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Genes often work together to perform complex biological processes, and “networks”
provide a versatile framework for representing the interactions between multiple genes.
Differential network analysis (DiNA) quantifies how this network structure differs between
two or more groups/phenotypes (e.g., disease subjects and healthy controls), with the
goal of determining whether differences in network structure can help explain differences
between phenotypes. In this paper, we focus on gene co-expression networks, although
in principle, the methods studied can be used for DiNA for other types of features (e.g.,
metabolome, epigenome, microbiome, proteome, etc.). Three common applications of
DiNA involve (1) testing whether the connections to a single gene differ between groups,
(2) testing whether the connection between a pair of genes differs between groups, or (3)
testing whether the connections within a “module” (a subset of 3 or more genes) differs
between groups. This article focuses on the latter, as there is a lack of studies comparing
statistical methods for identifying differentially co-expressed modules (DCMs). Through
extensive simulations, we compare several previously proposed test statistics and a
new p-norm difference test (PND). We demonstrate that the true positive rate of the
proposed PND test is competitive with and often higher than the other methods, while
controlling the false positive rate. The R package discoMod (differentially co-expressed
modules) implements the proposed method and provides a full pipeline for identifying
DCMs: clustering tools to derive gene modules, tests to identify DCMs, and methods
for visualizing the results.

Keywords: differential network analysis, differentially co-expressed modules, gene co-expression networks,
statistical inference, networks

Abbreviations: DiNA, differential network analysis; DCM, differentially co-expressed module; TOM, topological overlap
measure; PND, p-norm difference test; DI, dispersion index; MAD, mean absolute difference; paired, paired t-test statistic;
wilcoxSRT, Wilcoxon signed rank test statistic; QAP, Quadratic assignment procedure test statistic; GHD, Generalized
Hamming distance test statistic; TPR, true positive rate; FPR, false positive rate; CS, compound symmetric correlation
structure; AR1, autoregressive order 1 correlation structure; BIC, Bayesian information criterion.
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INTRODUCTION

Gene expression studies measure expression levels on thousands
of genes, with a goal of identifying individual genes or groups
of genes that explain differences between phenotypes of interest
(e.g., disease subjects and healthy controls). An extensive
literature exists regarding methods for identifying individual
genes whose mean expression differs between groups (Soneson
and Delorenzi, 2013; Huang et al., 2015), often referred to as
differentially expressed genes. Pathway analysis (Huang et al.,
2009; Emmert-Streib and Glazko, 2011; Ramanan et al., 2012; De
Leeuw et al., 2016) aims to identify groups of genes (pathways
or gene sets) that are enriched with differentially expressed
genes (competitive tests) or whose overall mean structure differs
between groups (self-contained tests). However, all of these
methods ignore interactions between multiple genes.

In recent years, there is a growing interest in systems or
network biology (Barabasi and Oltvai, 2004; Chuang et al.,
2010; Barabási et al., 2011) in which one uses a statistical
network to model the relationships between multiple genes
(or other molecular features). For analyzing networks of gene
expression (gene co-expression networks), genes are represented
as nodes in the network, with the relationships between genes
represented as lines/edges connecting the nodes. The strength of
the connections is usually represented by a correlation matrix
that measures the pairwise correlations between all genes. An
adjacency matrix and the topological overlap measure (TOM) are
other common forms of representing the connections between
genes (Zhang and Horvath, 2005). See Singh et al. (2018) and
van Dam et al. (2018) for review of important terminology and
concepts used in gene co-expression network analysis.

In differential network analysis (DiNA), the goal is to
determine whether the network structure differs between two
or more phenotype groups (see de la Fuente, 2010; Kayano
et al., 2014; Singh et al., 2018; Shojaie, 2020 for review). Many
of the methods of DiNA of gene co-expression networks can
be classified into three categories: (1) Identifying a single node
(gene) in the network where the connections at that node differ
between phenotype groups. For example (Lichtblau et al., 2017),
compare 10 methods for quantifying node specific differences
between groups. (2) Identifying pairs of genes whose correlation
differs between two or more groups (Liu et al., 2010; Dawson
et al., 2012; Fukushima, 2013; Ha et al., 2015; McKenzie et al.,
2016; Siska et al., 2016), i.e., the focus is on the connection
between only two genes at a time. (3) The last category, and
the focus of this paper, attempts to identify subsets of co-
expressed genes, called modules (also referred to as clusters
or communities; Petereit et al., 2016) whose connections differ
between phenotypes (Watson, 2006; Choi and Kendziorski,
2009; Gill et al., 2010; Tesson et al., 2010; Langfelder et al.,
2011; Rahmatallah et al., 2014; Jardim et al., 2019). Modules
are groups of multiple genes that interact in a coordinated
manner, e.g., their expression levels are correlated. Two main
approaches are used for defining modules: one may obtain
a priori predefined modules from a database (e.g., KEGG,
Kanehisa and Goto, 2000; GO, Ashburner et al., 2000), or one
can use clustering methods (Langfelder and Horvath, 2008;

Andreopoulos et al., 2009; Tesson et al., 2010; Xu and Wunsch,
2010) to derive data dependent modules. Comparing clustering
methods for deriving data-dependent modules is beyond the
scope of this paper (see Kakati et al., 2019 for one comparative
study). After defining the modules, the final step is to test whether
a module’s connections differ between phenotype groups, which
is known as a “differentially co-expressed module” (DCM). The
null hypothesis is that the network structure within the module
is equal between the groups being compared. Although several
methods have been proposed for testing whether the network
structure within a module differs between two groups (Watson,
2006; Choi and Kendziorski, 2009; Gill et al., 2010; Tesson et al.,
2010; Langfelder et al., 2011; Rahmatallah et al., 2014; Jardim
et al., 2019), there is a lack of simulation studies comparing such
methods. Therefore, we attempt to fill this gap by conducting
extensive simulations of different network structures to compare
existing test statistics for identifying DCMs, as well as a new
framework the p-norm difference (PND) test that encompasses
previous approaches but also provides more flexibility. Tests in
the PND framework demonstrate a true positive rate that is
competitive with and often higher than existing methods, while
controlling the false positive rate. Lastly, the discoMod R package
is made available, which implements a full pipeline for identifying
DCMs: clustering tools to derive modules, tests to identify DCMs,
and methods to visualize the results.

