetic
correlations between other traits were lower than 0.3, and some
traits were almost not genetically correlated with other traits,
e.g., body length (BL) had a very low genetic correlation of
−0.010, 0.03, −0.01, and 0.01 with body height (BH), CC, AC,
and CW, respectively.

Identification of Significant SNPs
Associated With Body Size Traits
Two criteria of P-value and SNP effect were respectively used
to determine the SNPs associated with body size traits. As

2http://www.ensembl.org/Sus_scrofa/Info/Index/
3http://www.bioconductor.org/
4http://www.animalgenome.org/cgi-bin/QTLdb/SS/download?file=gbpSS_11.1
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TABLE 2 | Genetic correlations between seven body size traits.

Trait1 BL BH CC AC CW RW CBC

BL −0.010(0.088) 0.033(0.092) −0.014(0.092) 0.014(0.078) −0.286(0.078) 0.206(0.078)

BH 0.171(0.104) 0.071(0.106) −0.221(0.091) −0.217(0.090) −0.105(0.096)

CC 0.747(0.055) 0.255(0.093) 0.127(0.095) 0.197(0.096)

AC 0.153(0.096) 0.204(0.095) 0.202(0.096)

CW 0.840(0.028) 0.015(0.086)

RW −0.032(0.085)

CBC

1BL, body length; BH, body height; CC, chest circumference; AC, abdominal circumference; CBC, cannon bone circumference; RW, rump width; CW, chest width.
The two largest of all genetic associations are in bold. SE of estimates are in parentheses.

for the P-value, after the 0.05 significance level of the whole
genome was adjusted, the PMax-values of FDR-based multiple
tests were 9.26E−06 for BL, 1.08E−05 for BH, 1.02E−05 for
CBC, 9.74E-06 for AC, 1.05E−05 for CC, 9.60E−06 for RW,
and 1.01E−05 for CW. As shown in Table 3, a total of 88
significant SNPs was identified for seven body size traits. The
Manhattan plots of the three traits BL, BH, and CBC using
the single trait model are shown in Figure 1. For BL, a total
of nine significant SNPs reached the genome-wide significance
level, accounting for 0.0085% of the genetic variance in total.
These significant SNPS were located on SSC1, SSC6, SSC8, SSC13,
SSC14, SSC16, and SSC17.The SNP at SSC17:33632497 explained
the largest genetic variance (0.0029%). For BH, only six SNPs
were genome-wide significant, accounting for a total of 0.0123%
of genetic variance. They were located on SSC3, SSC5, SSC14, and
SSC16.The interpretation of ssc16: 886074 has the largest genetic
variance (0.0082%). For CBC, there were 15 significant SNPs at
the genome-wide level, which explained 0.0267% of the genetic
variance, and the most significant SNPs were closely located on
SSC1. For the two pairs of genetically correlated traits using the
two-trait model, the Manhattan plots of AC and CC, and RW
and CW are shown in Figure 2. In total, eight, 17, nine, and
24 SNPs were identified associated with AC, CC, RW, and CW,
respectively, and these SNPs explained 0.0109, 0.0242, 0.0099,
and 0.0281% of genetic variances for the corresponding traits. For
each trait, the genetic variance explained by a single significant
SNP was very small, the largest of which for each trait were
0.0051% (SSC5:15137502), 0.0067% (SSC4:64552365), 0.0038%
(SSC9:2330339), and 0.0065% (SSC7:115471416), respectively.
Although the genetic correlations existed among seven body size
traits, no common significant SNPs were found.

Considering the small contribution of the above significant
SNPs to the genetic variance, the proportion of genetic variance
explained by each SNP were also illustrated as shown in Figure 3
in this study. Top 20 SNPs with the largest genetic variance were
selected for each trait (Table 4); SNPs for BL were located on
SSC17, BH on SSC2, SSC5 and SSC16, and CBC on SSC7 and
SSC4. SNPs with the largest genetic variance for AC and CC are
located on SSC12, while those for RW and CW were on SSC6
SSC7, SSC13 and SSC17. For each body size trait, BL, BH, CBC,
AC, CC, RW, and CW, the top 20 SNPs explained 2.01%, 1.56%,
1.63%, 2.39%, 2.32%, 1.54%, and 1.23% of the genetic variance,
respectively. Interestingly, the top 20 SNPs for AC and CC were

the same, while RW and CW shared half of the 20 SNPs. In total,
110 SNPs with a larger proportion of explanatory genetic variance
were retained for further analysis (Supplementary Table 1).

