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Polygenic risk score (PRS) has been shown to be predictive of disease risk such as
type 2 diabetes (T2D). However, the existing studies on genetic prediction for T2D only
had limited predictive power. To further improve the predictive capability of the PRS
model in identifying individuals at high T2D risk, we proposed a new three-step filtering
procedure, which aimed to include truly predictive single-nucleotide polymorphisms
(SNPs) and avoid unpredictive ones into PRS model. First, we filtered SNPs according
to the marginal association p-values (p ≤ 5 × 10−2) from large-scale genome-wide
association studies. Second, we set linkage disequilibrium (LD) pruning thresholds (r2)
as 0.2, 0.4, 0.6, and 0.8. Third, we set p-value thresholds as 5 × 10−2, 5 × 10−4,
5 × 10−6, and 5 × 10−8. Then, we constructed and tested multiple candidate PRS
models obtained by the PRSice-2 software among 182,422 individuals in the UK
Biobank (UKB) testing dataset. We validated the predictive capability of the optimal PRS
model that was chosen from the testing process in identifying individuals at high T2D risk
based on the UKB validation dataset (n = 274,029). The prediction accuracy of the PRS
model evaluated by the adjusted area under the receiver operating characteristics curve
(AUC) showed that our PRS model had good prediction performance [AUC = 0.795,
95% confidence interval (CI): (0.790, 0.800)]. Specifically, our PRS model identified 30,
12, and 7% of the population at greater than five-, six-, and seven-fold risk for T2D,
respectively. After adjusting for sex, age, physical measurements, and clinical factors,
the AUC increased to 0.901 [95% CI: (0.897, 0.904)]. Therefore, our PRS model could
be useful for population-level preventive T2D screening.

Keywords: type 2 diabetes, UK Biobank, screening, prediction model, polygenic risk score

INTRODUCTION

Type 2 diabetes (T2D) is a global public health problem. Identifying individuals at high risk for
T2D for early targeted detection, prevention, and intervention is of great public health significance.
Besides the well-known behavioral and environmental factors, T2D has a strong genetic
component (Zimmet et al., 2014). Genome-wide association studies (GWASs) have successfully
identified many common genetic variants that confer T2D susceptibility (Burton et al., 2007;
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Scott et al., 2007; Palmer et al., 2012; Visscher et al., 2017; Pärna
et al., 2020). However, all of these common genetic variants
discovered by GWAS can only be able to account for a small
proportion of the total heritability (McCarthy, 2010; Herder and
Roden, 2011; Prasad and Groop, 2015) and thus lead to low
predictive power. Polygenic risk score (PRS) that aggregates the
information of many common single-nucleotide polymorphisms
(SNPs) weighted by the effect size obtained from large-scale
discovery GWAS has been used to predict T2D risk. PRS is
expected to have better predictive power and the potential to
improve the performance in T2D risk assessment (Wray et al.,
2013; Khera et al., 2019).

The most commonly used method for constructing PRS is
called clumping and thresholding (C + T) [or pruning and
thresholding (P + T)] method, which applies two filtering steps.
To retain SNPs that weakly correlated with each other, it first
forms clumps around SNPs by using linkage disequilibrium
(LD)-driven clumping procedure (Privé et al., 2019). Each
clumping contains all SNPs within 250 kb of the index SNPs,
and the degree of LD is determined by a provided pairwise
correlation (r2). Then, it removes SNPs with p-values obtained
from a disease-related GWAS larger than a given threshold.
C+T is regarded as the most intuitive and easiest method to
generate PRS. There are two common software programs (i.e.,
PLINK and PRSice) that can be used to implement C + T
method. Recently, Choi et al. developed a new software PRSice-2
from https://www.prsice.info (Choi and O’Reilly, 2019), which is
demonstrated to be more computationally efficient and scalable
than alternative PRS software while maintaining comparable
predictive power.

