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Breast cancer (BC) is a common malignant tumor in females around the world.
While multimodality therapies exist, the mortality rate remains high. The hypoxic
condition was one of the potent determinants in BC progression. The molecular
mechanisms underpinning hypoxia and their association with BC can contribute to
a better understanding of tailored therapies. In this study, two hypoxic induced BC
transcriptomic cohorts (GSE27813 and GSE47533) were assessed from the GEO
database. The P4HA1 gene was identified as a putative candidate and significantly
regulated in hypoxic BC cells compared to normal BC cells at different time intervals
(6 h, 9 h, 16 h, 32 h, and 48 h). In patients with Luminal (p < 1E-12), triple-
negative subclasses (p = 1.35059E-10), Stage 1 (p = 8.8817E-16), lymph node N1
(p = 1.62436E-12), and in the 40–80 age group (p = 1.62447E-12), the expression of
P4HA1 was closely associated with the clinical subtypes of BC. Furthermore, at the
10q22.1 chromosomal band, the P4HA1 gene displayed a high copy number elevation
and was associated with a poor clinical regimen with overall survival, relapse-free
survival, and distant metastases-free survival in BC patients. In addition, using BioGRID,
the protein–protein interaction (PPI) network was built and the cellular metabolic
processes, and hedgehog pathways are functionally enriched with GO and KEGG terms.
This tentative result provides insight into the molecular function of the P4HA1 gene,
which is likely to promote hypoxic-mediated carcinogenesis, which may favor early
detection of BC and therapeutic stratification.

Keywords: breast cancer, hypoxia, prognosis, omics, computational biology

INTRODUCTION

The second leading cause of tumor-related death worldwide is breast cancer (BC) (WCRF, 2018).
Poly-etiology and the constituent nature of BC threaten early diagnosis and treatment strategies
(Feng et al., 2018). BC is divided into five prevailing subtypes based on molecular profiling
techniques: luminal A/B, basal-like, HER2(+), and normal breast-like. Molecular heterogeneity
in BC inter-/intra-tumor also increases tumor growth and becomes more complex in therapy
(Koren and Bentires-Alj, 2015; Haynes et al., 2017)A common trait of cancer cells is that they
quickly proliferate, consuming significant amounts of oxygen that hampers the low-level oxygen
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state called hypoxia. The hypoxia-inducible factor 1 (HIF-1)
regulator pathway gets activated once the cancer cell enters
hypoxic conditions (1–5% O2), contributing to the promotion
of angiogenesis and metastatic tumor characteristics in BC
(Murugesan and Premkumar, 2018; Al Tameemi et al., 2019;
Dillekas et al., 2019). In invasive-BC tumors, about 50–60%
with hypoxic regions and suggests a critical determinant of
metastasis (Greer et al., 2012). Almost 90% of BC deaths are
reported due to delayed late diagnosis (Dillekas et al., 2019).
Clinical studies show that hypoxia is one of the primary drivers
of epithelial-mesenchymal transformation (EMT) and metastatic
cascade transition (Dillekas et al., 2019). In addition, HIF-1 was
implicated in hematogenous breast metastases to lung cancer
and was associated with low patient survival and resistance to
chemotherapy in breast (Campbell et al., 2019), gastric (Cheng
et al., 2012), and colorectal (Baba et al., 2010) cancer.

The accumulating knowledge in microarray databases
(Oncomine, GEO, Array Express, and so on) using genome-
wide technologies has played an essential role in exploring
the cancer-related molecular pathogenesis portfolio (Siegel
et al., 2018; Ha et al., 2019; Shou et al., 2020; Yang et al.,
2020). In future contexts, the ability to dissect and incorporate
cancer omics data opens the door to a new approach to the
biomarker strategy for diagnosis and treatment. In the same
way, TCGA provides a multi-cancer cohort of RNA-Seq
transcriptomics, which has led to a significant increase in
understanding the biology of malignancy. Its accessibility has
led to a splendid opportunity to extend molecular tumors’
fundamental mechanisms (Manzoni et al., 2018).