Identification of Candidate Genes
All the significant SNPs identified by the two methods were
annotated within the 50 Kb downstream and upstream region
with reference to the Sus scrofa 11.1 genome assembly. According
to the two methods of SNP significance and explained genetic
variance, 88 and 110 SNPs were identified without overlapping,
and 64 and 40 genes were found near these SNPs, with only
two of them in common (Tables 1, 3). Six (CDH13, CDC14A,
TMRPSS15, CTNND2, MAPK4, and HMGA1) and five (SIL1,
TRAPPC9, KDM6B, CHD3, and MUC13) genes were found to
be related to the corresponding body size traits by the two
methods. The biological processes and pathways involved in these
genes include calcium channel proteins, lipid metabolism, and
cell proliferation.

DISCUSSION

The Superiority of Imputation-Based
WGS Data
Genotype marker density is one important factor affecting the
efficiency of GWAS (Brondum et al., 2012).With the increase
of marker density, the linkage disequilibrium between markers
and the target trait QTL is increased, which is helpful for
QTL detection. In previous studies, the advantages of whole
genome sequencing data have been demonstrated (Wang L.
et al., 2017). However, its high cost hampered the wide
application of sequencing data. Genotype imputation proved
efficient at imputing the SNP chip data to sequencing data with
high accuracy (Hoze et al., 2013). Our results indicated that
imputation-based WGS data dramatically improved the power
of GWAS; among the significant SNPs identified in this study,
only three out of the 88 significant SNPs were located in the
PorcineSNP80 SNP chip, the remaining 85 loci were identified
in the sequencing data. Moreover, among the 110 non-repeating
loci screened by interpretation variance, 101 are new loci after
imputation, which indicates that imputed WGS data adds a lot of
useful information.
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TABLE 3 | Significant SNPs and associated genes for seven body size traits.

Trait1 Chromosome Position (bp) P-value SNP effect
(%)

Gene Distance Gene function

BL 6 5671575 2.35E−07 0.00186 CDH13 +13217 cadherin 13

1 6435744 1.5E−06 0.00017 NA NA

1 6472959 1.5E−06 0.00080 PRKN +38323 parkin RBR E3 ubiquitin protein
ligase

17 33632497 2.62E−06 0.00289 ENSSSCG00000028461 −47405 signal regulatory protein alpha

13 25520933 4.45E−06 0.00004 ULK4 −8396 unc-51 like kinase 4

16 1276330 4.57E−06 0.00031 NA NA

14 137476010 6.47E−06 0.00054 NA NA

8 28933773 7.46E−06 0.00144 NWD2 −23316 NACHT and WD repeat domain
containing 2

13 166328893 8.39E−06 0.00039 NA NA

BH 16 886074 2.84E−06 0.00817 CTNND2 +28239 alpha-2-macroglobulin like 1

8 7942460 3.01E−06 0.00083 NA NA

3 26586077 4.62E−06 0.00117 CLEC19A −45911 C-type lectin domain containing
19A

5 62690928 6.5E−06 0.00004 A2ML1 −42827 alpha-2-macroglobulin like 1

4 128701315 7.54E−06 0.00152 NA NA

14 33580513 9.85E−06 0.00060 HSPB8 +45615 heat shock protein family B
(small) member 8

CBC 4 117759672 2.16E−07 0.00279 CDC14A −34935 cell division cycle 14A

13 182971424 1.83E−06 0.00420 TMPRSS15 −29625 transmembrane serine protease
15

17 12868538 1.85E−06 0.00635 PSD3 −43049 pleckstrin and Sec7 domain
containing 3

1 1201299 2.3E−06 0.00025 ENSSSCG00000041157 −47914 NA

1 1205821 2.3E−06 0.00018 ENSSSCG00000050693 −42855 NA

1 1220233 2.3E−06 0.00039 ENSSSCG00000045916 −18409 NA

1 1367723 2.3E−06 0.00064 ENSSSCG00000043714 +5537 NA

18 21663467 0.000003 0.00400 GRM8 −14659 glutamate metabotropic
receptor 8

14 9698552 3.19E−06 0.00026 ENSSSCG00000049499 9436 NA

5 7020488 3.46E−06 0.00023 PMM1 −49963 phosphomannomutase 1

12 50490164 4.08E−06 0.00233 SPNS3 −47230 sphingolipid transporter 3
(putative)