Several researchers have tried to construct PRS models based
on the C + T method for predicting T2D risk by PLINK or
PRSice software. The earliest PRS model assessed the combined
risk of only three variants that had been published to predispose
to T2D in 6,078 individuals. The area under the receiver
operating characteristics curve (AUC) of their PRS model was
0.571 (Weedon et al., 2006). Thereafter, other researchers have
attempted various strategies to improve the predictive ability
of the PRS model, including increasing the number of SNPs,
adjusting for sex and age, some physical measurements [e.g.,
body mass index (BMI), diastolic blood pressure (DBP), and
systolic blood pressure (SBP)] (Lango et al., 2008) and clinical
factors [e.g., triglyceride level (TL), glucose level (GL), and
cholesterol level (CL)] (Lyssenko et al., 2008; Meigs et al.,
2008; Vassy et al., 2014). The AUC of those improved PRS
models increased to some extent (range from 0.600 to 0.800).
However, there are still several limitations. First, their sample
sizes are not large (range from 2,776 to 39,117). Second, they
only take a small number of SNPs (range from 3 to 1,000)
that passed the “GWAS significant variant” derivation strategy
(p ≤ 1 × 10−8 and r2 < 0.2 ) into account, which is too strict
and might miss predictive SNPs. Amit et al. (Khera et al.,
2018) constructed the PRS model across the whole genome and
finally included a total of 409,258 individuals with 6,917,436
SNPs from the UK Biobank (UKB) project. The AUC was
0.730 after adjusting for age, sex, and the first four principal
components for ancestry. This strategy has a slight improvement

in prediction accuracy; however, the computational burden is
relatively large.

To further explore the prediction capability of the PRS model
in identifying high-risk individuals for T2D, we proposed a
new strategy to construct PRS model by the following three-
step filtering procedure to consider a statistical compromise
between signal and noise. First, rather than including SNPs
across the whole genome, we selected a subset of SNPs by
a lenient significance threshold (p ≤ 5 × 10−2) from a huge
number of SNPs included in large-scale GWASs. Second, we
set r2 equal to 0.2, 0.4, 0.6, and 0.8 as candidate LD pruning
thresholds according to Khera et al. (2018). Third, we set p-value
thresholds as 5 × 10−2, 5 × 10−4, 5 × 10−6, and 5 × 10−8 .
After applying the above thresholds to the GWAS summary data,
a total of 16 candidate PRS models were then generated based on
the PRSice-2 software in the target samples. We conducted testing
using the UKB testing dataset (n = 182,422) to avoid the model
overfitting issue. Finally, we chose the best predictive PRS model
among a set of candidate PRS models and evaluated it in the
UKB validation dataset (n = 262,751). We also considered non-
genetic risk factors, including sex, age, physical measurements,
and clinical factors to further increase prediction accuracy. Real
data analysis showed that our PRS model outperforms previous
prediction models for T2D.

MATERIALS AND METHODS

Study Design and Population
Our study was conducted based on the UKB project1, one of
the largest prospective cohort studies (Conroy et al., 2019).
Nearly half a million participants aged 40–69 years were
enrolled from the United Kingdom at the time of their baseline
assessment visited from 2006 to 2010 (Sudlow et al., 2015).
A wide kind of physical measures (e.g., height, weight, blood
pressure, and spirometry) and biological samples (e.g., blood,
urine, and saliva) were collected. It then converted the limited
information contained in the biological samples into widely
shared cohort-wide genotyping (Bycroft et al., 2018) and whole-
exome sequencing data (Khera et al., 2019). More details about
the study design, method, and participants of the UKB project
have been provided elsewhere (Sudlow et al., 2015).

A total of 487,409 individuals with available genotyping array
and altogether 625,394 variants were originally collected from
UKB. We conducted strict quality control (QC) steps described
by Marees et al. (2018) based on PLINK 2.0 from https://www.
cog-genomics.org/plink2. Specifically, we first filtered out SNPs
and individuals with very high levels of missingness. Based on
a relaxed threshold of 0.2 (>20%), we removed 89,752 variants
and 30,855 subjects. There were also 262,751 SNPs removed
with minor allele frequency <0.03 and 1,204 SNPs removed
with a p-value of Hardy–Weinberg equilibrium Fisher’s exact test
< 1× 10−6. Finally, 456,451 individuals and 271,687 variants
passed QC and were considered in the following analysis.

