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Selecting appropriate metabolic engineering targets to build efficient cell factories
maximizing the bioconversion of industrial by-products to valuable compounds taking
into account time restrictions is a significant challenge in industrial biotechnology.
Microbial metabolism engineering following a rational design has been widely studied.
However, it is a cost-, time-, and laborious-intensive process because of the cell network
complexity; thus, it is important to use tools that allow predicting gene deletions. An
in silico experiment was performed to model and understand the metabolic engineering
effects on the cell factory considering a second complexity level by transcriptomics
data integration. In this study, a systems-based metabolic engineering target prediction
was used to increase glycerol bioconversion to succinic acid based on Escherichia coli.
Transcriptomics analysis suggests insights on how to increase cell glycerol utilization to
further design efficient cell factories. Three E. coli models were used: a core model, a
second model based on the integration of transcriptomics data obtained from growth in
an optimized culture media, and a third one obtained after integration of transcriptomics
data from adaptive laboratory evolution (ALE) experiments. A total of 2,402 strains
were obtained with fumarase and pyruvate dehydrogenase being frequently predicted
for all the models, suggesting these reactions as essential to increase succinic acid
production. Finally, based on using flux balance analysis (FBA) results for all the mutants
predicted, a machine learning method was developed to predict new mutants as
well as to propose optimal metabolic engineering targets and mutants based on the
measurement of the importance of each knockout’s (feature’s) contribution. Glycerol
has become an interesting carbon source for industrial processes due to biodiesel
business growth since it has shown promising results in terms of biomass/substrate
yields. The combination of transcriptome, systems metabolic modeling, and machine
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learning analyses revealed the versatility of computational models to predict key
metabolic engineering targets in a less cost-, time-, and laborious-intensive process.
These data provide a platform to improve the prediction of metabolic engineering
targets to design efficient cell factories. Our results may also work as a guide and
platform for the selection/engineering of microorganisms for the production of interesting
chemical compounds.

Keywords: systems metabolic engineering, transcriptomics, machine learning, adaptive laboratory evolution,
metabolic modeling resources/frameworks

INTRODUCTION

Shifting from petrochemical sources to renewable, abundant,
and inexpensive feedstocks to obtain valuable chemicals has
become a promising goal for the chemical industry (Vlysidis
et al., 2011). The biodiesel industry has increased in the
last years by using renewable raw materials, but it generates
large amounts of glycerol, which has become a burden. The
bioconversion of glycerol is a potential route to increasing
the use of bio-based succinic acid, a critical building block
chemical with an attractive market. The availability of three
pathways for succinic acid production (Figure 1; Chen et al.,
2013a), the adaptability to different environments, and the
accessibility of metabolic engineering and omics tools make
Escherichia coli an attractive cell factory. However, some
challenges, such as low growth rate and yield, the use of a rich
medium, the generation of by-products, and various anaerobic
requirements, need to be overcome for bio-based succinic acid
production, considering cost-effective issues, as compared with
the petroleum-based approach.

The main goal of using microbial cell factories is to design
cheap and high-yield biotechnology-based conversion processes.
A significant problem to be solved is how to enhance cell
growth while using its capabilities to obtain a high-yield target
chemical product. A classical approach for that is adaptive
laboratory evolution (ALE), which is based on the selection
of microorganisms with superior production capability after
random mutagenesis screening. Another approach to strain
improvement is metabolic engineering, which uses genetic
manipulation to optimize the production of desired compounds.
Metabolic engineering selects targets that increase productivity
based on the rationality of trial-and-error development cycles
and an understanding of the routes playing a significant role
in the synthesis. Strain design with this method has been
extensively applied to use and/or produce interesting compounds
(Kern A. et al., 2007; Chen et al., 2013a,b; Förster and Gescher,
2014; Woo and Park, 2014), including bio-based organic acids
by substrate transport enhancement, gene overexpression, and
deletion (Shams Yazdani and Gonzalez, 2008; Zhang B. et al.,
2012; Buschke et al., 2013; Förster and Gescher, 2014; Yin et al.,
2015; Zhu and Jackson, 2015). However, making the strain
industrially competitive requires much time, effort, and high cost
(Rangel et al., 2020).