3 12869355 4.1E−06 0.00259 ENSSSCG00000036217 +18272 NA

4 10221008 5.38E−06 0.00076 ASAP1 −37722 ArfGAP with SH3 domain,
ankyrin repeat and PH domain

1

2 124456560 5.76E−06 0.00036 PRR16 +6055 proline rich 16

1 13806583 7.02E−06 0.00142 ENSSSCG00000004081 −2527 NA

Trait1 Chromosome Position (bp) P-value SNP effect
(%)

Gene Distance Gene function

AC 8 3249196 1.88E−06 0.00134 AFAP1 −46660 actin filament associated
protein 1

9 14578071 2.31E−06 0.00128 NA NA

14 13670622 2.71E−06 0.00048 PRSS55 −4581 serine protease 55

5 15137502 2.96E−06 0.00513 RHEBL1 −39837 RHEB like 1

4 5362087 4.48E−06 0.00139 ENSSSCG00000044937 +36176 NA

7 26363076 5.4E−06 0.00093 NA NA

14 43227411 5.77E−06 0.00024 ENSSSCG00000033385 −49062 KIAA1671 ortholog

16 522752 6.96E−06 0.00014 CTNND2 −3796 catenin delta 2

CC 3 63528527 1.32E−07 0.00015 ENSSSCG00000008250 −41861 catenin alpha 2

6 19429624 3.27E−07 0.00022 Metazoa_SRP −49801 Metazoan signal recognition
particle RNA

(Continued)
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TABLE 3 | Continued

Trait1 Chromosome Position (bp) P-value SNP effect
(%)

Gene Distance Gene function

1 3149903 7.78E−07 0.00047 PDE10A −28771 phosphodiesterase 10A A

6 120477523 1.95E−06 0.00173 FHOD3 −40874 formin homology 2 domain
containing 3

10 56219300 2.01E−06 0.00203 ITGB1 −46293 integrin subunit beta 1

17 18990746 2.63E−06 0.00004 ANKEF1 −32351 ankyrin repeat and EF-hand
domain containing 1

17 18997949 2.63E−06 0.00008 ANKEF1 −37701 ankyrin repeat and EF-hand
domain containing 1

2 122228151 3.03E−06 0.00105 ENSSSCG00000051343 −14167 NA

2 122235537 3.03E−06 0.00074 ENSSSCG00000051343 −21553 NA

16 33630686 3.58E−06 0.00018 NA NA

16 33638300 3.58E−06 0.00079 NA NA

16 5533970 4.64E−06 0.00394 ENSSSCG00000016791 +16579 NA

12 5297390 5.41E−06 0.00092 RNF157 −48707 ring finger protein 157

4 64552365 5.7E−06 0.00666 ENSSSCG00000042029 −24706 NA

10 43341283 7.22E−06 0.00064 CUBN −39687 cubilin

8 21799389 8.84E−06 0.00030 ENSSSCG00000050984 −18261 NA

10 60737384 9.42E−06 0.00449 ENSSSCG00000011121 −24200 CUGBP Elav-like family
member 2

RW 8 137165913 5.64E−07 0.00049 NA NA

9 2330339 2.74E−06 0.00381 SYT9 −11533 synaptotagmin 9

1 38033383 4.19E−06 0.00149 NKAIN2 −12912 sodium/potassium transporting
ATPase interacting 2

3 63682227 5.03E−06 0.00010 NA NA

11 32555905 6.78E−06 0.00015 DIAPH3 +46764 diaphanous related formin 3

16 48600234 7.1E−06 0.00118 ENSSSCG00000046085 −23005 NA

16 48696355 7.1E−06 0.00155 ENSSSCG00000039883 +49947 NA

1 100210738 7.97E−06 0.00095 MAPK4 +8278 mitogen-activated protein
kinase 4

1 100335688 7.97E−06 0.00017 MAPK4 −49706 mitogen-activated protein
kinase 4

CW 8 132277288 8.17E−07 0.00009 PTPN13 −27877 protein tyrosine phosphatase
non-receptor type 13