1http://biobank.ctsu.ox.ac.uk/crystal/
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The ascertainment of T2D was based on a composite
of self-report, the International Classification of Diseases,
Ninth Revision (ICD-9) codes of 25000 and 25010, and the
International Classification of Diseases, Tenth Revision (ICD-
10) code of E11. The individual-level data of T2D-related
risk factors, including sex, age, physical measures [e.g., BMI,
waist circumference (WC), DBP, and SBP] and clinical factors
[e.g., GL, CL, TL, high-density lipoprotein (HDL), low-density
lipoprotein (LDL)] were also collected from the UKB project.
We further imputed the inevitably missing values of these
factors by their means. To analyze individuals with a relatively
homogeneous ancestry, the population was constructed centrally
based on a combination of self-reported ancestry and genetically
confirmed ancestry using the first 10 principal components
(i.e., PC1, ..., PC10). To construct, test, and further validate the
robustness of the polygenic predictor of T2D, we randomly
divided the overall data into two parts, i.e., the testing and
validation dataset. We assigned 40% of all individuals as the UKB
testing dataset (n = 182,422) and the remaining 60% as the UKB
validation dataset (n = 274,029). Other ratios were also tried to
divide the testing and validation datasets, i.e., 30–70%, 50–50%,
60–40%, and 70–30%. Individuals in the UKB validation dataset
were distinct from those in the UKB testing dataset. The detail of
the study design is described in Figure 1.

Genome-Wide Polygenic Score
Construction, Testing, and Validation
The PRS model provides a quantitative metric of an individual’s
inherited risk based on the cumulative impact of many SNPs.
Generally, the PRS model can be unweighted or weighted.
Suppose that we have n subjects and K SNPs that passed the first-
step filtering procedure. The unweighted PRS model is defined as,

PRSu = G1 + ....,GK ,

where Gk(k = 1, ....,K) denotes the number of risk alleles for
each genetic variant coded as 0, 1, or 2 under the additive
genetic model. For the weighted PRS model, weights are generally
assigned to each genetic variant according to the strength of
association with a given disease. The weighted PRS model can be
written as,

PRSw = β̂1G1 + . . ., β̂KGK ,

where β̂k
(
k = 1, . . . ,K

)
is the estimate of marginal genetic

effect in the external large-scale GWAS. Both unweighted or
weighted PRS models can be implemented by the PRSice-2
software (Choi and O’Reilly, 2019).

For PRS model construction, we used summary statistics
from a T2D GWAS conducted among 60,786 participants with
12,056,346 SNPs of European ancestry2 (Morris et al., 2012).
Note that the UKB samples did not overlap with the samples
from discovery GWAS. We first selected SNPs according to
their association p-values (p ≤ 5 × 10−2) obtained from the
above GWAS, and 50,224 SNPs remained. We then considered
multiple r2 thresholds (0.2, 0.4, 0.6, and 0.8) according

2http://diagram-consortium.org/

to Khera et al. (2018) and p-value thresholds (5 × 10−2,5 ×
10−4,5 × 10−6, and 5 × 10−8) to conduct the second and third
filtering procedures also on the DIAGRAM summary dataset.
A total of 16 candidate PRS models were created for T2D based
on the UKB testing dataset with 182,422 participants.

The PRS model with the best discriminative accuracy was
determined based on the maximal AUC in the following
logistic regression model adjusting for sex, age, and the first 10
principal components of ancestry. We use X1, X2 and PC =
(PC1, . . . , PC10)

T to represent the value of sex, age, and the
first 10 principal components of ancestry, respectively, where T
denotes the transpose of a vector or matrix. Let Y be the T2D
status with 0 and 1 representing control and case. The predictive
model for T2D can be represented as,

Logit [P (Y = 1 |X1, X2, X3 , PRSw)]

= β0 + β1X1 + β2X2 + βPCPC + βgPRSw,

where β0 is the intercept, and β1, β2, βPC =

(βPC1, . . ., βPC10), and βg are the regression coefficients for
X1, X2, PC, and PRSw. Then, the AUCs could be calculated
with trapezoids (Fawcett, 2006), and their 95% confidence
intervals (CI) could be computed by Delong’s method (DeLong
et al., 1988). Both AUC and their CI could be implemented
directly by the “pROC” package3 within R 3.6.34. More details
about this package are provided elsewhere (Robin et al., 2011).
The best score created in the testing dataset carried forward into
subsequent validation step.