Prolyl collagen 4-hydroxylase (P4H) is a tetrameric α2β2
α-ketoglutarate (α-KG) –dioxygenase that is responsible for
collagen folding and stabilization. Collagens, which are the
most abundant proteins in humans, provide extracellular matrix
(ECM) assembly scaffolding (rigidity and cell adhesion) (Koski
et al., 2017) and are also associated with stabilizing tumor
proliferation (Provenzano et al., 2006). Three P4HA isoforms
in mammalian cells (P4HA1-3) were identified. Of the three
isoforms, P4HA1 is the foremost isoform that contributes to
the foremost peptide bond and protein scaffolding activity.
P4HA2 is also involved in the collagen synthesis and folding
of collagen chains. The P4HA1 is majorly expressed in the
testis and placenta, P4HA2 in adipose tissue, and P4HA3 in
the heart and placenta. Reports suggest P4HA1 and P4HA2 to
be associated with cancer proliferation and hypoxic regulation
(Weinschenk et al., 2002; Cioffi et al., 2003; Kukkola et al.,
2003; Willam et al., 2006; Gorres and Raines, 2010). In addition,
P4HA1 enhances EMT and stemness of malignant cells through
the HIF-1 pathway (Kappler et al., 2017; D’Aniello et al., 2019).
P4HA1 has recently been found to overexpress in gliomas
and HNSCC; its expression associated with tumor microvessel
density (Li et al., 2019). Recent studies have shown that
increased production of collagen is linked to BC progression,
adhesion, and invasion (Xiong et al., 2018; Wishart et al., 2020).

However, the potential effects of P4HA1 and their precise
contribution to BC are not entirely explored. This research
extensively examined the expression of P4HA1 in breast cancer
cells and its therapeutic relevance in tumor-affected samples
using integrative functional multi-omic approaches. In addition,

the regulatory genes of P4HA1 and their molecular, pathological,
and signaling predictive role in BC consented. In a diagnostic and
treatment regimen to control BC malignancy, P4HA1 could be an
effective target.

MATERIALS AND METHODS

Microarray Data
The GSE27813 and GSE47533 transcriptomic profiles of breast
cancer cells subjected to hypoxia conditions (1% O2) were
downloaded from the Gene Expression Omnibus (GEO)
database1 of the National Center for Biotechnology Information
(NCBI) and explored in the current study. The studies were
carried out on two different platforms GPL10558-Illumina
Human HT-12 V4.0 bead chip expression and GPL6884-Illumina
Human WG-6 v3.0 bead chip expression. The normalized data
were downloaded, and probes were annotated with authentic
gene symbols from each platform using the required Illumina
annotation files. Integrative analysis of these BC mRNA
transcriptomes with/without hypoxic exposure profiles was used
to identify the potential genes at various time intervals. The full
integrated analysis chart had shown in Figure 1.

The Cancer Genome Atlas (TCGA) Data
Validation
TCGA is a web-based platform that visualizes, integrates, and
analyses malignancy genomics and associated clinical results.
UALCAN2 can be an intuitive, user-friendly, open-source web
portal for an in-depth study of TCGA data (Chandrashekar
et al., 2017). UALCAN uses RNA-Seq level 3 of TCGA
and clinical data on 31 cancer types. The expression of the
candidate gene in normal tissues was subsequently weighed
against the corresponding BC tissues. Moreover, overall survival
(OS)/recurrence-free survival (RFS) was assessed using Kaplan–
Meier survival curves, and the hazard ratio (HR) was determined
with 95% confidence intervals, and log-rank p-value was
ascertained. Furthermore, assessment of mRNA expression of
P4HA1 among different subtypes of breast tumors was achieved
to explore the pathological characteristics of genes in tumor
initiation or progression.

Oncomine Database Analysis
The expression level of P4HA1 was derived from the oncomine
database3 in various BC transcriptomic profiles. The oncomine
interface (Compendia biosciences, Ann Arbor, MI, United States)
is an online archive of previously published, open-access
microarray data widely distributed and freely accessible to cancer
repositories (Rhodes et al., 2004). The differential expression
of mRNA in cancer tissue relative to normal was achieved
using the parameters of the p-value threshold of 0.01 and fold-
change (FC) > 2.