MAPK10 −27281 mitogen-activated protein
kinase 10

7 115471416 9.52E−07 0.00653 PPP4R4 −18233 protein phosphatase 4
regulatory subunit 4

14 37118119 1.09E−06 0.00289 ENSSSCG00000051786 −2275 NA

14 37165658 1.09E−06 0.00051 ENSSSCG00000051786 −49874 NA

14 37230969 1.09E−06 0.00039 ENSSSCG00000051786 −9755 NA

2 80016213 2.07E−06 0.00192 COL23A1 −46865 collagen type XXIII alpha 1
chain

14 139878474 2.34E−06 0.00437 TCERG1L −46513 transcription elongation
regulator 1 like

12 49725382 2.67E−06 0.00112 TRPV1 −33424 transient receptor potential
cation channel subfamily V

member 1

16 35012960 3.46E−06 0.00029 DDX4 −46102 DEAD-box helicase 4

7 115132809 4.65E−06 0.00069 ENSSSCG00000002464 −31787 proline rich membrane anchor 1

16 73800572 4.82E−06 0.00153 U6 +41611 U6 spliceosomal RNA

16 73812833 4.82E−06 0.00172 U6 +29350 U6 spliceosomal RNA

16 73816240 4.82E−06 0.00175 U6 +25343 U6 spliceosomal RNA

9 107845695 5.74E−06 0.00014 ENSSSCG00000032905 −7136 NA

8 76456715 6.42E−06 0.00057 ENSSSCG00000042273 −45304 NA

3 131731345 6.59E−06 0.00001 ENSSSCG00000049751 −23407 NA

(Continued)
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TABLE 3 | Continued

Trait1 Chromosome Position (bp) P-value SNP effect
(%)

Gene Distance Gene function

3 131738702 6.59E−06 0.00016 ENSSSCG00000049751 −30764 NA

3 131744661 6.59E−06 0.00016 ENSSSCG00000049751 −36723 NA

3 131756951 6.59E−06 0.00025 ENSSSCG00000049751 −43896 NA

3 131758601 6.59E−06 0.00024 ENSSSCG00000049751 −45546 NA

5 61521505 7.76E-06 0.00033 ENSSSCG00000033403 −14845 C-type lectin domain family 7
member A-like

16 67601687 8.2E-06 0.00052 ENSSSCG00000049229 −42425 NA

7 92897102 4.65E−06 0.00109 HMGA1 +25885 high mobility group AT-hook 1

15 11796106 9.96E−06 0.00074 NA NA

1BL, body length; BH, body height; CC, chest circumference; AC, abdominal circumference; CBC, cannon bone circumference; RW, rump width; CW, chest width; gene
effect, proportion of genetic variance explained. The bold values are potential candidate genes that are selected based on gene function.

FIGURE 1 | Manhattan plot of the genome-wide association study on three body size traits by using single-trait model ssGWAS. BL, Body length; BH, Body height;
CBC, Cannon bone circumference.In the Manhattan plots, negative log10 P-values of the quantified SNPs were plotted against their genomic positions. The x-axis
represents the chromosomes and the y-axis represents the observed −log10(P-value). Different colors indicate various chromosomes. Each trait has a significant
threshold of FDR adjusted, for (A) BL, it was 9.26 × 10−6. Similarly, (B) BH was 1.08 × 10−5, and (C) CBC was 1.02 × 10−5.

Increasing marker density could lead to high linkage
disequilibrium (LD) to improve the resolution of gene mapping,
although it may also be a burden (Joiret et al., 2019). Too high
LD between markers will cause noise and increase false positive
rates (Wang et al., 2010). One of the strategies to deal with
such a dilemma is to pre-select SNP, which can be done via
SNP selection, to only keep a set of SNPs that are mutually
uncorrelated (Hazelett et al., 2016; Calus and Vandenplas, 2018).
Therefore, we pruned SNPs according to the genome-wide
sequence data to reduce the LD degree between SNPs, and
retained the loci in the original 80K chip. In this study, 44003
out of the qualified 50179 SNPs in PorcineSNP80 chip according
to the genotype quality control were retained, and the average
linkage disequilibrium of the finally used 784, 267 SNPs is

similar to that of the chip data. The average r2 was 0.191 and
0.195, respectively. This not only retains the original SNPs but
also increases a large number of SNPS, and does not cause
an increase of LD.