When DNA was discovered in the last century, a new approach
called metabolic network modeling for the study of cellular

metabolism was developed (O’Brien et al., 2015). It allows to
determine how several pathways in a cell can interact, as well
as to elucidate basic microbial processes (Haggart et al., 2011).
The first genome-scale metabolic network was described in
1999, and in 2002, the use of metabolic modeling to analyze
recombinant pathways was reported (Carlson et al., 2002).
Several models have been developed ever since with significant
accuracy and useful predictions (Portela et al., 2013) that can
be used to guide experimental studies (Pharkya and Maranas,
2006; O’Brien et al., 2015). COnstraints-Based Reconstruction
and Analysis (COBRA) methods make it possible to predict,
given a cellular objective function, attractive targets to increase
or maximize biochemical yields, and to determine perturbations
after genetic manipulations of the cell (Kim, 2012; Ruckerbauer
et al., 2015). OptKnock, OptStrain, OptForce, and OptReg
are some COBRA methods developed to predict metabolic
engineering targets for cell optimization by using gene–protein
reaction (GPR) relationship (Burgard et al., 2003; Pharkya
et al., 2003; Pharkya et al., 2004; Pharkya and Maranas, 2006;
Ranganathan et al., 2010).

OptKnock applies a flux balance analysis (FBA) approach
for simulating genome-scale metabolic models (GEMs). It
assumes that each organism’s metabolic network has been
tuned through evolution for some objective function, be it a
maximal growth rate or energy efficiency (e.g., minimal ATP
utilization). While this assumption may be valid for wild-
type (WT) organisms that have evolved over many hundreds
or thousands of generations, it may be less appropriate for
engineered mutants (KO) because they have been engineered in a
controlled environment and unexposed to the same evolutionary
forces. Hypothesizing that mutant organisms are unable to
immediately adapt their metabolic network to achieve the WT
objective function, computational tools such as minimization of
metabolic adjustment (MOMA) were developed (Segre et al.,
2002). This approach is mathematically formalized as a quadratic
programming (QP) problem, finding a suboptimal flux profile
that is a minimal Euclidean distance from the WT (WT-FBA) and
the genetically perturbed (KO-FBA) organisms. FBA combined
with MOMA evaluation after OptKnock prediction could provide
a more accurate prediction of the immediate metabolic response
to KO than FBA does on its own. However, a large list of knockout
combinations could be obtained when computational tools are
used, and select which test in a lab can be laborious.

Several approaches to optimize cell factories have been
developed, but conventional and computational approaches

Frontiers in Genetics | www.frontiersin.org 2 March 2021 | Volume 12 | Article 633073

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-633073 March 22, 2021 Time: 13:41 # 3

Tafur Rangel et al. Systems-Based Metabolic Engineering for Bio-Factories Design

GLYCtpp

Glycerol

g6p

f6p fdp

PGI
PFK

nadph

G6PDH2r

g3pF6PA
GLYCDx

dhap

FBA TPI
G3PD5

G3PD2
glyc3p

nadph
GLYK

atp

GAPD

13dpg

PGK

3pg

PGM

Glycerol

dha

atp

atp

nadh

2pg
ENO

atp
nadph, co2

cit

acon_c

icit

glx

mal_L

akg

succoa

succ

fum

oaa

CS

ACONTa

ICDHyr

AKGDH

SUCCOAS

FRD2
SUCDi

FUM

MDH

atp

PPS

PYK PDH
pep pyr accoa

ME1

ME2

PPCK

PPC

Extracellullar space

Cytoplasm

Periplasm

OxygenAcetate

Acetate

actp

PTAr

ACKr

ACALD

acald

Ethanol

Ethanol

ALCD2x

POX

Lactate

Lactate

D_LACt2pp

LDH_D

PFL

Formate

Formate

FORtppi

Succinate

SUCCt2_2pp

SUCCt1pp

nadph, co2

nadph, co2

atp

nadh
nadh

nadph, co2

nadph, co2

6pgl

PGL

ru5p_D

RPE RPI

xu5p_D r5p

s7p

GND

6pgc 2ddg6p
EDD

EDA

TKT1 e4p

TALA

Pentose Phosphate Pathway

Glycerol

xetCAL_DxetCYLG
Lactateh

h

Formate
FORtex

ACt2rpp

ACtex

Acetate h

h

ETOHt2rpp

ETOHtex

Ethanol

Oxygen

O2tpp

O2tex

Oxygen
SUCCtex

Succinateh

h

FIGURE 1 | Succinic acid pathways from glycerol in Escherichia coli. The three pathways for succinic acid production are indicated by the thick red (the
PEP–pyruvate–oxaloacetate node—the reductive TCA branch), yellow (the oxidative TCA branch), and blue (the glyoxylate shunt) arrows. Relevant biochemical
reactions are represented based on the ID BIGG database names (King et al., 2016).