1https://www.ncbi.nlm.nih.gov/gds/
2http://ualcan.path.uab.edu/index.html
3https://www.oncomine.org/resource/login.html

Frontiers in Genetics | www.frontiersin.org 2 February 2021 | Volume 12 | Article 632626

https://www.ncbi.nlm.nih.gov/gds/
http://ualcan.path.uab.edu/index.html
https://www.oncomine.org/resource/login.html
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-632626 February 16, 2021 Time: 19:17 # 3

Murugesan and Premkumar Multi-Omics Analysis in Breast Cancer

FIGURE 1 | A flow chart of integrated functional analysis.

Copy Number Alteration Analysis
Using Progenetix (Progenetix, Stanford, CA, United States)4,
DNA copy number variations (CNVs), such as deletions and
amplification in BC transcriptomic cohorts, were examined
(Baudis and Cleary, 2001). It is an online repossession of
cancer molecular-cytogenetic data that captures the robust, best-
grained understanding of the absolute copy number aberration.
The chromosomal variation features of the P4HA1 gene were
analyzed in the TCGA-BC data to produce frequency gain/loss.

Clinical Regimen Prognosis
Kaplan–Meier Plotter5 is a data source that integrates gene
expression and clinical data on about 21 cancer types, including
breast cancer (n = 6234) (Gyorffy and Schafer, 2009). KM
Plotter was used to study the prognosis value for P4HA1 in
BC. We centered our assessment on the overall patient survival
(OS), distance metastasis-free survival (DMFS), and relapse-
free survival (RFS). The log-rank p-value and hazard ratio
with 95% confidence intervals additionally ascertained. The Cox
proportional hazard regression model with microarray cohort
GSE22133 was examined to verify the patient’s overall survival
between the expression of the P4HA1 gene and the BC’s clinical

4http:/www.progenetix.net
5http://kmplot.com/analysis/

characteristics. The median P4HA1 value is the threshold used to
evaluate the prognostic score of each parameter.

Protein–Protein Network
Protein–protein interaction networks provide information on
the molecular framework of cellular processes and integral
mobile activity. In the present research, a PPI network of P4HA1
regulatory genes built using an online database, the Biological
General Repository for Interaction Datasets (BioGRID) v3.5.1756,
a database of already established networks; incorporates
1,728,498 protein and genetic interactions (Oughtred et al.,
2019). In the BioGRID database, we have imported the lists
of co-expressed P4HA1 genes. To create and visualize the PPI
network for the P4HA1 protein, Cytoscape v3.5.1 was employed.
The PPI network’s primary nodes were then grouped according
to the enrichment of the KEGG Pathway. Hub nodes with a
higher degree would be in phase to delineate their significant role
in the BC progression.

Pathway Enrichment Analysis
We conducted pathway enrichment (GO and KEGG) using
g:Profiler7 to explore the function of P4HA1 gene sets with

6http://thebiogrid.org/
7http:/biit.cs.ut.ee/gprofiler/
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biochemical, cellular, and molecular aspects (Raudvere et al.,
2019). g:Profiler searches for a collection of the pathway, network,
regulatory motif, and phenotype gene sets using a detailed set
of accurate and concise annotation methods. The method also
consolidates the exact Fisher test with an input gene list and
p-value enrichment for each pathway. Using a threshold of 0.05,
the g:Profiler computes the p-values from GO and KEGG route
enrichment analysis.

Statistical Analysis
The transcriptomic cohort analysis was performed using the R
programming environment (version 3.2.5) with the criteria of
p-value < 0.05. Survival analysis was conducted jointly with
Kaplan–Meier plots and COX Proportional hazard model. The
Kaplan–Meier curves were used to assess the overall survival,
relapse-free survival, and distance metastasis-free survival
associated with the P4HA1 gene expression. The univariate and
multivariate Cox proportional model was carried to analyze
the association of P4HA1 with the clinicopathologic variants
of breast cancer and estimate the hazard ratio and 95% CIs.
Logistic regression analysis was carried out in GSE22133 data
to explore the association of P4HA1 gene expression with the
clinicopathologic variants of breast cancer: ER, PR, and Grade.
It estimates the breast cancer risk by examining the odds ratios
(ORs) and 95% confident intervals (CIs), and p-value. The two-
tailed p-values below 0.05 were considered statistically significant.