MATERIALS AND METHODS

Assume one has a list of M number of gene modules, which may
have been predefined from a database (Ashburner et al., 2000;
Kanehisa and Goto, 2000) or derived using clustering methods
(Langfelder and Horvath, 2008; Andreopoulos et al., 2009; Tesson
et al., 2010; Xu and Wunsch, 2010). Each module contains three
or more genes, and the modules need not be disjoint (e.g., the
same gene could appear in more than one module). Although
we focus on genes, all the methods discussed can be used for
other types of features besides gene expression (e.g., metabolome,
epigenome, microbiome, proteome).

Let X(gm) be the gene expression matrix for groups g = 1, 2
and modules m = 1, . . . ,M, where each gene expression
variable may be measured as an integer count (i.e., number of
mapped reads) from a sequencing platform or a continuous
value from a microarray platform. Next, let S(gm) be a similarity
matrix used to represent the network structure of the mth module
within the gth group. Note S(gm) is a symmetric |Pm|

∗
|Pm|matrix

where |Pm| represents the number of genes in the mth module,

i = 1, 2, . . . |Pm| is the gene index, and S(gm)
ij is a measure of

similarity between genes i and j. Several measures of similarity

between two genes (S(gm)
ij ) have been used, including: correlation

(Pearson, Spearman, or Kendall), partial correlation, or mutual
information (Gill et al., 2010; Kumari et al., 2012; Kayano et al.,
2014; van Dam et al., 2018). This similarity matrix may be further
represented as an adjacency or TOM matrix (Ravasz et al., 2002;
Zhang and Horvath, 2005; Langfelder and Horvath, 2008) which
will be discussed later.
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For the mth module with similarity matrices S(gm) for both
groups (g = 1, 2), we are interested in testing the following null
(H0) and alternative (HA) hypotheses:

H0 : S(1m)
= S(2m) vs. HA : S(1m)=/ S(2m) (1)

Test Statistics for Identifying DCMs
We now define several test statistics that will be compared for
testing (1). Given that S(gm) is a symmetric |Pm|

∗
|Pm| matrix,

let V(gm) be a vector of the lower triangle of S(gm), thus V(gm)

is a vector of length λm =
|Pm|(|Pm|−1)

2 . Let k = 1,. . ., λm
be the indexing variable for iterating between the elements of
V(gm). Many test statistics can be formulated as functions of the
difference (or product) in V(gm) between the two groups. For
example, the “Dispersion Index” (DI), used by GSCA (Choi and
Kendziorski, 2009) and DiffCoEx (Tesson et al., 2010), for the
mth module is defined as:

DI
(

V(1m),V(2m)
)
=

√√√√ 1
λm

λm∑
k = 1

(
V(1m)

k − V(2m)
k

)2
(2)

The mean absolute difference (MAD) (Gill et al., 2010; Ruan et al.,
2015), is defined as:

MAD
(

V(1m),V(2m)
)
=

1
λm

λm∑
k = 1

∣∣∣V(1m)
k − V(2m)

k

∣∣∣ (3)

The DGCA R package (McKenzie et al., 2016) simply uses the
mean (or median) of the differences. A potential problem with
this approach is that positive and negative differences can cancel
out, thus losing power to detect DCMs where some correlations
increase while other correlations decrease between conditions.
Nevertheless, similar to their approach, we consider the paired
t-test statistic (mean of the differences divided by the standard
error of the mean difference):

pairedT
(

V(1m),V(2m)
)
=

[
1

λm

λm∑
k = 1

(
V(1m)

k − V(2m)
k

)]
∗

√
λm√

1
λm

∑λm
k = 1

(
V(1m)

k − V(2m)
k

)2

(4)

Similar to the paired t-test statistic, we also consider the Wilcoxon
signed rank test statistic, as implemented in the wilcox.test base R
function (R Core Team, 2018). The Wilcoxon signed rank test
statistic ranks the differences of |V(1m)

− V(2m)| and then sums
the ranks where the sign of (V(1m) − V(2m)) is positive.

Three additional statistics are compared that were also
considered in (Ruan et al., 2015): the Quadratic Assignment
Procedure (QAP), GCOR, and Generalized Hamming Distance
(GHD). These statistics are defined as:

QAP
(

V(1m),V(2m)
)
=

1
λm

λm∑
k = 1

V(1m)
k ∗V(2m)

k (5)

GCOR
(

V(1m),V(2m)
)

=

λm∑
k = 1

(V(1m)
k − V(1m)

)∗(V(2m)
k − V(2m)

) (6)

GHD
(

V(1m),V(2m)
)

=
1

λm

λm∑
k = 1

[
(V(1m)

k − V(1m)
)− (V(2m)

k − V(2m)
)
]2

(7)

Where V(1m) and V(2m) are the means of V(1m)
k and

V(2m)
k , respectively.

The test statistic from GSNCA (Rahmatallah et al., 2014)
is also considered in this manuscript. GSNCA does not fit
within the previously described framework of comparing the
difference (or product) of the vectors V(1m) and V(2m), thus we
refer the reader to the original paper for the formal definition.
Nevertheless, GSNCA can still be used to test whether the
network structure of a module differs between the two groups.
Briefly, GSNCA assigns a weight vector to each group of length
|Pm| (one weight per gene) and the test statistic is the sum of
the absolute differences of the weight vector between the two
groups. The ith gene is given a weight wi that is proportional to
the sum of the correlations between the ith gene with all other
genes. Thus, a gene that is highly correlated with many other
genes will be given a larger weight, which indicates the gene may
have regulatory importance.

We propose a new class of test statistics for identifying DCMs,
the p-norm difference test (“PND”), which uses the p-norm (or
LPnorm) of the differences between V(1m) and V(2m).