have not always been successful due to unexpected changes
in the cell where an intracellular complex interconnected
network of genes, proteins, and reactions exists. Systems
metabolic engineering has emerged as an approach that
integrates metabolic engineering and combined metabolic and
“omics” network models. This approach could be beneficial
for genome-scale modeling because it reduces the solution
space and generates accurate predictions (Nordlander et al.,
2008; Feist et al., 2010; Blazier and Papin, 2012; Machado and
Herrgård, 2014; Rangel et al., 2020). Mainly considering that
under certain environmental conditions, there are a limited
number of reactions that are active according to transcriptional
responses and other regulation phenomena to provide beneficial
improvements for the cell bioconversion process (Fong and
Marciniak, 2003; Fong et al., 2005; Lee and Palsson, 2010;
Conrad et al., 2011; Wang et al., 2011; Zhang J. et al., 2012;
Bao et al., 2014).

In this study, systems metabolic engineering for
overproduction of succinic acid from glycerol in E. coli
ATCC 8739 was used through integration of transcriptomics
data to metabolic models and classification tree analysis using the
random forest to classify gene targets predicted by OptKnock.
Our strategy took advantage of transcriptomics data obtained
from an evolved E. coli in glycerol and an optimized culture
media. These data were subsequently integrated into a metabolic
network model to predict targets using OptKnock. Predicted
combinations were then evaluated using FBA, flux variability

analysis, and MOMA to determine the effects of gene reaction
knockout in the cell. Finally, predicted target reactions were
evaluated using random forest to determine the importance of
each target using succinic acid production, growth rate, and
Euclidian distance between the WT strain and each mutant as
response variables.

MATERIALS AND METHODS

Strains and Culture Conditions
E. coli ATCC 8739 was used in this study. It was obtained
commercially from the American Type Culture Collection
(ATCC). A glycerol-based medium containing the following
components (per liter) was used as the reference culture
condition: 5 g of yeast extract, 2.5 g of NaCl, 5 ml of trace metal
solution [0.55 g/L CaCl2, 0.10 g/L MnCl2 4H2O, 0.17 g/L ZnCl2,
0.043 g/L CuCl2 2H2O, 0.06 g/L CoCl2 6H2O, 0.06 g/L Na2MoO4
2H2O, 0.06 g/L Fe(NH4)2(SO4)2 6H2O, 0.20 g/L FeCl3 6H2O],
5 ml of MgSO4 (1 M), and 30 g of glycerol. A 50 ml culture
was carried out in a 250 ml baffled-conical Erlenmeyer flask and
cultivated aerobically at 37◦C and 200 rpm.

Two conditions were evaluated in this study: an adapted E. coli
on high glycerol concentrations (30, 40, 50, 60 g/L) and an
optimized culture condition. For the first condition, four E. coli
cultures were continuously subcultured each for 72 h in Luria–
Bertani (LB) medium (5 g/L of NaCl, 10 g/L of tryptone, and
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5 g/L of yeast extract, supplemented with 30, 40, 50, or 60 g/L).
After every three subcultured rounds (216 h), the concentration
of tryptone was decreased from 1 until reaching 0 g/L. Then, 10
subcultured rounds each for 72 h were carried out. During the
complete experiment, a 50 ml culture was carried out in a 250 ml
non-baffled-conical Erlenmeyer flask and cultivated aerobically
at 37◦C and 200 rpm. For each subcultured round, an OD ∼0.33
600 nm was considered as inoculum starting point. At the end of
each tryptone decreasing, 1 ml of culture was kept at –80◦C and
used for further evaluation of growth and glycerol uptake. For
the optimized culture condition, the glycerol-based medium was
supplemented with 1 g of NH4Cl, 6 g of Na2HPO4, and 3 g of
K2HPO4 at the same conditions as the reference culture.