Statistical Analysis in Validation Dataset
Baseline characteristics of the study population were described
as means ± standard deviations (M ± SD) or percentages.
Two independent sample t-test or chi-square test was used to
compare the baseline characteristics between the UKB testing
and validation datasets. Wilcoxon signed-rank test was applied
to give more information about the difference of PRSs between
the individuals with T2D and individuals without T2D. The
relationship between PRS and T2D was determined in the UKB
validation dataset based on logistic regression model adjusting
for sex, age, and the first 10 principal components of ancestry
(model1), which can be represented as,

T2D ∼ PRS+ sex+ age+ PC.

We stratified 274,029 participants in the UKB validation dataset
as 100 groups according to the percentiles of the PRS, and then,
the prevalence of T2D could be determined within each group.

To further observe the contribution of PRS, sex, age, physical
measurements, and other clinical risk factors to T2D, we provided
other four types of prediction models:

model2 : T2D ∼ sex+ age+ PC; (1)

model3 : T2D ∼ PRS; (2)

3https://cran.r-project.org/web/packages/pROC/index.html
4https://cran.r-project.org/bin/macosx/
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FIGURE 1 | Flowchart for the polygenic risk score (PRS) model for type 2 diabetes.

model4 : T2D ∼ sex+ age+PC+BMI+GL

+CL+HDL+ LDL+TL+WC+DBP+ SBP; (3)

model5 : T2D ∼ PRS+ sex+ age+PC+BMI+GL+CL

+HDL+ LDL+TL+WC+DBP+ SBP. (4)

We have checked and did not find the presence of collinearity
among the above variables. All of the above statistical analyses
were conducted using R version 3.6.3 software.

RESULTS

A total of 456,451 participants collected in UKB were divided into
the UKB testing dataset (n = 182,422) and the validation dataset
(n = 274,029) randomly. The mean ages of participants were
57 years old, and 54% were female in both testing and validation
datasets. There were nearly 5.494% (n = 10,023) participants
who were cases in the testing dataset and 5.575% (n = 15,277)
in the validation dataset. All of these factors were comparable
at baseline. The details of baseline characteristics are shown
in Table 1.

To obtain an optimal PRS model, we generated a total of
16 candidate PRS models implemented by PRSice-2 software.
We evaluated the performance of these 16 PRS models in

the UKB testing dataset and chose the best one for further
validation analysis. The AUCs of these 16 candidate PRS models
ranged from 0.691 to 0.792 (Table 2). We selected the best PRS
model with the highest AUC [AUC = 0.792, 95% CI: (0.787,
0.796)] based on 25,454 SNPs when p ≤ 5 × 10−2 and r2 <
0.2. The AUCs of different ratios of the testing and validation
datasets are shown in Table 3. We can see that the AUCs of
different ratios were very close to each other, which ranged from
0.791 to 0.795. The AUC of the 40–60% ratio had the best
performance in the validation dataset [AUC = 0.795, 95% CI:
(0.790, 0.800)]. Additional details of PRS model construction,
testing, and validation are provided in Figure 1.

To facilitate interpretation, we scaled PRS to have zero mean
and one standard deviation. We investigated whether our PRS
model could identify individuals at high T2D risk. Figure 2
showed that the median of the standardized PRS was 0.941 for
individuals with T2D versus−0.056 for individuals without T2D,
a difference of 0.997 (p < 0.00001). From Figure 3A, we found
that the standardized PRS approximated a normal distribution
across the population with the empirical risk of T2D rising
sharply in the right tail of the distribution. The PRS model
identified nearly 30% of the population at greater than or equal
to fivefold risk, 12% of the population at greater than or equal to
sixfold risk, and the top 7% of the population at greater than or
equal to sevenfold increased risk for T2D shown in Figure 3A.
Then, we stratified the population according to the percentiles of
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TABLE 1 | Baseline characteristics of the UK Biobank (UKB) testing dataset and the UKB validation dataset (M ± SD or %).