RESULTS

P4HA1 Expression in BC Under Hypoxic
Condition
A detailed description of the transcriptomic data used in
this study was given in Table 1. An integrative analysis of
these cohorts identified a high-expression P4HA1 gene with a
p-threshold criterion of <0.05 and FC > 2 in the two datasets.
Moreover, P4HA1 was remarkably increased during the different
time (6 h, 9 h, 16 h, 32 h, and 48 h) of the hypoxic state. The Violin
Plot revealed the difference between with and without hypoxic
exposure in breast cancer cells in the mRNA expression of P4HA1
(Figures 2A,B).

Transcriptional Expression of P4HA1 in
the Clinical Regimen of BC
A differential transcriptional level of P4HA1 between BC and
paired normal breast tissue was evaluated by the UALCAN
database to determine the mRNA expression of P4HA1 in BC
patients. As illustrated in Figure 2, the transcriptional level of
P4HA1 was substantially up-regulated in BC tissues (Figure 2C,

p ≤ 1E-12) compared to normal tissues. Subsequently, P4HA1
differential transcriptional levels were compared for the
molecular and histological subtypes, tumor grades, and other
BC patient factors. Box plots were made to visualize the
association between the expression levels of the clinicopathologic
condition of BC. As shown in Figure 2, the level of P4HA1 was
significantly associated with the intrinsic subclasses of the BC.
Patients with Luminal (p ≤ 1E-12) and triple-negative subclasses
(p = 1.35059E-10) tend to express a higher P4HA1, than HER2-
positive (p = 1.9099E-05). The highest mRNA expressions of
P4HA1 were found sequentially in the various stages of the BC,
Stage 1 (p = 8.8817E-16) <Stage 3 (p = 1.670441E-12) <Stage
2 (p = 1.62447E-12) <Stage 4 (p = 1.31617E-03) (Figure 2D),
and the highest mRNA expressions of P4HA1 were similarly
found in-between the age group of 40–80 (p = 1.62447E-12)
and marginally lower in age <80 (p = 3.9105E-08) than the
>40 (p = 6.3915E-04) age group (Figure 2F). Interestingly,
P4HA1 expression was analyzed with the metastatic lymph
node classification and elevated level of expression in N1
(p = 1.62436E-12) than N0 (p ≤ 1E-12) <N2 (p = 6.06390E-09)
<N3 (p = 2.31799E-07) (Figure 2G). Together, the results
showed a positive association between P4HA1 transcriptional
levels and typical subclasses in BC patients.

Oncomine analysis of malignant breast tissue relative to
normal tissue analysis showed altered expression of P4HA1 in
different transcriptomic profiles (Figure 3). In the Curtis data
set, the P4HA1 mRNA rate was significantly higher in the breast
tumor (FC = −1.570, p = 4.72E-5). Furthermore, in invasive
breast carcinoma, there was a substantial rise in mRNA levels
of P4HA1 (FC = 1.219, p = 5.25E-6). Moreover, P4HA1 was
up-regulated in the Gluck (FC = 1.641, p = 0.015) and Zhao
(FC = 1.598, p = 0.048) datasets.

P4HA1 Genomic Alteration in BC
With genome-wide copy number profiles in the Progenetix
database, we investigated the prevalent genomic amplification
of the P4HA1 chromosomal region in BC. We focused on the
use of the TCGA-BC cohort and obtained a recurring functional
copy number gain for chromosome 10q22.1 (location P4HA1)
(Figure 3E). Since this is the typical copy number peaks in
cancers, it can aid BC’s development and metastatic niche.

Prognostic Significance of P4HA1 in BC
To evaluate the clinical significance of P4HA1 with BC, we
analyzed the patient’s survival index through the Kaplan–Meier
plotter and UALCAN (Figure 4). The regulation of P4HA1
significantly contributes to the worst prognostic in BC patients.
OS was significantly shorter in patients with elevated P4HA1
(HR = 1.35; 95% CI: 1.09–1.67; p < 0.0059) (Figures 4A, 5B)
compared to low P4HA1 expression. Moreover, the higher

TABLE 1 | Characteristics of transcriptomic data from Gene Expression Omnibus.