Differential Expression Analysis
RNA-Seq was carried out in triplicate for all conditions. For the
adapted strain, the culture conditions for RNA-Seq were the same
as those for the optimized culture medium condition. To harvest
cells for total RNA purification, the culture sample was first
treated with RNAprotect Bacteria Reagent (Cat No./ID: 76506),
and enzymatic lysis and proteinase K digestion of the bacteria
were carried out following the manufacturer’s protocol. Then,
the Qiagen RNeasy Mini kit (Cat No./ID: 74104), following the
manufacturer’s protocol, was used to obtain the total RNA for
further analysis. Each sample was treated with DNase following
the protocol in order to remove the DNA. The samples were sent
to commercial RNA-Seq services for further sample processing
and sequencing (Genewiz, South Plainfield, NJ).

Clean, raw data was obtained by removing the reads
containing adapters using Trimmomatic. The sequence RefSeq:
NC_CP010468 was employed for mapping. RNA reads were
mapped using the software bowtie2, and featureCounts was
employed to read counts. SARTools (Statistical Analysis of
RNA-Seq data Tools) (Varet et al., 2016) was used for
statistical RNA-Seq analysis. Differentially expressed genes
(DEGs) were identified using the DESeq2 R Package. The
functional classification of the DEGs was performed using Gene
Ontology (GO) analysis by Blast2GO (Götz et al., 2008). The data
discussed in this publication have been deposited in NCBI’s Gene
Expression Omnibus (Edgar, 2002) and are accessible through
GEO Series accession number GSE140847.

Genome-Scale Metabolic Network
Reconstruction
In order to obtain metabolic engineering targets to overproduce
succinic acid from glycerol, two E. coli models were used:
EColiCore2 (ECC2) (data under peer review) and iTA1338 for
E. coli ATCC 8739 (Supplementary File 1). Gene associations for
both models were modified to ECOLC_RS number based on the
sequence RefSeq: NC_CP010468 to facilitate the integration of
transcriptomics data. Extensive manual curation was conducted,
including (i) adding/eliminating transport reactions and
extracellular metabolites and (ii) filling pathway gaps. GapFind
and GapFill, two optimization problems that search for root
metabolite problems that are not connected in the network and
that solve them, were used to fill gaps in iTA1338, including

biomass reaction BIOMASS_Ec_iML1515_WT_75p37M
(Supplementary File 1). All optimization problems were solved
using the COBRA Toolbox v.3.0 (Heirendt et al., 2019).

Transcriptomics Integration and
Metabolic Engineering Target Prediction
The gene inactivity moderated by metabolism and expression
(GIMME) (Becker and Palsson, 2008) method was used to
integrate transcriptome data with the E. coli metabolic model.
This method then minimized the usage of low-expression
reactions while keeping the objective (e.g., biomass) above
a certain value. Expressed genes were considered according
to their expression level with log2 fold change (FC) ≥ |1|.
Next, according to the GPR rules and the defined gene
expression states, a specific activity state for each reaction
was identified. Finally, a specific context model was obtained
from the transcriptomic data. Metabolic engineering targets
were obtained using OptKnock. However, MOMA was used
to understand the probability of those mutants predicted
to be adapted and to reach the optimal state (predicted
succinic and growth flux) considering the Euclidean distance. It
because OptKnock predicts an optimal state, but after genetic
manipulation cell are not in this state. The maximum uptake
rate of glycerol was set to 13.3 mmol/g DW h−1. The OptKnock,
GIMME, and MOMA methods were conducted using COBRA
Toolbox v.3.0 (Heirendt et al., 2019) in MATLAB 2017b
and Gurobi 8.0.1.