The Advantage of ssGWAS
The single SNP regression model is widely used in GWAS
to identify the association of SNP with traits of interest,
although it usually yields a high false-positive rate due to
ignoring the linkage disequilibrium between adjacent SNPs.
Wang et al. (2012) proposed Single-step GWAS (ssGWAS)
that combines all the data (genotype, phenotype, and pedigree
information) in one step. It can simultaneously utilize all the
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FIGURE 2 | Manhattan plot of the genome-wide association study on four body size traits by using two-trait model ssGWAS. AC, Abdominal circumference; CC,
Chest circumference; RW, Rump width; CW, Chest width. AC and CC are a pair of traits, RW and CW are a pair of traits. In the Manhattan plots, negative log10
P-values of the quantified SNPs were plotted against their genomic positions. The x-axis represents the chromosomes and the y-axis represents the observed
–log10(P-value). Different colors indicate various chromosomes. Each trait has a significant threshold of FDR adjusted, for (A) AC, it was 9.74 × 10−6. Similarly,
(B) CC was 1.05 × 10−5, (C) RW was 9.60 × 10−6, and (D) CW was 1.01 × 10−5.

markers compared with the single-marker regression genome-
wide association analysis, resulting in higher power and accuracy
(Wang et al., 2014). In addition, ssGWAS is able to use sliding
windows to simultaneously analyze multiple SNPs to reduce
errors (Braz et al., 2019; Guerra et al., 2019). Wang et al. (2012)
reported that ssGWAS achieved an accuracy of 0.81 ± 0.02
using 1500 genotype animals, which was more accurate than
single SNP regression model (Wang et al., 2012). Moreover,
ssGWAS can utilize more individuals; the sample size in this
study is not very large, but has a large amount of phenotypic
data of ungenotyped animals. Compared with traditional GWAS,
ssGWAS can make full use of this information, expand the
sample size to a certain extent, improve the accuracy of
SNP effect estimation, and further improve the efficiency of
SNP identification.

In this study, different analysis models were used for body
size traits. Two-trait GWAS model was used for traits with high
genetic correlation, which can simultaneously use SNPs affecting
two traits, resulting in reducing the false positives and improving
the statistical power to detect genes (Chesler et al., 2005; Xu
et al., 2009; Korte et al., 2012). However, for traits with low
genetic correlation, the multi-trait model can easily lead to error
information sharing across traits, reducing the lower accuracy
of gene mapping as pointed out by Wang C. et al. (2017). We
therefore used two traits with high genetic correlation in this
study. In addition, we also conducted four-trait model for the
GWAS on CC, AC, CW, and RW, in which the genetic correlation
between CC and AC, and CW and RW was above 0.7, and the
correlation between the other two traits were all lower than 0.3.

The results showed that only 40% of significant SNPs (P-value)
and 60% of large effects SNPs obtained by the four-trait model
on average overlapped with those from the two-trait model for
each trait. Moreover, the computation of the multi-trait model is
demanding and difficult to converge.