Variable UKB testing (n = 182,422) UKB validation (n = 274,029) Statistics and p-value

Sex

Male (%) 83,200 (45.609) 125,670 (45.860) x2 = 2.783, p = 0.095

Female (%) 99,222 (54.391) 148,359 (54.140)

Age (years) 56.777 ± 8.020 56.809 ± 8.009 t = −1.341, p = 0.179

Physical measurements

BMI (kg/m2) 27.388 ± 4.758 27.404 ± 4.765 t = −1.087, p = 0.277

WC (cm) 90.250 ± 13.485 90.306 ± 13.505 t = −1.135, p = 0.175

DBP (mmHg) 82.174 ± 10.311 82.171 ± 10.313 t = −0.118, p = 0.906

SBP (mmHg) 139.924 ± 19.000 139.917 ± 19.000 t = −0.116, p = 0.908

Clinical factors

CL (mmol/L) 5.711 ± 1.115 5.710 ± 1.117 t = −0.314, p = 0.753

GL (mmol/L) 5.119 ± 1.134 5.118 ± 1.132 t = 0.150, p = 0.881

TL (mmol/L) 1.753 ± 1.002 1.753 ± 1.000 t = −0.010, p = 0.992

HDL (mmol/L) 1.452 ± 0.357 1.453 ± 0.358 t = −0.625, p = 0.532

LDL (mmol/L) 3.556 ± 0.839 3.556 ± 0.841 t = −0.083, p = 0.934

Type 2 diabetes

Case (%) 10,023 (5.494) 15,277 (5.575) x2 = 1.342, p = 0.247

Control (%) 172,399 (94.506) 258,752 (94.425)

BMI, body mass index; CL, cholesterol level; DBP, diastolic blood pressure; GL, glucose level; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SBP, systolic
blood pressure; TL, triglyceride level; WC, waist circumference.

the PRS and defined the top 10 percentiles as “high risk” group
while the bottom 10 percentiles as “low risk” group. Figure 3B
showed the prevalence of T2D increases with the percentiles of
the PRS model. There were 5,642 (18.698%) cases in “high risk”
group among 30,174 individuals, while only 282 (0.935%) cases in
the “low risk” group, corresponding to a nearly 20-fold increase
in the risk of T2D comparing the top 10 percentiles versus the
bottom 10 percentiles.

TABLE 2 | The predictive power of candidate polygenic risk score (PRS) models
for type 2 diabetes (T2D).

Tuning parameter SNP number AUC (95% CI)

p ≤ 5 × 10−8 and r2 < 0.2 363 0.706 (0.701–0.711)

p ≤ 5 × 10−8 and r2 < 0.4 486 0.702 (0.697–0.707)

p ≤ 5 × 10−8 and r2 < 0.6 670 0.696 (0.691–0.701)

p ≤ 5 × 10−8 and r2 < 0.8 957 0.691 (0.686–0.697)

p ≤ 5 × 10−6 and r2 < 0.2 750 0.715 (0.710–0.720)

p ≤ 5 × 10−6 and r2 < 0.4 1,013 0.709 (0.704–0.714)

p ≤ 5 × 10−6 and r2 < 0.6 1,335 0.701 (0.696–0.706)

p ≤ 5 × 10−6 and r2 < 0.8 1,853 0.696 (0.691–0.701)

p ≤ 5 × 10−4 and r2 < 0.2 2,616 0.736 (0.732–0.741)

p ≤ 5 × 10−4 and r2 < 0.4 3,394 0.726 (0.721–0.731)

p ≤ 5 × 10−4 and r2 < 0.6 4,299 0.715 (0.710–0.720)

p ≤ 5 × 10−4 and r2 < 0.8 5,690 0.708 (0.703–0.713)

p ≤ 5 × 10−2 and r2 < 0.2 25,454 0.792 (0.787–0.796)

p ≤ 5 × 10−2 and r2 < 0.4 32,600 0.782 (0.777–0.787)

p ≤ 5 × 10−2 and r2 < 0.6 40,001 0.771 (0.766–0.776)

p ≤ 5 × 10−2 and r2 < 0.8 50,224 0.760 (0.755–0.765)

AUC was determined using a logistic regression model adjusted for sex, age, and
the first 10 principal components of ancestry. The highest AUC is denoted by the
bold values.