Machine Learning to Determine Potential
Metabolic Engineering Targets
Random forest models are supervised machine learning
approaches, which have the advantage of giving a summary of
the importance of each variable. This approach is based on a
randomized variable selection process. An estimation of variable
importance is provided by IncNodePurity, which measures the
decrease in tree node purity that results from all splits of a
given variable over all trees (Li et al., 2015). For interpretation
purposes, this measure can be used to rank variables by the
strength of their relation to the response variable (Li et al.,
2015). A matrix of binary values was built from m mutant
predicted and n reactions in the set of possible reactions to
be knocked out. In this matrix, one represents the presence
of one specific reaction to be deleted in the mutant and zero
the absence in the combination of reactions to be deleted
in the mutant. The matrix was partitioned into training and
test sets; the training set was used to build a random forest
model to predict succinic acid production, growth rate, or
the growth rate Euclidean distance between the mutant and
WT strains as response variables. For the training set, succinic
acid production, growth rate variable response was initially
predicted using FBA, and the growth rate Euclidean distance
between the mutant and WT strains was predicted using
MOMA. Next, the model performance was assessed using the
testing set. Finally, we used the random forest to determine
the importance of each target reaction over the three evaluated
response variables.
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RESULTS

Glycerol Consumption of E. coli After
Adaptive Laboratory Evolution
Luria–Bertani is one of the most common cultures used
industrially for the growth of E. coli. In order to increase glycerol
consumption by E. coli on LB media, an ALE experiment was
carried out. Results obtained in this study, before the ALE
experiments, suggest that even when high cell density cultures
are reached, a low consumption of glycerol is observed. For all
the four conditions (supplementation of 30, 40, 50, or 60 g/L
of glycerol), a growth curve was carried out, showing that a
maximum of 7 g/L consumption of glycerol could be achieved
naturally by E. coli. Nevertheless, after the ALE experiments, an
increase of 3 g/L in the glycerol consumption was observed for
the strain growing in a supplementation of 30 g/L of glycerol.
Despite this data showing an increase of around 30% in glycerol
consumption, it is far below that obtained in the optimized
culture, which reaches a consumption of 30 g/L of glycerol (data
under peer review).

Transcriptional Response of E. coli for
Aerobic Glycerol Consumption
A cell is considered a complex system where a large number
of processes are carried out. These processes then involve an
interaction between genes, transcripts, proteins, metabolites,
and reactions, among others (Lee et al., 2012; Furusawa et al.,
2013; Rangel et al., 2020). Metabolic models are reconstructed
by using genome information; however, it is well known that
metabolism is given by environmental conditions by passing
through a cell regulation process. This causes some genes to
be turned on and off under certain conditions. To determine
which reactions are active to obtain high accurate models, two
transcriptomic profiles were obtained from an ALE experiment
and an optimized culture medium.

DEGs were determined using the DESeq2 statistical package
after filtering out low count reads with an average value of <100.
Significant DEGs were defined as those whose abundance had at
least a log2 fold change [(log2 FC) > | 2|] between the reference
condition (glycerol-based medium) and a chosen experimental
condition (optimized culture medium and evolved strain) at a
false discovery rate (FDR)-corrected P < 0.05. Relevant genes
with log2 FC > | 1| for glycerol metabolism or under the same
regulon were taken into account. Figure 2 shows the distribution
of DEGs using a log2 FC ≥ |2| for one strain growing in the
optimized culture medium and one evolved strain growing in the
same optimized medium. This analysis determined that 478 genes
were differentially expressed, with 222 genes downregulated and
256 upregulated for the optimized medium, and 431 DEGs for the
evolved strain, of which 223 genes were downregulated and 208
genes were upregulated. When comparing DEGs in the optimized
medium and those in the evolved strain, 59 downregulated genes
were found to be unique in the evolved strain and 58 unique genes
for the optimized medium. In this context, 47 and 95 upregulated
genes were found to be unique in the evolved strain and the
optimized medium, respectively (Figure 2).

DEGs were classified into the following three groups using GO
analysis: biological processes, molecular functions, and cellular
components. The shared downregulated genes predominantly
included those involved in the metabolic process (cellular,
organic substances, nitrogen compounds, and primary metabolic
processes), chemicals, stress and stimulus responses, and
heterocyclic compound systems. Between downregulated genes,
we found phoB and phoR, which are involved in phosphorous
uptake and metabolism since, under excess phosphorous, PhoR
inactivates phoB (Makino et al., 1989). Figure 3 shows the
level 2 GO terms for unique down- and upregulated genes in
both conditions using Blast2GO (Götz et al., 2008). The 117
unique downregulated genes at log2 FC ≥ |2| and an adjusted P
≤ 0.05 were classified into 15 functional groups. Two GO terms,
signaling and locomotion, were only present for the evolved
strain, and one GO term, multiorganism processes, was only
present for the optimized culture condition in downregulated
genes (Figure 3A).