PND
(

V(1m),V(2m), p
)
=

(
1

λm

λm∑
k = 1

∣∣∣V(1m)
k − V(2m)

k

∣∣∣p)
1
p

(8)

The motivation of the PND test is, given a “partially differentially
co-expressed module” (a module where some of the correlations,
but not all, change between groups), then the higher the exponent
p, the less weight is given to the null correlations that do not
change between groups. Therefore, we expect the PND test with
a large value of p (e.g., p ≥ 4) to be more sensitive for detecting
DCMs where only a small proportion of the module correlations
change between conditions. In our simulations, we consider four
different values for the exponent p: 4, 6, 8, and 20. Note the
Dispersion Index is equivalent to the PND test with p = 2.

For all previously defined test statistics, the elements of V(gm)

are unlikely to be independent since they come from a structured
similarity matrix (e.g., a correlation matrix), thus it is challenging
to derive the sampling distribution under the null hypothesis
without imposing additional assumptions. Therefore, we use a
non-parametric permutation method to calculate p-values, which
accounts for this complex dependency structure. Specifically,
given a test statistic θm for the mth module, the permutation
p-value is defined as follows:

Frontiers in Genetics | www.frontiersin.org 3 May 2021 | Volume 12 | Article 630215

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-630215 May 12, 2021 Time: 17:48 # 4

Arbet et al. Comparison Differential Network Analysis Tests

1. Using the original gene expression matrices for each
group, X(1m) and X(2m), and for a particular similarity measure
of interest, calculate the similarity matrices S(1m) and S(2m). Then
calculate the test statistic θm for testing the null hypothesis in (1)

2. For b = 1, 2, . . . ,B (B total number of permutations):

a. Combine the gene expression matrices of both groups, X(1m)

and X(2m), and randomly shuffle (permute) the group labels,
to create new “permuted” gene expression matrices X(1m)(b)
and X(2m)(b).

b. Calculate the new similarity matrices S(1m)(b) and S(2m)(b)
based on the permuted gene expression matrices X(1m)(b) and
X(2m)(b)

c. Calculate the permuted test statistic θm(b) based on S(1m)(b)
and S(2m) (b) .
3. Calculate the permutation p-value

= [
∑B

b = 1 I(|θm(b)| ≥ |θm|)] + 1
B + 1

Lastly, we compare with three tests from the HDtest R
package: HD (Chang et al., 2017), CLX (Cai et al., 2013), and
Schott (Schott, 2007). These tests are designed to compare a high
dimensional covariance matrix between two groups. CLX and
Schott use asymptotic approximations to calculate p-values (and
are thus much faster than all other methods considered) while
HD uses a multiplier bootstrap method.

Similarity Measures for Constructing
Test Statistics
For the test statistics we are comparing, one needs to decide

what type of similarity measure will be used for S(gm)
ij (similarity

between any two genes i and j in the mth module of group g),
when testing the null hypothesis of (1). As previously mentioned,
several similarity measures have been used in practice: correlation
(Pearson, Spearman, or Kendall), partial correlation, mutual
information (Gill et al., 2010; Kumari et al., 2012; Kayano et al.,
2014; van Dam et al., 2018), and adjacency or TOM matrices
(Zhang and Horvath, 2005; Langfelder and Horvath, 2008).
Gaussian and semi/nonparametric graphical models have also
been used to measure the conditional dependence between each
pair of genes (i.e., partial correlations) (Friedman et al., 2008;
Wang et al., 2016; Zhang et al., 2018; Shojaie, 2020). It is beyond
the scope of this paper to compare all of these similarity measures
for constructing networks.

This paper will focus on comparing two particular types
of unconditional similarity measures: correlation vs. TOM
(Ravasz et al., 2002; Langfelder and Horvath, 2008). For
correlation, we will use Spearman’s correlation (rather than
Pearson’s correlation), based on recommendations from
other studies (Kumari et al., 2012; Siska and Kechris, 2017).
When calculating the similarity between two genes, S(gm)

ij ,
unconditional correlation only considers the relationship
between the two genes i and j, while ignoring any shared
relationships these genes might have with other genes. This is
true for all of the aforementioned measures of similarity, except
for partial correlation and TOM. In contrast to unconditional
correlation, TOM captures shared relationships or “neighbors”

between the two genes, as defined in Equation (9) (note the
signed version of the adjacency measure, aij, is defined in
Langfelder and Horvath, 2008).

TOMij =
aij +

∑
u=/ i,j aiuauj

min
(
ki, kj

)
+ 1− aij

(9)

ki =
∑

u
aiu, aij =


∣∣corrij

∣∣β if unsigned∣∣∣ 1 + corrij
2

∣∣∣βif signed

The intuition behind TOM is that if the two genes i and j
are connected to a common set of genes, then the similarity

between the two genes, S(gm)
ij , should increase (i.e., the greater

the number and strength of the connections that are shared by
genes i and j, the larger the TOM value will be for those two
genes). To calculate TOM, one must first calculate the correlation
matrix, then convert to an adjacency matrix (aij), and then
calculate the TOM matrix. We used the WGCNA R package
adjacency function with type = “signed”, power = 1, and the
TOMsimilarity function with TOMType = “signed.” We used
“signed” versions since we want to be able to detect correlations
that change from positive to negative between groups, when
calculating

(
V(1m)

k − V(2m)
k

)
in Equation (2) (e.g., for unsigned

versions, a correlation that changes from 0.5 to−0.5 would result
in a V(1m)

k − V(2m)
k = 0 which is undesirable when trying to

measure differential co-expression). When constructing the test
statistics, our motivation for comparing correlation versus TOM,
is to assess whether there is any benefit to averaging over the
connections with other genes “u,” as TOM does through the
numerator term

∑
u=/ i,j aiuauj. Thus, we keep the exponent β = 1

for both the correlation and TOM approaches. If we were to set
β=/ 1, than it would be unclear whether any differences in results
for correlation versus TOM were due to the exponent, or the
neighborhood averaging, and we are interested in the latter. In
summary, the motivation for comparing correlation vs. TOM for
constructing test statistics is to determine whether TOM is more
sensitive to detecting DCMs when the number (and strength) of
the connections that are shared between genes changes between
conditions (e.g., cases vs. controls).