We further investigated the contribution of polygenic
predictor, sex, age, physical measurements, and clinical factors in
identifying individuals at high risk of T2D. Table 4 showed that
the AUCs of model3, which only included PRS into the prediction
model without adjusting for any other covariates, was 0.749 [95%
CI: (0.744,0.754)] in the testing dataset and 0.755 [95% CI: (0.752,
0.755)] in the validation dataset. Interestingly, if only considering
sex, age, and the first 10 principal components of ancestry into
the model, the AUC was 0.667 [95% CI: (0.663, 0.672)]. After
adding PRS, the AUC reached 0.795 [95% CI: (0.790, 0.800)],
which increased about 13% than model2. The AUC of model4
(i.e., considering sex, age, PC, BMI, WC, DBP, SBP, GL, CL, HDL,
LDL, and TL simultaneously) was 0.880 [95% CI: (0.878, 0.888)]
and raised to 0.901 [95% CI: (0.897, 0.904)] in the validation
dataset when adding PRS into the model. In brief, the polygenic
score indeed helps to identify high-risk individuals for T2D,
while the role of T2D-related covariates could also help increase
prediction accuracy. As showed in Table 5, PRS, sex, age, physical
measurements, and most clinical factors were all significantly
associated with T2D (p < 0.0001).

DISCUSSION

Our results showed that the AUC of the best PRS model was
0.795 after adjusting for sex, age, and the first 10 principal
components of ancestry. It demonstrated that the PRS was really
helpful for identifying individuals at high risk of developing T2D.
Meanwhile, the distributions of the PRS in cases and controls
were substantially different from each other, i.e., the median
PRS of cases (0.941) was much higher than that of the controls
(−0.056). Moreover, about 30% of participants were at greater
than or equal to fivefold increased risk of developing T2D, 12%
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TABLE 3 | Area under the receiver operating characteristics curves (AUCs) of different ratios of the testing and validation dataset when p ≤ 5 × 10−2 and r2 < 0.2.

Dataset 30–70% 40–60% 50–50% 60–40% 70–30%

Testing 0.791 0.792 0.794 0.795 0.794

(0.781–0.791) (0.787–0.796) (0.790–0.800) (0.791–0.799) (0.790–0.799)

Validation 0.794 0.795 0.793 0.792 0.791

(0.790–0.799) (0.790–0.800) (0.789–0.797) (0.787–0.796) (0.781–0.791)

AUC was determined using a logistic regression model adjusted for sex, age, and first 10 principal components of ancestry.

FIGURE 2 | Polygenic risk score (PRS) among type 2 diabetes (T2D) cases versus controls in the UK Biobank (UKB) validation dataset.

were at greater than or equal to sixfold risk, and the top 7% were
at greater than or equal to sevenfold increased risk. Particularly,
the stratified PRS according to their percentiles showed that the
“high-risk” group is strongly associated with the risk of T2D.

The above results suggest that our PRS model can be used as
a powerful tool in identifying individuals at high risk of T2D;
improved previous studies that summarized in Table 6. The AUC
of the PRS model assessed with only three SNPs that had been
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FIGURE 3 | Risk for type 2 diabetes (T2D) according to polygenic risk score (PRS). (A) Distribution of PRS for T2D in the UK Biobank (UKB) validation dataset
(n = 301,736). The x-axis represents PRS for T2D, which was scaled to have zero mean and one standard deviation. Dotted lines reflect the proportion of the
population with five-, six-, and seven-fold increased risk versus the remainder of the population, respectively. The odds ratio was assessed in a logistic regression
model adjusting for sex, age, and the first 10 principal components of ancestry. (B) Prevalence of T2D according to 100 groups of the UKB validation dataset
stratified according to the percentile of the PRS for T2D.