GO analysis revealed that shared upregulated DEGs (Figure 2)
are involved mostly in the metabolic process (51%), including
GO terms such as cellular, organic substances, primary, and
nitrogen compound processes; 11% of the upregulated genes were
associated with biosynthetic processes and the establishment
of localization. The main GO terms for molecular functions
were those involved in a binding activity (66%), counting
ions, heterocyclic compounds, organic cyclic compounds, small
molecules, and protein binding, followed by transferase activity
(10%) and transmembrane transporter activity (9%). About 42%
of the DEGs categorized in cellular functions were implicated in
membrane GO terms, with 17% in the cell periphery and 16%
in the cytoplasm.

Glycerol metabolism in E. coli is mediated by glp operons. In
consequence, transcriptomic analysis shows shared upregulation
of glpBCFKQTX genes. The changes in bacterial gene expression
in response to glycerol utilization are summarized in Table 1.
During glycerol utilization, GlpF permease facilitates glycerol
entry into E. coli for further transformation into glycerol-
3-phosphate (Gly-3-P) by GlpK under aerobic conditions.
Comparing glpK expression with the values obtained for other
genes in the glp regulon showed that glpK was one of the most
highly expressed genes. However, a difference of ∼1 log2 FC
between the evolved strain and the optimized culture condition
was exhibited in the glpFKX operon (Table 1). As a consequence
of the regulatory network, an increase in the expression of
glpX was detected (2.76 log2 FC), which is part of the glpFKX
operon and works as an alternative fructose-1,6-bisphosphatase
involved in gluconeogenesis by catalyzing the hydrolysis of
fructose-1,6-bisphosphate to fructose 6-phosphate (Booth, 2014).
Overexpression of glpX has been shown to increase hydrogen
production (Kim et al., 2011). Additionally, transcriptomic
analysis showed upregulation of both flavin oxidases glpD and
glpABC.

The electron-transport chains of E. coli are composed of
many different dehydrogenases and terminal reductases. Glycerol
metabolism in E. coli uses oxygen as the main electron acceptor,
but it could also employ fumarate under anaerobic conditions
by encoding a fumarate reductase complex under anaerobic
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TABLE 1 | Differential expression of genes involved in glycerol metabolism.

RefSeq tag (ECOLC_RS) Gene name Old locus tag Product Log2 FC Exp 3 Log2 FC evolved

01540 glpD EcolC_0288 Aerobic glycerol-3-phosphate dehydrogenase 1.69 1.21

07540 glpC EcolC_1408 Anaerobic glycerol-3-phosphate
dehydrogenase subunit C

2.61 3.59

07545 glpB EcolC_1409 Anaerobic glycerol-3-phosphate
dehydrogenase subunit B

2.87 3.74

07550 glpA EcolC_1410 Sn-glycerol-3-phosphate dehydrogenase
subunit A

1.28 2.00

07555 glpT EcolC_1411 Glycerol-3-phosphate transporter 5.41 4.36

07560 glpQ EcolC_1412 Glycerophosphoryl diester phosphodiesterase 5.25 5.52

22045 glpF EcolC_4091 Aquaporin 4.17 3.03

22050 glpK EcolC_4092 Glycerol kinase 5.36 4.37

22055 glpX EcolC_4093 Fructose-1,6-bisphosphatase 2.76 2.05

10840 fumA EcolC_2018 Fumarate hydratase 1.46 −0.60

20740 frdA EcolC_3856 Fumarate reductase flavoprotein subunit 0.68 1.71

20745 frdB EcolC_3857 Fumarate reductase iron-sulfur subunit 0.89 1.87

20750 frdC EcolC_3858 Fumarate reductase subunit C 0.74 1.72

20755 frdD EcolC_3859 Fumarate reductase subunit D 0.16 1.09

conditions (Jones and Gunsalus, 1987; Cecchini et al., 2002).
Table 1 shows log2 FC for fumA and frdABCD genes in
E. coli. The fumA gene was encoded for abundant fumarase,
predominantly expressed in the optimized culture medium (1.55
log2 FC), but not for the evolved strain (−0.53 log2 FC). FumA
has been reported to be predominantly expressed under aerobic
conditions (Chen et al., 2012). Under aerobic conditions, the
catalysis of succinate to fumarate interconversion is mediated
by the succinate dehydrogenase complex encoded by sdhABCD
(Cecchini et al., 2002). However, in this study, sdhABCD genes
were not found to be differentially expressed in any of the culture
conditions. Interestingly, among the upregulated genes in the
adapted strain, a difference of ∼1 log2 FC in the expression of the
fumarate reductase genes (frdABCD), which is used in anaerobic
growth, was observed over the optimized culture condition.