The Determination of Significant SNP Using P-value
or SNP Effect
Theoretically, the SNPs with the smallest P-values were supposed
to explain relatively high proportions of genetic variance.
Likewise, the SNPs with large effects should be significantly
associated with the trait of interest. However, our results
indicated that the SNPs with the smallest P-values did not
have large effects, and there was no overlap between the
top 20 SNPs with the smallest P-values and with the largest
SNPs effects for each trait. Spearman correlation of P-values
and effects of all SNPs showed that the rank correlations of
seven body size traits were low (ranging 0.38–0.4), although
they were significant. As pointed out by Aguilar et al. (2019),
P-value explains whether markers have apparent effects that
are seemingly different from 0 with statistical assessment, while
SNP effect mainly explains part of the genetic variance, with no
statistical assessment. The consistence of SNPs fitting well these
two criteria could not be high due to the linkage disequilibrium
of SNP, the impact of environment, and the interaction of
SNPs. However, it provides an efficient way to determine the
SNPs related to traits of interest. Therefore, in order to locate
QTLs related to traits more accurately and comprehensively, this
study identified significant SNPs from both P-value and SNP
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FIGURE 3 | Manhattan plot of the genome-wide association study on seven body size traits and Venn plot of SNPs according to the contribution of SNP to genetic
variance by using ssGWAS. BL, Body length; BH, Body height; CBC, Cannon bone circumference; AC, Abdominal circumference; CC, Chest circumference; RW,
Rump width; CW, Chest width. BL, BH, and CBC were single-trait models, AC, CC, RW, and CW were two-trait models. AC and CC are a pair of traits, RW and CW
are a pair of traits. In the Manhattan plots (A–G), the proportion of genetic variance of the quantified SNPs were plotted against their genomic positions. The x-axis
represents the chromosomes and the y-axis represents the percentage of SNP explaining the genetic variance. Different colors indicate different chromosomes.
Venn plot (H) of SNPs for the two pairs of body size traits, AC and CC, RW, and CW are a pair of traits, respectively.

effect. The proportion of genetic variance explained by most
of the significant SNPs was small (0.00004–0.00653%) for all
traits, and the maximum genetic variance of all SNPs was also
not large (0.0557–0.1205%), perhaps because too many SNPs
were used in the sequencing data in this study, leading to a

small effect of each related SNP for each trait. It also indicates
that SNPs controlling body size traits are widely distributed
on the genome, fitting the infinitesimal model well. It was
reported that for complex traits such as height, action sites
are widely distributed across the entire genome, indicating
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TABLE 4 | Overview of ssGWAS location for the percentage that explains the proportion of genetic variance.

Trait1 20 SNPs distributions of maximum
effect

SNPs of the maximum
effect

Top 20 SNPs
effect (%)

Number of
nearest gene

Candidate gene

BL SSC17 17_7477978 0.117 4

BH SSC2, SSC5, SSC16 2_46827557 0.08.7 8 SIL1

CBC SSC7, SSC4 7_55099416 0.101 17 TRAPPC9

AC SSC12 12_53181656 0.128. 8 KDM6B CHD3

CC SSC12 12_53169477 0.129 8 KDM6B CHD3

RW SSC6, SSC7, SSC12, SSC13, SSC17 17_13172524 0.099 15 MUC13

CW SSC6, SSC7, SSC13, SSC17 6_39554872 0.070 28 MUC13

1BL, body length; BH, body height; CC, chest circumference; AC, abdominal circumference; CBC, cannon bone circumference; RW, rump width; CW, chest width. Gene
effect, proportion of genetic variance explained.

that almost all genes are involved in the regulation of height
(Boyle et al., 2017).

Pleiotropic effects can lead to genetic correlation between
traits. From the aspect of P-value, no overlap of significant
SNPs associated with two genetic related trait pairs, AC and
CC, and RW and CW, were detected in this study. However,
more common SNPs with the largest effects (not statistically
significant) were found in each pair of genetic related traits,
e.g., the top 20 SNPs with largest effects for AC and CC
were completely overlapped, and these SNPs were adjacent to
each other and located near SSC12:53132997. Therefore, it is
speculated that these SNPs constitute an important QTL and
jointly affect AC and CC. Similarly, there may be QTLs associated
with RW and CW around SSC6:39553559 and SSC13:135373704.
In addition, we took 20 SNPs as a sliding window, and found that
the top 20 windows with the largest genetic effects, respectively,
for AC and CC were overlapped, as well as for RW and CW. The
above results further reflect ’one factor produces multiple effects’,
suggesting that highly genetically related traits are probably
regulated by the same QTL.