TABLE 4 | Area under the receiver operating characteristics curve (AUC) of different models in the testing and validation dataset.

Dataset Mean model2 model3 model1 model4 model5

Testing −0.003 0.671 (0.666–0.676) 0.749 (0.744–0.754) 0.792 (0.787–0.796) 0.886 (0.882–0.889) 0.902 (0.899–0.905)

Validation −0.003 0.667 (0.663–0.672) 0.755 (0.752–0.755) 0.795 (0.790–0.800) 0.882 (0.878–0.888) 0.901 (0.897–0.904)

model1: AUC was determined using a logistic regression model adjusted for sex, age, and the first 10 principal components of ancestry. model2: AUC was determined
using a logistic regression model only considering sex and age. model3 : AUC was determined using a logistic regression model only considering genome-wide polygenic
score. model4: AUC was determined using a logistic regression model considering demographic factors, physical measurements, and clinical factors. model5 : AUC was
determined using a logistic regression model adjusted for sex, age, body mass index, waist circumference, diastolic blood pressure, systolic blood pressure, glucose
level, cholesterol level, high-density lipoprotein, low-density lipoprotein, triglyceride level, and the first 10 principal components of ancestry.

published to predispose to T2D in 6,078 individuals was 0.571
(Weedon et al., 2006). After including more SNPs, Lango et al.
(2008) constructed a PRS model with 18 SNPs and obtained

TABLE 5 | Parameter estimations under model5 in validation dataset.

Variables Estimate beta Stand error Z p-value

(Intercept) 24.500 0.495 49.474 < 2 × 10−16

PRS 12370.000 167.400 73.943 < 2 × 10−16

CL −0.591 0.057 −10.377 < 2 × 10−16

HDL 0.051 0.063 0.876 0.381

LDL 0.010 0.068 0.140 0.888

TL 0.285 0.013 21.826 < 2 × 10−16

Sex −0.214 0.028 −7.731 1.070 × 10−14

WC 0.045 0.002 28.356 < 2 × 10−16

BMI 0.036 0.004 9.325 < 2 × 10−16

Age 0.060 0.002 38.401 < 2 × 10−16

DBP −0.018 0.001 −13.928 < 2 × 10−16

SBP 0.005 0.001 7.626 2.410 × 10−16

GL 0.449 0.006 69.917 < 2 × 10−16

PC10 0.020 0.004 4.726 2.280 × 10−16

BMI, body mass index; CL, cholesterol level; DBP, diastolic blood pressure; GL,
glucose level; PRS, genome-wide polygenic score; HDL, high-density lipoprotein;
LDL, low-density lipoprotein; SBP, systolic blood pressure; TL, triglyceride level;
WC, waist circumference.

an AUC of 0.600 (Lango et al., 2008). A later study with 22
SNPs had an AUC of 0.570 (Chatterjee et al., 2013) and allowed
for the identification of 3.0% of the population at twofold or
higher than average risk for T2D. Notably, the above three studies
with smaller sample sizes (range from 4,907 to 39,117), and a
smaller number of SNPs (range from 3 to 22) had relatively poor
predictive performance compared to our study (AUC = 0.755)
with 25,454 SNPs among 274,029 individuals.

In addition, we highlight the role of non-genetic risk factors,
i.e., sex, age, physical measurements, and clinical factors. When
adjusting for sex and age, Meigs et al. (2008) obtained an AUC
of 0.581 among 2,776 individuals, Vassy et al. (2014) provided
an AUC of 0.726 among 11,883 people, and the AUC of Läll
et al. (2017) reached 0.740. Interestingly, the study that handled
nearly 7 million variants in 288,978 individuals only generated
an AUC of 0.730 after adding sex and age, which was smaller
than ours (0.795) including only 25,454 SNPs (Khera et al., 2018).
They further reported that 3.5% of the population had inherited
a genetic predisposition that conferred greater than or equal to
threefold increased risk for T2D, 0.2% of the population greater
than or equal to fourfold, and 0.05 of the population greater than
or equal to fivefold. Their study differs from ours in four aspects.
First, our study has larger sample size (456,451 versus 409,258).
Second, we first perform SNP selection based on genome-wide
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TABLE 6 | A comprehensive comparison with other researches.