The maltose operon of E. coli consists of genes that encode
proteins involved in the uptake and metabolism of maltose
and maltodextrins. These genes have been found to be highly
associated with upregulation under glycerol utilization as a
carbon source, and changes in the level of glpK transcription
had a significant effect on malT transcription (Chagneau et al.,
2001). In this study, malEFKMTPQ genes were shown to be
upregulated in both conditions. For malT, the log2 FC was more
highly expressed in the optimized culture condition than in the
evolved strain. The same behavior was observed for glpK. Thus, a
high expression of this regulon in this study could be presumably
linked to the high expression of the glpK gene since they showed
similar log2 FC.

As a result of glycerol metabolism, acetate is mainly generated.
In our analysis, the phosphate acetyltransferase encoded by
pta, which catalyzes the reversible conversion between acetyl-
CoA and acetylphosphate (Lin et al., 2005; Blankschien et al.,
2010), was found to be upregulated (∼2.30 log2 FC). Also, the
atpABCDEFGH genes have a role in the generation of ATP
from ADP and phosphate. These genes were observed to be
upregulated, with similar log2 FC, except for atpA, which had a

difference of around 1 log2 FC in the optimized culture medium
with respect to the evolved strain.

Predicting Potential Metabolic
Engineering Targets for Succinic Acid
Overproduction
Genome-scale metabolic models (GEMs) are defined as a
complete set of reactions involved in cell metabolism, given
by genome annotation, regardless of whether the annotated
metabolic genes are expressed in a given environment. This
assumption could be correct in genome-scale models because
core models represent the central metabolism, but the full
potential of GEMs remains unexploited mainly (Ataman et al.,
2017). To avoid this situation and to evaluate the effects of using
a core or a large model to predict metabolic engineering targets,
three models were used: a core model (ECC2) and two models
obtained after the integration of transcriptomics data that can
help to elucidate the actual state of the metabolic network in vivo
for further metabolic engineering.

Metabolic Model Reconstruction and
Transcriptomics Integration
For the integration process, a reconstruction of the metabolic
model for E. coli ATCC 8739 was carried out based on the iEcolC
1368 (Monk et al., 2013), iEC1349_Crooks (Monk et al., 2016),
and iML1515 models (Monk et al., 2017). Extensive manual
curation was conducted to fill pathway gaps. Transport and
exchange reactions were added or eliminated, enabling nutrient
uptake and by-product secretions. Finally, the resulting model
was designated iTA1338, and it involved 2,032 metabolites,
2,804 reactions, and 1,338 genes (Supplementary File 1). After
that, using GIMME, context-specific metabolic networks were
constructed departing from the iTA1338 model for two types
of strains: (1) WT E. coli ATCC 8739 growing in an optimized
culture medium (iTA818) (Supplementary File 1) and (2) E. coli
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ATCC 8739 strains evolved to grow on glycerol (iTA821)
(Supplementary File 1). Manual curation was carried for the
iTA821 model based on GapFind and GapFill results.

Figure 4 illustrates the number of reactions obtained for
each model after transcriptomic integration. The same growth
rate was observed after integration; however, flux distribution
in 24 reactions was exhibited (Figure 4B). The reactions
only present in iTA821 are mainly associated with the inner
membrane transport (14). Other unique reactions in iTA821
were mapped to be linked to the citric acid cycle, cofactor and
prosthetic group biosynthesis, glutamate metabolism, inorganic
ion transport and metabolism, the nucleotide salvage pathway,
oxidative phosphorylation, and pyruvate metabolism, among
others. Unusual reactions of iTA818 were mainly associated with
transport, including the transport outer membrane porin (218),
transport inner membrane (50), and transport outer membrane
(15), followed by cell envelope biosynthesis (37), the nucleotide
salvage pathway (24), glycerophospholipid metabolism (14),
alternate carbon metabolism (12), and cofactor and prosthetic
group biosynthesis (7), among others.