Simulations
Simulations were used to compare the false positive rate (FPR)
and true positive rate (TPR) between all of the test statistics under
consideration, under several simplified correlation structures.
If methods do not perform well under these simple scenarios,
then they may not perform well under more complex network
structures. The rmvnorm function within the mvtnorm R package
(Genz et al., 2020) was used to simulate modules. Specifically,
when simulating a given module m, an N∗ |Pm| gene expression
matrix X(gm) (N subjects, |Pm| genes) is simulated for the gth
group from a multivariate normal distribution with a zero mean
vector, and a |Pm|

∗
|Pm| correlation matrix

∑(gm) (the variance
of each gene equals 1).
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Null Simulations
To assess the FPR, a variety of “null” simulations were conducted
where modules are simulated such that the correlation matrix
is identical between the two groups (i.e.,

∑(1m)
=

∑(2m)).
In Equation (10), two different correlation structures are
considered for the null simulations: compound symmetric
(“CS,” i.e., constant pairwise correlation “ρ” between genes),
and an “AR1” correlation structure where the correlation
between genes “ρ” decays exponentially as genes get further
apart.

CS correlation :


1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ

ρ ρ 1 . . . ρ
...
...
...
. . .

...

ρ ρ ρ . . . 1

 ,

AR1 correlation :


1 ρ ρ2 . . . ρP−1

ρ 1 ρ . . . ρP−2

ρ2 ρ 1 . . . ρP−3

...
...

...
. . .

...

ρP−1 ρP−2 ρP−3 . . . 1

 (10)

For the CS and AR1 null scenarios, the following
parameter values are considered: ρ = 0.3 or 0.7,
N = 25 samples per group, and P = 10, 50, or 100 genes
within each module. For each setting, 1,000 modules are
simulated, and 3,000 permutations are used to calculate
p-values.

A final scenario is considered with a “hub gene” network
structure, since hub genes are common in many biological
applications (Zhang and Horvath, 2005). Here there is a single
hub gene, where all other genes have a correlation of ρ = 0.7
with the hub gene. To allow for smaller transitive correlation,
the correlation between non hub genes is 0.4 in all simulations.
A larger sample size (50 or 100 per group) was used for the hub
gene simulations, since a larger sample size was needed in the
DCM simulations of section “CS Where Correlations Change
Direction,” in order to have higher TPR to compare between
methods. The goal for all of these null simulations is to determine
whether each method can control the FPR at level 0.05.

DCM Simulations
The DCM simulation framework is similar to section “Null
Simulations,” except now the correlation within a module differs
between the two groups (

∑(1m) =/
∑(2m)). Specifically,

∑(1m)

is fixed as one of the correlation structures from section “Null
Simulations” (CS, AR1, or hub), while

∑(2m) changes a randomly
selected proportion, γ, of the lower triangle of

∑(1m) (the same
changes are then made in the upper triangle to ensure the
correlation matrix remains symmetric). We consider γ = 0.1,
0.4, or 0.7 to represent small, medium and large effects. Five
scenarios are considered 1) CS correlation (ρ = 0.3 or 0.7) with
a proportion of correlations, γ, dropped to zero; 2) AR1 (ρ = 0.7)
correlation with a proportion of correlations dropped to zero;

3) CS correlation with a proportion of the correlations changed,
γ, such that half of the changed correlations increase 50% while
the other half decrease by 50%; 4) CS correlation (ρ = 0.5) with
a proportion of correlations, γ, changed to −0.5; and 5) hub
gene structure with a proportion, γ, of the hub gene correlations
dropped to zero. For scenario 3, we set ρ = 0.5, thus for the
subset of changed correlations, half of the correlations increase
to 0.75, while half decrease to 0.25. The motivation for scenarios
1–2 is to compare performance between methods given a module
with homogeneous (CS) vs. heterogeneous (AR1) correlations
that drop to zero. The motivation for scenario 3 and 4 is to
compare performance when the changed correlations increase/
decrease, or when the correlations change sign. The motivation
for scenario 5 is to simulate a module with very sparse changes
between groups: i.e., only one row in the correlation matrix
changes between groups (the hub gene correlations). Lastly,
when changing the population correlation matrices between the
two groups, the make.positive.definite function from the lqmm
R package (Geraci, 2014) is used to ensure that the changed
correlation matrix is positive definite, which is necessary in order
to simulate the modules from a multivariate normal distribution.

Case Study: Leukemia Microarray Data
All test statistics were compared using data from the leukemia
microarray study of Golub et al. (1999). The dataset was
downloaded from the multtest R package (Pollard et al., 2005),
and contains tumor gene expression measured on 3051 genes
from 27 subjects with acute lymphoblastic (ALL) and 11 subjects
with acute myeloid leukemia (AML). The data was preprocessed
according to Dudoit et al. (2002).

The mclust R package (Scrucca et al., 2016) was used to
derive data driven modules within the ALL group, then the
corresponding modules were obtained from the AML group
and tested for differential co-expression. Then the process was
repeated the other way: mclust was used to derive modules
in the AML group, then the corresponding modules were
obtained from the ALL group and tested for differential co-
expression. This approach to module derivation is similar to
that taken by CoXpress (Watson, 2006), however, CoXpress
uses hierarchical clustering where the researcher must choose
the height at which to cut the dendrogram, which determines
the number of modules. In contrast, mclust uses the Bayesian
Information Criterion (BIC) to determine the number of
modules. Specifically, BIC was used to choose between two
different diagonal cluster covariance structures (VII or EII),
and to estimate the number of modules. The VII and EII
covariance structures were chosen since they are the most
parsimonious covariance structures included in mclust, which
assume a diagonal covariance structure similar to k-means,
but with the benefit of being able to use BIC to choose the
number of modules. In addition, the assumption of a diagonal
covariance structure has been shown to work well in other high
dimensional supervised classification settings (Tibshirani et al.,
2003; Bickel and Levina, 2004). After deriving the modules,
10,000 permutations were used to calculate p-values and false
discovery rate (FDR) adjusted p-values were used to account
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for multiple testing (Benjamini and Hochberg, 1995). Example
network graphics were generated using Cytoscape version 3.8.2
(Shannon et al., 2003).

RESULTS

A summary of all simulations settings is given in
Supplementary Table 1.