Potential Candidate Genes for BL,BH,
and CBC
The body length (BL) is an important index to investigate the
breeding performance of animals. According to bioinformatics
analysis, CDH13 near SSC6:5671575 could be used as a candidate
gene affecting body length. CDH13 is a unique cadherin
(Takeuchi et al., 2002) that regulates cell adhesion, signal
transduction, and cell growth (Liu et al., 2016), and plays an
important role in the formation of tissues and organs (Iotzova-
Weiss et al., 2017). The ingestion and transfer of Ca will affect
the bone development of the body for a long time (Kovacs,
2016), therefore, CDH13 has a certain influence on the growth
and development of the body. For BH, SIL1 was found to be
associated with this trait near SSC2:46827557. Proteomic studies
showed that SIL1 elevation alters the expression of proteins
including crucial players in neurodegeneration, and abnormal
expression of SIL1 has an impact on the morphology of the
body, which can reduce the body size (Labisch et al., 2018).
CBC reflects the physical quality of the animal, whether it is
strong or not. There are three candidate genes associated with
CBC: CDC14A, TMPRSS15, and TRAPPC9. CDC14A is widely

expressed in eukaryotic cell biology of a special kind of highly
conservative dual specificity phosphatase; a variety of studies
from yeast to human somatic cells have shown that CDC14 plays
numerous roles, including in embryonic development and body
size. TMPRSS15 has an impact on the digestive efficiency of
animals, and has been found to be associated with the formation
of cholesterol in humans and with the development of fat
and body weight in mice (Wang et al., 2016). TMPRSS15 also
has a higher variance ranking based on the SNP effect. The
gene mutation of transporter particle complex 9 (TRAPPC9),
a protein subunit of transporter particle II (TRAPPII), can
lead to abnormal embryonic development and abnormal dietary
behavior, and is associated with body mass index (Abbasi et al.,
2017; Mbimba et al., 2018).

Potential Candidate Genes for AC
and CC
Abdominal circumference and CC are a pair of highly genetically
related body size traits, which determine the body size of animals
and are indicators of fatness and thinness. CTNND2 was closely
related to AC according to the P-value. Studies have shown
that CTNND2 participates in the regulation of cell proliferation
and affects the body node number of zebrafish (Zhang et al.,
2018). It is found that KDM6B and CHD3 jointly affect AC
and CC. KDM subfamily 6 enzymes B (KAM6B) plays an
important role in the repression of developmental genes(Jones
et al., 2018), and has a regulatory effect on chondrocyte
differentiation, thus affecting bone growth and development
(Dai et al., 2017). CDH3 is a calcium-binding protein that is
involved in calcium ion binding and protein binding and is
associated with diseases such as malnutrition and developmental
malformations. Studies have shown that CHD3 regulates the
developmental morphology of zebrafish heart, thereby affecting
the abdominal circumference and body shape of zebrafish
(Cho et al., 2018).

Potential Candidate Genes for RW and
CW
For RW and CW, MUC13 was detected to affect both RW and
CW. MUC13 promotes cell proliferation and migration, inhibits
apoptosis, reduces adhesion through a number of signaling
pathways (Sheng et al., 2013), and has a certain effect on the
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absorption of intestinal nutrients, thus affecting the growth
and development of bone and the organism. It was found that
MAPK4 and HMGA1 affect RW and CW of pigs, respectively.
MAPK4 is mitogen-activated protein kinase 4, which is involved
in the absorption and decomposition of sugars and the formation
of fat, so it is related to obesity traits (Wu et al., 2016).
HMGA1 affects the expression of two IGFBP (insulin-like growth
factor binding protein) protein species and plays an important
role in cell growth and differentiation (Cleynen and Van de
Ven, 2008; Hristov et al., 2010). Studies have shown that the
deletion of HMGA1 gene results in a significant decrease in
the body size of mice (Federico et al., 2014). Moreover, a large
number of studies have shown that HMGA1 is related to the
body size character of pigs. Ji et al. (2017) found HMGA1
was a candidate gene affecting the body size of pigs through
genome-wide association analysis. Zhang et al. (2014) found that
HMGA1 is expressed in pig limb cells and affects the growth
and differentiation of chondrocytes. Because of the functional
importance of HMGA1 and several studies having shown that
it is highly associated with body size traits, it is worth being
verified in the future.

CONCLUSION

In this study, among seven body size traits in pigs, CC and
AC, and CW and RW were highly genetically correlated with
correlations of 0.747 and 0.840, respectively. We implemented
ssGWAS to identify SNPs associated with body size traits based
on two aspects of P-value and the proportion of explanatory
genetic variance of SNP. In total, 198 SNPs were identified
associated with seven body size traits in Yorkshire pigs,
correspondingly, 11 genes were related to body size traits,
among which HMGA1 could be worth being validated in
further studies.
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