GEO ID Platform Acc. Platform Cell line Time period of hypoxia (1% O2) Year

GSE27813 GPL10558 Illumina Human HT-12 v4.0 Expression BeadChip MCF-7 6 h, 9 h 2011

GSE47533 GPL6884 Illumina HumanWG-6 v3.0 Expression BeadChip MCF-7 16 h, 32 h, 48 h 2014
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FIGURE 2 | Box plot representation of P4HA1 gene expression compared with a normal and different time period of hypoxic exposure in BC cells: cut-off
p-value < 0.05. (A) GSE27813 and (B) GSE47533. (C–H) Box plot showing relative expression of P4HA1 in clinicopathologic of Breast Cancer, (C) Normal and
Primary Tumor samples, (D) Normal and patients in Stages 1, 2, 3, and 4, (E) Normal and Subclass, (F) Normal and Age group, (G) Normal and Nodal subclass, and
(H) Normal and Gender.
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FIGURE 3 | Levels of P4HA1 mRNA expression in BC compared to normal cells. Figures generated based on Oncomine analysis with criteria fold-change and
p-values. (A) Zhao Breast, (B) Curtis Breast, (C) Gluck Breast, and (D) Curtis Breast Dataset. (E) The distribution of Copy number variation of schematic physical
map of Chromosome 10 (human genome 19 assembly (GRCh37) for TCGA Breast carcinoma generated from Progenetix tool. Heat map representation of P4HA1
between the normal and breast cancer patients – TCGA data. The color ratio red to green represents the change from high to low.
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FIGURE 4 | Prognostic Index of Breast cancer as determined by Kaplan–Meier estimates (A) Overall Survival (UALCAN), (B) Overall Survival (Kaplan–Meier Plotter),
(C) Relapse-free survival (Kaplan–Meier Plotter), (D) Distant free metastasis survival (Kaplan–Meier Plotter), (E) Overall Survival-P4HA1 Expression (GSE22133),
(F) Overall Survival-Estrogen Receptor (GSE22133), (G) Overall Survival-Progesterone Receptor (GSE22133), (H) Overall Survival-Basal (GSE22133), (I) Overall
Survival-ERBB2 (GSE22133), (J) Overall Survival-Luminal A (GSE22133), (K) Overall Survival-Luminal B (GSE22133), and (L) Overall Survival-Normal-like
(GSE22133).

expression of P4HA1 indicated poor RFS (HR = 1.41; 95% CI:
1.26–1.57; p < 6.2E-10) (Figure 4C) and DMFS (HR = 1.31;
95% CI: 1.08–1.59; p < 0.0065) (Figure 4D). These findings
show that P4HA1 is critically associated with a poorer clinical
regimen in BC patients.

A univariate and multivariate regression analysis of Cox
hazard regression using GSE22133 data was explored to verify the
prognostic index of P4HA1. The association risk was estimated
with the clinicopathologic covariates, including estrogen receptor
(ER), progesterone receptor (PR), histological subtypes, and
grades. Table 2 shows how the P4HA1 gene is associated with
clinical factors. Univariate Cox regression analysis indicated a
significant association with hormonal receptor ER (p = 0.0042,
HR = 0.62, 95% CI = 0.46-0.86), PR (p = 0.0043, HR = 0.63,
95% CI = 0.46-0.86), and Grade (p = 0.051, HR = 1.21, 95%
CI = 0.99-1.48) in GSE22133 data. In addition, multivariate
Cox analysis found no strong association between histological
subtypes and hormone receptors. Each clinical factor’s survival
plot was depicted in Figures 4E–L. These results indicate that the

P4HA1 expression strongly attributes to the hormonal receptor,
ER, and PR.

Table 3 shows the logistic regression analysis of the association
between the P4HA1 expression and clinicopathologic variants of
breast cancer (ER, PR, and Grade). The expression of P4HA1 was
significantly associated with the ER status group of breast cancer
(OR = 0.38; 95% CI: 0.79–0.80, P = 0.011) but less significantly
associated with the PR status group cancer (OR = 1.47; 95%
CI: 0.71–3.03, P = 0.29). We assessed the association of P4HA1
expression with breast cancer grade through combing grade 1 and
grade 2 vs. grade 3 and results revealed no significance associated
with grades (OR = 1.40; 95% CI: 0.76–2.57, P = 0.27). In
addition, this analysis also revealed a strong association of P4HA1
gene expression with the ER of breast cancer.