Null Simulations
Tables 1–3 present the false positive rate (FPR) of each
method for the compound symmetric, AR1, and hub gene null
simulations, respectively. For each simulation scenario, a one
sample proportion test is used to assess whether the FPR of a
given test statistic differs from the nominal rate of 0.05. For the
one sample proportion tests, a p-value cutoff of 0.01 was used
due to the large number of statistical tests. Overall, only the HD,
CLX, and Schott methods were unable to control the FPR in
some scenarios, thus these methods were removed from the DCM
simulations of section “DCM Simulations,” in order to present a
fair comparison of the true positive rates (TPR). For example,
the maximum FPR observed was 16.9, 10.7, and 8.7% for the

HD, CLX, and Schott tests, respectively. All other tests were able
to control the FPR across all scenarios, and fluctuations from
the nominal rate of 0.05 across P or ρ values are likely due to
random variation.

DCM Simulations
For each simulation setting, a line graph was used to compare the
TPR between all methods for small, medium and large correlation
effects (corresponding tables are found in Supplementary
Material). The QAP and GCOR methods were removed from the
line graphs to save space, since they consistently have the lowest
TPR across all simulations.

CS With Correlations Dropped to Zero
Figure 1 and Supplementary Table 2 present TPR for the
compound symmetric DCM simulations where a proportion, γ,
of the correlations are randomly changed to zero between the
two groups. PND4 had a TPR within the top three highest TPR
13 times, followed by PND6 and DI (11), PND8 and MAD (9),
with all other methods appearing in the top three at most 6
times. The QAP, GCOR and GSNCA methods consistently had
the lowest TPRs, while PND20, MAD, pairedT, wilcoxSRT, and
GHD methods were often more in the middle, with the GHD

TABLE 1 | Compound symmetric null simulation false positive rates.

ρ P PND4 PND6 PND8 PND20 DI MAD pairedT wilcoxSRT GSNCA GHD QAP GCOR HD CLX Schott

0.3 10 0.045 0.051 0.047 0.048 0.051 0.049 0.058 0.053 0.049 0.050 0.055 0.059 0.077* 0.059 0.062

0.3 50 0.063 0.059 0.048 0.042 0.062 0.063 0.059 0.061 0.043 0.038 0.063 0.043 0.120* 0.073* 0.076*

0.3 100 0.060 0.063 0.062 0.047 0.060 0.058 0.057 0.055 0.049 0.054 0.052 0.050 0.169* 0.099* 0.087*

0.7 10 0.055 0.054 0.048 0.044 0.055 0.057 0.056 0.055 0.039 0.048 0.058 0.050 0.079* 0.026* 0.084*

0.7 50 0.038 0.037 0.040 0.046 0.037 0.039 0.040 0.043 0.052 0.045 0.051 0.054 0.077* 0.013* 0.070*

0.7 100 0.050 0.047 0.048 0.040 0.053 0.051 0.049 0.050 0.052 0.052 0.038 0.054 0.111* 0.019* 0.067

All settings use N = 25 subjects per group. ρ, compound symmetric correlation parameter; P, number of genes in each module. *False positive rate significantly differs
from the nominal rate of 0.05 (one-sample proportion test p-value < 0.01).

TABLE 2 | AR1 null simulation false positive rates.

ρ P PND4 PND6 PND8 PND20 DI MAD PairedT wilcoxSRT GSNCA GHD QAP GCOR HD CLX Schott

0.3 10 0.048 0.050 0.051 0.051 0.048 0.045 0.049 0.043 0.052 0.046 0.059 0.056 0.085* 0.069* 0.053

0.3 50 0.044 0.048 0.054 0.056 0.048 0.052 0.057 0.052 0.045 0.049 0.054 0.054 0.122* 0.094* 0.051

0.3 100 0.049 0.048 0.050 0.053 0.046 0.045 0.050 0.048 0.053 0.046 0.050 0.050 0.150* 0.107* 0.047

0.7 10 0.046 0.045 0.043 0.042 0.046 0.049 0.049 0.054 0.050 0.053 0.051 0.053 0.072* 0.045 0.063*

0.7 50 0.045 0.051 0.050 0.059 0.044 0.044 0.048 0.052 0.054 0.044 0.054 0.053 0.122* 0.079* 0.057

0.7 100 0.049 0.052 0.053 0.050 0.046 0.045 0.044 0.047 0.047 0.043 0.054 0.051 0.164* 0.105* 0.060

All settings use N = 25 subjects per group. ρ, AR1 correlation parameter; P, number of genes in each module. *False positive rate significantly differs from the nominal
rate of 0.05 (one-sample proportion test p-value < 0.01).

TABLE 3 | Hub gene null simulation false positive rates.

N ρ P PND4 PND6 PND8 PND20 DI MAD pairedT wilcoxSRT GSNCA GHD QAP GCOR HD CLX Schott

50 0.7 10 0.038 0.040 0.044 0.043 0.040 0.040 0.049 0.055 0.049 0.051 0.053 0.048 0.054 0.035 0.082*

100 0.7 50 0.064 0.058 0.058 0.050 0.060 0.059 0.057 0.053 0.051 0.039 0.063 0.054 0.056 0.031* 0.084*

N, number of subjects per group. ρ, correlation between the non-hub genes with the hub gene; P, number of genes in the module. *False positive rate significantly differs
from the nominal rate of 0.05 (one-sample proportion test p-value < 0.01).
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test having near zero TPR in Figure 1F. For most settings, there
was little difference in TPR between PND4-8 and DI (note DI
is equivalent to the PND with exponent 2, i.e., “PND2”). One
exception was the tenth row of Supplementary Table 2 (ρ = 0.7,
P = 10, γ = 0.1), where PND4 had 20% higher TPR than DI, while
PND6-20 had ≥ 30% higher TPR than DI.