Year SNP N Case\Control Case/N (%) Dataset AUC Ethnicity Covariates

Weedon et al., 2006 3 6,078 2,409\3,669 39 UKCS 0.571 British –

Lango et al., 2008 18 4,907 2,309\2598 47 GoDARTS 0.600 Scotland –

Lango et al., 2008 18 4,907 2,309\2598 47 GoDARTS 0.800 Scotland Age, BMI, and sex

Lyssenko et al., 2008 16 18,831 2,201\16,630 11.68 MPP and BS 0.750 Finland Sex, age, family history, BMI,
BP, TL, and GL

Chatterjee et al., 2013 22 39,117 130\38,987 0.3 – 0.570 Caucasian –

Chatterjee et al., 2013 22 39,117 130\38,987 0.3 – 0.740 Caucasian Sex, age, and family history

Läll et al., 2017 1,000 10,273 1,181\9,092 11.5 EBC 0.74 Estonia Sex and age

Läll et al., 2017 1,000 10,273 1,181\9,092 11.5 EBC 0.767 Estonia Sex, age, and BMI

Läll et al., 2017 1,000 10,273 1,181\9,092 11.5 EBC 0.790 Estonia Sex, age, BMI, BP, GL, physical
activity, smoking, and food
consumption

Khera et al., 2018 6,917,436 288,978 5,853\283,125 2 UKB 0.730 British Sex and age

– 25,454 274,029 18,176\283,560 6 UKB 0.755 British –

– 25,454 274,029 18,176\283,560 6 UKB 0.795 British Sex and age

– 25,454 274,029 18,176\283,560 6 UKB 0.901 British Sex, age, WC, BMI, SBP, DBP,
GL, CL, TL, HDL, and LDL

association p-values (p ≤ 5 × 10−2) so that we included more
predictive SNPs (25,454) and avoided spurious SNPs into our
PRS model. Third, they used the first 4 principal components
of ancestry, while we used the first 10 principal components of
ancestry for a better control of population stratification. Fourth,
we generated PRS based on the more computationally efficient
and scalable PRSice-2 software, while they used LDpred program
(Ripke et al., 2015), which is much slower than PRSice-2. Those
differences explain why our PRS model has better predictive
power. Certainly, we also tried to incorporate more non-genetic
risk factors, and the AUC increased from 0.755 to 0.901. Our
study is thus more accurate in identifying individuals at low and
high risk of developing T2D.

Our study has multiple strengths. First, we construct the PRS
model based on the UKB dataset, which is one of the largest
prospective cohort studies with comprehensive and abundant
personal information, as well as high-quality genotyping data
in the world. Second, we choose SNPs into our PRS model
based on our proposed three-step filtering procedure. This
approach is simple to implement and has a very good prediction
performance. Third, we include new physical measurements
and clinical factors (i.e., WC, DBP, HDL, and LDL) in
our predictive model to increase prediction accuracy. Fourth,
we adopted a new PRS software PRSice-2, which has been
shown to outperform other competing methods and software
in terms of prediction accuracy and computational speeds
(Choi and O’Reilly, 2019).

Although the present study has made important contributions
in identifying individuals with increased risk of developing
T2D; however, there exists one major limitation. Individuals
in the UKB dataset are primarily European ancestry;
the specific PRS calculated here may not have optimal
predictive power for other ethnic groups because the allele
frequencies, LD patterns, and effect sizes of common
SNPs may be different across populations with different
ethnic backgrounds.

In conclusion, our findings show that the PRS model is highly
predictive of T2D risk even based on genetic data only, and the
prediction accuracy improves after including non-genetic risk
factors, suggesting that our PRS model can be used as a powerful
tool for preventive T2D screening.
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