Biological Interaction of P4HA1
Gene Ontology (GO) analysis was carried out against using
P4HA1 and its associated genes generated from the BioGRID
source. We applied a hypergeometric test for each enriched
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FIGURE 5 | Heat map depicts the associations of P4HA1 signature with GO term and KEGG generated by g:Profiler. (A) GO-Biological Process, (B) GO-Cellular
Component, (C) GO-Molecular Function, and (D) KEGG pathway.

GO term, with a threshold lower than 0.05 in the g:Profiler
tool: (Figure 5). Under the GO hierarchy, the ontology of
highly enriched biological processes was “Cellular Process”
(GO:0009987), “Cellular Metabolic Process” (GO:0044237). In
cellular ontology, the enriched terms were “intracellular part”
(GO:0044424) and, similarly, with the ontological molecular
function “Binding” (GO:0005488), were highly enriched
(Table 4). Apart from the significant enrichment of the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway terms
were the “mRNA surveillance pathway,” “Hedgehog signaling
pathway,” and “AMPK signaling pathway.” The full enrichment
analysis output is listed in Supplementary Table 1 (GO) and
Supplementary Table 2 (KEGG). Most critically, many of these
genes are associated with cellular metabolic shift and oncogenic
signaling pathways, a process intimately linked with invasion
and proliferation.

Protein Interaction Network of P4HA1
We constructed a P4HA1 mRNA interaction network generated
from the BioGRID database. The final PPI network generated
by Cytoscape consisted of 59 nodes and 382 interactions
(Supplementary Table 3). Each signaling pathway’s proteins were
colored based on the KEGG enrichment (Figure 6).

DISCUSSION

Breast cancer heterogeneity is still one of the most frequent
causes of cancer mortality (Lin L. F. et al., 2019). Despite
multimodal care for patients, the hypoxic condition is a critical
factor that affects the treatment strategy and the clinical
regimen (Tong et al., 2018). The knowledge in genotypical
and their profound mechanisms will also advance the effective
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TABLE 2 | Univariate and multivariate analysis of clinicopathological factors associated with the prognostic significance of P4HA1 expression in breast cancer.

Clinical factors GSE22133

Univariate Multivariate

p-value HR CI (95%) p-value HR CI (95%)

P4HA1 expression 0.0097 1.51 1.10–2.07 0.1693 1.34 0.88–2.04

ER status
Positive vs. Negative

0.0042 0.62 0.45–0.86 0.8055 0.92 0.51–1.66

PR status
Positive vs. Negative

0.0043 0.63 0.46–0.86 0.5944 0.86 0.49–1.48

Grade
1 and 2 vs. 3

0.0531 1.21 0.99–1.48 0.3255 1.12 0.88–1.43

Histological subtypes
Basal
ERBB2
Luminal A
Luminal B
Normal-Like

0.2847
0.4776
0.7437
0.4840
0.0880

1.53
1.39
0.88
1.26
3.41

0.70–3.34
0.56–3.45
0.43–1.79
0.65–2.44

0.83–14.00

NA

ER, Estrogen Receptor; PR, Progesterone Receptor; CI, Confidence Interval.

therapeutic stratification of BC. Microarray and next-generation
(NGS) sequencing methods have recently been used for early
detection and personalized treatment (Wang et al., 2009;
Marzancola et al., 2016). Such diverse data offers an outstanding
opportunity to discuss more concerns relevant to tumor
heterogeneity. A compendium of an integrative functional
approach was systematically proposed to explore the P4HA1 gene
fundamentally associated with hypoxia-induced BC. To delineate
the processes involved in carcinogenesis, the reliability of this
analysis was validated in terms of expression, clinical subtypes,
copy number variation, and altered pathways in the clinical
TCGA-BC cohort. Therefore this analysis merged transcriptional
activities with molecular signaling pathways to underpin the
proliferation of hypoxic-mediated BC.