AR1 With Correlations Dropped to Zero
Figure 2 and Supplementary Table 3 present TPRs for the AR1
DCM simulations where a proportion, γ, of the correlations are
randomly changed to zero between the two groups. In contrast
to the previous CS simulations, the AR1 simulations consider
a more heterogeneous set of population correlation values. In
addition, the AR1 simulations have more separation in the TPR
when comparing the PND tests with the DI and MAD tests.
PND4-20 were in the top 3 highest TPRs 6, 9, 8, and 3 times,
respectively, followed by DI which was in the top 3 one time. No
other methods had TPR in the top three for any scenarios. PND4-
8 were consistently near the top TPR, while PND20, DI, MAD,
and GHD had TPR near the middle, with pairedT, wilcoxSRT,
GSNCA, QAP, and GCOR consistently having the lowest TPR.

CS Where Half of the Changed Correlations Increase
50%, Half Decrease 50%
Figure 3 and Supplementary Table 4 present TPRs for
compound symmetric simulations where a proportion, γ, of the
correlations are randomly changed such that half of the changed
correlations increase by 50%, while the other half decrease by
50%. In contrast to previous sections, power was lower for most
methods, with GHD as the most powerful test in Figures 3A,B
and wilcoxSRT was the most powerful in Figure 3C. However,
GHD became less powerful as the number of genes increased,
with most other methods having TPR higher than GHD in
Figure 3C. The GHD had TPR in the top 3 for 7 settings,
followed by PND6 and PND8 (6), and three times for PND4,
PND20, and wilcoxSRT.

CS Where Correlations Change Direction
Supplementary Figure 1 and Supplementary Table 5 present
TPRs for compound symmetric (ρ = 0.5) simulations where a
proportion of correlations, γ, of the correlations are randomly
changed to –0.5. PND6 had TPR in the top 3 for all 9 settings,
followed by PND8 (8), DI, MAD, wilcoxSRT (6). Similar to
section “CS Where Half of the Changed Correlations Increase
50%, Half Decrease 50%,” the TPR for the GHD test substantially
decreased as the number of genes increased. The PND4-8 tests,
DI and MAD usually had the highest TPRs, with the PND tests
having higher TPR when only 10% of the correlations were
changed between groups.

Hub Gene Setting Where a Proportion of the Hub
Gene Correlations Are Dropped to 0
Figure 4 and Supplementary Table 6 present TPRs for the hub
gene correlation structure where a proportion, γ, of the hub gene
correlations are dropped to zero. PND6 was in the top three
highest TPRs 6 times, followed by PND8 (5), PND20 (4), GHD
(3), and PND4 (1). No other methods had TPR in the top three for

any scenarios. For most scenarios the PND and GHD tests have
substantially higher TPR compared with DI, MAD, and the other
remaining tests. Having a higher exponent in the PND tests (6
or higher) resulted in higher TPR compared to PMD4 when only
10% the hub gene correlations changed between the two groups.

Comparing Correlation Versus TOM Similarity
Measures
As explained in section “Similarity Measures for Constructing
Test Statistics,” we were interested in comparing two different
similarity measures for constructing the test statistics: correlation
versus the TOM. Given that TOM has a higher computational
cost compared to correlation, results comparing with TOM are
only shown for a subset of tests (PND6, DI, MAD, GHD) and
simulation settings, using 100 simulation replicates and 2,000
permutations. Supplementary Figure 2 displays a line graph
comparing the TPR in correlation-based methods (solid lines) to
their TOM counterparts (dashed lines). In nearly all simulation
settings, the TOM methods had lower TPR than their correlation
counterparts. Two exceptions were: Supplementary Figure 2A
when γ = 0.7, PND6 had slightly higher TPR when using TOM
compared to correlation; and Supplementary Figure 2E where
the TPR of GHD was higher when using TOM, particularly
when γ = 0.1. Overall, given the increased computational cost
of TOM, and the fact that TOM had lower TPR in nearly all
simulation settings, the TOM based methods are omitted from
the remainder of the paper.

Overall Comparison of Tests Across All Simulation
Studies
In summary, we evaluated 51 different simulation scenarios and
the median TPR across these scenarios was greater than 0.70
for all PND methods (Supplementary Table 7). The DI and
MAD methods followed with median TPR of 0.63 and 0.54,
respectively. As alternative summaries, we also examined which
methods ranked in the top three of all methods based on highest
TPR or whether their TPR was within 5% of the highest TPR
value (Supplementary Table 7). Based on these metrics PND4,
PND6 and PND8 were in these top lists 58–80% of the times,
followed by PND20, DI, MAD, WilcoxSRT and GHD, which were
in these top lists 25–51% of the time.

Case Study: Leukemia Microarray Data
We used the Golub leukemia data set to illustrate the application
of DiNA, in addition to the visualization of module results.
Supplementary Table 8 reports the following information for
each of 86 derived modules: number of genes, p-values and FDR
adjusted p-values for a subset of the top performing tests from
our simulations (PND6, DI, MAD, GHD). Note when deriving
the modules in the ALL group, BIC selected 49 modules with the
VII covariance structure. The median module size had 64 genes
(25th and 75th quantiles: 35 and 79 genes). When deriving the
modules in the AML group, BIC selected 37 modules with the EII
covariance structure. The median module size had 34 genes (25th
and 75th quantiles: 20 and 133 genes).

Figures 5A,B compares the –log10 p-values among the
PND6, DI, MAD, and GHD tests. The PND6, DI, and MAD
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FIGURE 1 | True positive rates for the compound symmetric DCM simulations with a proportion of correlations dropped to zero between the two groups. Solid lines
refer to the proposed PND tests, while dashed lines refer to pre-existing methods. (A–C) Compound symmetric correlation parameter, ρ= 0.3, and the number of
genes in a module (“#Genes”) is 10, 50, or 100. (D–F) Compound symmetric correlation parameter, ρ= 0.7, and the number of genes in a module (“#Genes”) is 10,
50, or 100. N=25 samples per group.

FIGURE 2 | True positive rates for the AR1 DCM simulations with a proportion of correlations dropped to zero between the two groups. Solid lines refer to the
proposed PND tests, while dashed lines refer to pre-existing methods. (A–C) AR1 correlation parameter, ρ = 0.7, and the number of genes in a module (“#Genes”) is
10, 50, or 100. N = 25 samples per group.

tended to produce similar p-values, with GHD generally having
larger p-values, especially for the AML derived modules.
Supplementary Figure 3 presents a Venn diagram for the total
number of modules with FDR adjusted p-values < 0.01 for each
method. The DI and MAD methods had the most overlap with
9 modules that were only identified using these two methods.

Of interest is that 2 modules were identified using the PND6
method only and 1 module that was only identified using the
MAD method. For the nine modules only identified using the
DI and MAD methods, the PND6 FDR ranged from 0.01 to 0.03
with unadjusted p-values well within the range of the unadjusted
p-values for DI and MAD. Likewise, for the MAD only and the
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FIGURE 3 | True positive rates for the compound symmetric DCM simulations with a proportion of correlations changed between groups such that half of the
changed correlations increased by 50%, while the other half decreased by 50%. Solid lines refer to the proposed PND tests, while dashed lines refer to pre-existing
methods. (A–C) Compound symmetric correlation parameter, ρ = 0.5, and the number of genes in a module (“#Genes”) is 10, 50, or 100. N = 25 samples per group.

FIGURE 4 | True positive rates shown for the hub gene DCM simulations with a proportion of hub-correlations dropped to zero; true positive rates shown for all
methods. Solid lines refer to the proposed PND tests, while dashed lines refer to pre-existing methods. (A–B) N=50 or 100 samples per group, correlation between
non hub-genes with the hub gene is ρ = 0.7, and the number of genes (“#Genes”) is 10 or 50.

PND6 only modules, the FDR ranged from 0.01 to 0.04 for the
other methods (not including GHD).

Figure 6 contains two examples of differential co-expression
in this data. For ease of visualization, we focused on modules
with less than 50 genes that were differentially expressed (FDR<
0.01) in at least three of the four methods explored. This resulted
in 8 modules where all modules were differentially co-expressed
using PND6, DI, and MAD and none were differentially co-
expressed using the GHD method. The module among the 8
with the smallest p-value using the GHD method (ALL_19)
and the module with the largest p-value using the GHD
method (AML_29) were chosen for visualization. Figures 6A,B
is a module that was identified in the ALL subjects that was
differentially co-expressed in the AML subjects. In the original
module (Figure 6A) all of the probe sets are positively correlated.
Within the AML subjects, many of the correlations increased in
intensity (light red to bright red), some correlations were dropped
to approximately zero, and a few went from a positive association
(red line) to a negative association (blue line). Figures 6C,D

is a module that was originally identified in the AML subjects
and was differentially co-expressed in the ALL subjects. For this
module, most of the correlations among the probe sets dropped
to values close to zero indicating a co-expression network that
was only active in the AML group and not in the ALL group.
See Supplementary Figures 4, 5 for correlation heatmaps as
additional visualizations of differential co-expression in ALL_19,
AML_29, and several other example modules with FDR adjusted
p-values< 0.01.

Because PND6 did marginally better in the simulation studies,
we further explored the module identified (FDR < 0.01) only
when using the PND6 method whose unadjusted p-values in all
other methods were greater than or equal to 0.01, ALL_24. Unlike
in the modules depicted in Figure 6, the co-expression patterns
of only a few genes in ALL_24 changed dramatically rather
than all relationship, i.e., edges, changing in a coordinated way
(Supplementary Figures 6A–C). To quantify this observation,
we calculated the median difference in correlations for each gene.
A large spread of the median difference between genes within
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FIGURE 5 | –log10 p-values of modules derived in leukemia microarray dataset. Hierarchical clustering was used to sort the modules and tests. (A) 49 modules
derived in ALL group. (B) 37 modules derived in AML group.

a module would indicate connections for only few genes are
changing dramatically, but most genes maintain their original
connections (similar to simulation 5). When compared to a
module that is not differentially co-expressed (ALL_3) and the
two differentially co-expressed modules from Figure 6, the PND6
exclusive module, ALL_24, has a highly skewed distribution of
median correlation differences, i.e., only associations with a few
genes are dramatically altered (Supplementary Figure 6D). This
trend held true among all modules as the ALL_24 had the largest
estimated skewness among all modules (skewness = 2.87).

Within ALL_24, cathepsin G (CTSG) had the largest median
difference (median difference = 0.90). Many of its edges changed
from strong positive correlations to strong negative correlations
among genes. CTSG is a well-established therapeutic target for
both AML and ALL cancers (e.g., Jin et al., 2013; Khan et al.,
2017). In a functional enrichment through EnrichR (Kuleshov
et al., 2016), cellular response to cytokine stimulus (GO:0071345)
was significantly enriched (adjusted p-value < 0.01) among the
genes within ALL_24. Nine of the 59 genes within the module
were associated with this GO term. Although CTSG was not
associated directly with this GO term, its role in inflammation
can easily be connected to the other genes (e.g., Gao et al., 2018).
These results suggest that the role of CTSG in the inflammatory
response to leukemia may differ between AML and ALL. Not
only does this differentially co-expressed module indicate that
this pattern of differential co-expression in present in “real” data,
but it also indicates that this pattern can be biologically relevant.

DISCUSSION

Statistical networks provide a convenient framework for
representing the interactions between multiple genes (or
other molecular features). Differential network analysis (DiNA)
quantifies how this network structure differs between two or
more groups/phenotypes (e.g., disease subjects and healthy
controls), and is a growing field of research (de la Fuente,
2010; Kayano et al., 2014; Singh et al., 2018; Shojaie, 2020).
One major application of DiNA is to identify “modules”
(subsets of 3 or more genes), where the network connections
within a module differ between phenotype groups, known as
differentially co-expressed modules (DCMs). Although several
statistical tests have been proposed for identifying DCMs
(Watson, 2006; Choi and Kendziorski, 2009; Gill et al., 2010;
Tesson et al., 2010; Rahmatallah et al., 2014), there is a lack of
simulation studies comparing such methods. Thus, the primary
motivation of this study was to compare existing methods via
simulations, as well as the proposed framework of the p-norm
difference test (PND) which encompasses existing methods
such as DI and MAD.