Our findings revealed that P4HA1 gene expression is reliably
expressed in breast cancer vs. normal cells. It was consistently
noted in BC subclasses, that in patients with Luminal, triple-
negative, and lymph node (N1), P4HA1 was overexpressed but
comparatively lower in the positive HER2 group and P4HA1
was prominent in Stage I compared to the other BC stages.
Overexpression of P4HA1 has previously been seen in TNBC-
BC (Xiong et al., 2018), head and neck squamous cell carcinomas
(HNSCC) (Li et al., 2019), prostate (Wolf et al., 2004), melanoma
(Atkinson et al., 2019), and gastric cancer (Cheng et al., 2012).
Importantly, our study showed that overexpression of P4HA1

TABLE 3 | Logistic regression analysis of associations between P4HA1
expression and the clinicopathologic variants of breast cancer.

Variable Size P-value Odds
ratio

95% CI

ER Pos (173) vs. Neg (173) 346 0.0118 0.3811 0.1799 to 0.8076

PR Pos (172) vs. Neg (171) 343 0.2964 1.4718 0.7126 to 3.0399

Grade 1 and 2 (116) vs. 3 (116) 232 0.2730 1.4035 0.7656 to 2.5731

ER, Estrogen Receptor; PR, Progesterone Receptor; CI, Confidence Interval.

could be associated with tumor progression, invasion and thus
act as a diagnostic biomarker of BC.

A distinctive molecular mechanism explains the strong
association between CNV and differential expression of P4HA1.
We observed that the P4HA1-10q22.1 copy number showed
a high-level positive amplification in the patient data for

TABLE 4 | Functional enrichment pathway analysis: Top enriched terms of gene
ontology-biological process, cellular component, molecular function, and KEGG
pathways.

Source Term Id Term name p-value

Gene ontology-biological process

GO:BP GO:0009987 cellular process 4.89E-24

GO:BP GO:0044237 cellular metabolic process 1.11E-22

GO:BP GO:0008150 biological_process 6.04E-22

GO:BP GO:0008152 metabolic process 2.09E-21

GO:BP GO:0044260 cellular macromolecule
metabolic process

3.95E-21

Gene ontology-cellular component

GO:CC GO:0044424 intracellular part 5.56E-25

GO:CC GO:0005622 intracellular 6.41E-25

GO:CC GO:0044464 cell part 5.49E-24

GO:CC GO:0005623 cell 6.64E-24

GO:CC GO:0043229 intracellular organelle 6.86E-24

Gene ontology-molecular function

GO:MF GO:0005488 binding 1.31E-19

GO:MF GO:0005515 protein binding 2.30E-19

GO:MF GO:0003674 molecular_function 3.91E-17

GO:MF GO:1901363 heterocyclic compound binding 1.00E-07

GO:MF GO:0140110 transcription regulator activity 1.08E-07

KEGG

KEGG KEGG:03015 mRNA surveillance pathway 0.002436223

KEGG KEGG:04340 Hedgehog signaling pathway 0.002867797

KEGG KEGG:04152 AMPK signaling pathway 0.002946176

KEGG KEGG:04120 Ubiquitin mediated proteolysis 0.003652434
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FIGURE 6 | Protein-protein interaction network of P4HA1. Highly interacted protein network generated from the BioGRID source. Different colors of the network
edge indicate functional enrichment with the KEGG database.

TCGA-BC, suggesting its effect on the high mRNA transcription
level. Moreover, the association in the elevated amplicon 10q22
was reported to have a remarkable role in tumorigenesis and weak
prognostic significance in patients with prostate cancer (Wolf
et al., 2004), gastric cancer (Cheng et al., 2012), glioma (Hu
et al., 2017), melanoma (Atkinson et al., 2019), oral squamous
cell carcinoma (Kappler et al., 2017), and HNSCC (Li et al.,
2019). In line with previous studies, higher P4HA1 expression
was also directly related to BC patients’ poor survival and could
be accomplished as a prognostic predictor.

Functional enrichment analysis of gene ontology revealed
that genes were mostly involved in different cellular metabolic
processes. Most frequently, by increased glycolytic flux and
suppressed oxidative phosphorylation (Warburg effect), tumor
cells adapt their resources to cope with high energy demands.
Thus, the hypoxic state acquires energy via the hypoxic
receptive elements (HRE) through the metabolic shift and tumor
microenvironment (Dillekas et al., 2019). Under physiological
oxygen concentrations, Prolyl hydroxylase (PHD1-3) enzymes
strengthen the stability of HIF1 and HREs. Previous studies
have shown that PHD enzymes involved in HRE’s regulatory
network in gastric cancer and PHD inhibition contribute to
reduced tumor development under hypoxic conditions (Cheng
et al., 2012). Interestingly, the presence of PHDs is closely

related to tumor angiogenesis and metastasis during hypoxic
cell proliferation.