In the “Null Simulations” section (where the network structure
within the module was identical between groups), all of the
permutations based test statistics were able to control the FPR
(PND4-20, DI, MAD, pairedT, wilcoxSRT, GSNCA, GHD, QAP,
and GCOR). However, the three tests from the HDtest R package
(CLX and Schott use asymptotic approximations to calculate
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FIGURE 6 | Example differentially expressed networks from the leukemia microarray data. For all networks, circles present individual probe sets. Labels are gene
symbols for probe sets with annotation information in the Ensembl database. Otherwise, the original probe set identifier from Affymetrix was used. Red lines
connecting circles indicate a positive correlation (correlation coefficient > 0.3) between the two probe sets. Blue lines connecting circles indicates a negative
correlation between the two probe sets (correlation coefficient < –0.30). The intensity of the color and thickness of the lines are associated with the magnitude of the
correlation between the two probe sets. (A) Associations between probe sets among the ALL subjects for Module 19 originally identified among the ALL subjects
and (B) Associations between probe sets among the AML subjects for Module 19 originally identified among the ALL subjects. This module was significantly
differentially co-expressed using the PND6 method (FDR < 0.01), the DI method (FDR < 0.01), and the MAD method (FDR < 0.01). It was borderline significant
using the GHD method (FDR = 0.06). (C) Associations between probe sets within the AML subjects for Module 29 originally identified among the AML subjects and
(D) Associations between probe sets within the ALL subjects for Module 29 originally identified among the AML subjects. This module was significantly differentially
co-expressed using the PND6 method (FDR < 0.01), the DI method (FDR < 0.01), and the MAD method (FDR < 0.01). It was not significant with the GHD method
(unadjusted p-value = 0.84; FDR = 0.90).

p-values, while HD uses a “multiplier bootstrap” method) were
often unable to control the FPR at level 0.05, and thus were
omitted from the remainder of the manuscript. It is possible these
methods may control the FPR given larger sample sizes, however,
even with 50 or 100 samples per group (Table 3), the CLX and
Schott tests did not control the FPR, although the HD test did
control the FPR in these settings.

In the DCM simulations, it is worth noting that the TPRs of
methods depend on the network structure. In the homogenous
correlation structure of section “CS With Correlations Dropped
to Zero”, the PND4-8, DI and MAD tests had the highest
TPRs. In the more heterogeneous correlation structure of section
“AR1 With Correlations Dropped to Zero”, there was greater
separation in TPR when comparing PND4-20 with DI and MAD,
with PND4-20 having the highest TPRs. In section “CS Where
Half of the Changed Correlations Increase 50%, Half Decrease
50%”, the GHD test had the highest TPR in most settings, with
the wilcoxSRT and PND tests surpassing the GHD as the number
of genes increased. In the hub gene simulations of section “CS
Where Correlations Change Direction,” the PND4-20 and GHD
tests had the highest TPR.

Despite differences based on network structure, on average,
test statistics in the PND framework were consistently the best
performing (PND4-20, DI, MAD). In many of the scenarios,
we found advantages of intermediate values for the power (e.g.,
PND 6 and 8) Thus for the question of what the exponent value
should be for PND, we recommend PND6 as a default choice but
recommend users to explore other power values based on their
particular data sets.

One of the difficulties of evaluating differential co-expression
techniques is to determine if the simulated scenarios are
biologically relevant in any or all experimental designs. We
have shown the existence of the hub gene framework in the
AML/ALL case study. However, we did not observe patterns of
differential co-expression in the AML/ALL dataset similar to all
simulation scenarios. This observation does not indicate these
simulation scenarios are not biologically relevant, they were just
not observed under these experimental conditions.

This study is not without limitations, thus we identify five
areas for future research. (1) Given that the TPRs of methods
depends on the true network structure, it would be interesting to
consider methods that combine multiple test statistics, in order to
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increase sensitivity across a greater variety of network structures.
(2) Further research is needed for comparing other types of
similarity measures for constructing the test statistics, such
as various types of “conditional” partial correlation measures
(Shojaie, 2020), or settings where using the TOM may improve
power compared to correlation (3). Although one may use
predefined modules from an existing database (e.g., KEGG,
Kanehisa and Goto, 2000; GO; Ashburner et al., 2000), further
research is needed to compare clustering methods for deriving
data dependent modules, and determining the optimal number
of modules. In section “Case Study: Leukemia Microarray Data,”
we used a similar approach to CoXpress (Watson, 2006) but with
model based clustering and BIC to select the number of modules.
Instead of performing the clustering twice, as in CoXpress,
DiffCoEx (Tesson et al., 2010) uses hierarchical clustering only
once where the distance matrix is the TOM of the difference
between two correlation matrices. WGCNA is another approach
for deriving network modules using hierarchical clustering with
a dynamic tree-cutting algorithm for choosing the number
of modules (also used by DiffCoEx). However, the authors
admit that it remains an open research question for how to
optimize the tree-cutting parameters to determine the number
of modules (Langfelder and Horvath, 2008; Langfelder et al.,
2008). (4) This manuscript focused on comparing methods
for identifying DCMs between two phenotype groups. Further
research is needed for developing methods to identify DCMs
for quantitative outcomes, or for categorical outcomes with
more than two groups. (5) Lastly, more research is needed for
differential network analysis when integrating multiple different
types of molecular features (e.g., transcriptome, metabolome,
microbiome, proteome). Some existing methods include: (Class
et al., 2018; Erola et al., 2019; Shi et al., 2019).

In summary, several test statistics for identifying differentially
co-expressed modules (DCMs) were compared via simulations
and a leukemia microarray study (Golub et al., 1999). Through
extensive simulations, tests in the PND framework had TPR
that was competitive with and often higher than the other
methods, while controlling the FPR. When comparing two
different similarity measures for constructing the test statistics,
correlation versus TOM, we found little benefit of using the
more computationally expensive TOM. An approach to deriving
data dependent modules was demonstrated using the dataset
of (Golub et al., 1999), by using Gaussian mixture models

with BIC to select the number of modules. However, further
research is needed to compare clustering methods for deriving
data dependent modules. Nevertheless, after obtaining a list
of modules (predefined or data driven), we recommend the
user take an intermediate power in the PND framework, such
as PND6, for identifying DCMs. All methods considered are
implemented in the discoMod R package, available at https://
github.com/arbet003/discoMod.
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