We observed that the F gene and the RBM8A gene were closely
associated with an mRNA surveillance pathway in the KEGG
pathway enrichment. The Cleavage polyadenylation specificity
factor (CPSF) is a multi-subunit that actively participates through
the cleavage and polyadenylation of mRNA activation in the
eukaryotic pre-messenger (m)RNA 3′-end process (Casanal et al.,
2017). Importantly, these CPSF factors lead to the growth of
human cancer, such as breast (Erson-Bensan and Can, 2016),
ovarian cancer (Zhang et al., 2017), and even the inhibition of
CPSF3 actuates apoptosis in prostate cancer cells (Van Etten et al.,
2017). Interestingly, CPCF3 and CPCF4 were a major component
of the OS and RFS based CPSF complex in non-small lung cancer
(Ning et al., 2019).

RNA binding motif protein 8A (RBM8A), also known as Y14,
is an essential factor in exon junction complex (EJC), translation,
chromatin remodeling, damage checkpoints, regulation of
apoptosis (Gerstberger et al., 2014), and deregulation contribute
to cancer pathologies and cardiovascular diseases (Wurth and
Gebauer, 2015). RBM8A up-regulation is critically involved in
modulating apoptosis, and tumor proliferation and metastasis
(Lu et al., 2017). Cell growth was blocked in RBM8A knockout
cells, and the G2/M step of the cell cycle was arrested in
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lung adenocarcinoma cells (Ishigaki et al., 2013). In addition,
for individuals with hepatocellular carcinoma, elevated RBM8A
expression was associated with poor prognosis and progression-
free survival. RBM8A tends to be active in the EMT transition, an
important occurrence in the metastatic niche (Lin Y. et al., 2019).

Hedgehog signaling (Hh) plays a vital role in embryonic
cellular differentiation, and its alteration has oncogenic functions
in initiating and progression (Sari et al., 2018; Chang and Lai,
2019). One of the downstream regulators of the Hh route was the
Cullin gene. Cullin 3 proteins are active in cell cycle regulation
and redox homeostasis, protein trafficking, and stress responses
(Chen and Chen, 2016). Interestingly, CUL3 up-regulation is
associated with an acquired carcinogenic state and oxidative
stress in BC (Loignon et al., 2009). Recent evidence indicates that
Cullin-dependent ubiquitin ligases play a crucial role in breast
carcinogenesis and squamous cell carcinoma of the esophagus
(Hu et al., 2018).

Glioma-associated oncogene transcription factors (GLI) is a
Zinc finger protein and downstream regulator of the Hh pathway
(Pietrobono et al., 2019). In early embryonic development, GLI
members play a major role in the central nervous system;
however, it is also involved in carcinogenesis and metastatic
cascade niche (Niewiadomski et al., 2019). Since amplified GLI
was first observed in glioblastoma, it has now been commonly
detected in the breast (Song et al., 2016), lung (Panneerselvam
et al., 2019), pancreatic (Kowolik et al., 2019), colorectal (Park
et al., 2019), leukemia (Jetten, 2019), and renal cell carcinoma
(Kotulak-Chrzaszcz et al., 2019). It was also stated that high-
expression GLI prevails tumor suppression mediated by p53 (Abe
et al., 2008). Silencing GLI decreases cancer cell proliferation and
invasive potency (Mishra et al., 2019). These results indicate a
mechanism of Hh signaling to stimulate malignant stemming and
facilitate the growth of tumors.

CONCLUSION

This study used robust multiple transcriptomic cohorts with
an integrated omic analysis and found that P4HA1 may be

a potential oncogenic biomarker in BC. Moreover, this gene
showed a copy number gain, reliably more explicit in high-
grade metastatic breast tumors with poor clinical patient
results. Besides, we speculate the implication of the hedgehog
signaling pathway and metabolic reprogramming during high cell
proliferation in hypoxic breast tumors. Our studies have provided
useful insights into the P4HA1; it can be a novel biomarker for the
diagnosis and progression of BC therapy.
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