In silico Systems Metabolic Engineering
Targets Prediction
To predict E. coli strains that overproduce succinic acid from
glycerol, OptKnock was used (Burgard et al., 2003). Before
predicting the reaction target to overproduce succinic acid, both
metabolic networks were preprocessed. The goal of preprocessing
was to obtain a smaller set of selected reactions that could serve
as valid targets for gene knockouts. First, all reactions displaying
maximum and minimum fluxes equal to zero were removed from

the set of potential reactions to be knocked out. Next, all reactions
that had been experimentally found to be essential for growth
were removed from consideration (Joyce et al., 2006). Also, the
reactions that were found to be computationally essential were
not considered, as well as non-gene-associated reactions.

Ten OptKnock rounds of mutant prediction were carried out.
In each round, the set of reactions was set up to 1, 2, 3, . . . 10,
and 100 mutants were requested per round. ECC2, iTA818, and
iTA821 models were used to predict mutants of succinic acid
overproducers; 811, 806, and 785 possible mutants were obtained
from the ECC2, iTA818, and iTA821 models, respectively
(Supplementary File 2). Figure 5 describes the frequency of the
reactions predicted in all the possible mutants. It can be seen that
30 reactions were above the average frequency. Reactions acetate
kinase (ACKr), fructose 6-phosphate aldolase (F6PA), fumarase
(FUM), pyruvate dehydrogenase (PDH), pyruvate formate lyase
(PFL), phosphotransacetylase (PTAr), succinate dehydrogenase
(SUCDi), triosephosphate isomerase (TPI), glycerol-3-phosphate
dehydrogenase-NADP (G3PD2), and glycerol dehydrogenase
(GLYCDx) were frequently predicted for the all models. It is
important to mention that G6PDH2r, LDH_D, PGL, and POX
were not predicted to be part of models iTA818 and iTA821
after integration.

Interestingly, in the complete set of reactions predicted, PDH
was the most frequent target reaction, followed by FUM in all
the models (Figure 5), and minimal variations in the knockout
frequency were observed for these reactions. Figure 5A shows
the plot of the first two principal components of the principal
components analysis (PCA), representing the variability of 89%
of the data. This analysis shows how PDH and FUM knockouts
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FIGURE 4 | Models comparison after transcriptomic integration using gene inactivity moderated by metabolism and expression (GIMME) under aerobic conditions.
(A) Venn diagram or reactions included in the model. (B) Flux Balance Analysis under aerobic conditions.
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FIGURE 5 | Metabolic engineering targets predicted by OptKnock. (A) Frequency of reactions predicted by OptKnock for each model, with combinations of
knockouts from 1 to 10 reactions per mutant. (B) PCA for metabolic targets predicted. (C) PCA for models using predicted targets.

are closely related to succinic acid overproduction from glycerol.
Regions of high variability are clustered along with the first
principal component, presenting a value of zero for the first
principal component. This indicates that the factors that make
up the first principal component are critical for high titers.
The contributions of different models to the first two principal
components of the PCA are shown in Figure 5B, and they are
indicative of the relative influence on the variability in knockout
predictions given by transcriptomic integration.

A cluster analysis between the reaction frequency for each
k deletion showed that elimination of acetate, formate, and
lactate by-products mediated by POX, PFL, and LDH_D is highly

related to PDH and FUM deletion (Figure 6). This phenomenon,
probably due to PDH deletion, results in reduced conversion of
pyruvate to acetyl-CoA, which is the main substrate in ACKr and
PTAr reaction to generate acetate (Figure 1), a competitive by-
product on succinate production (Blankschien et al., 2010). Then,
if PDH deletion is not carried out, ACKr and PTAr knockouts
would become essential to increasing succinate production, as
well as minimizing costs in the separation process (Kurzrock and
Weuster-Botz, 2010; López-Garzón and Straathof, 2014).

Since metabolic manipulation of cells results in a stressful
process, the negative impact of deletions on the maximum
growth rate can be observed. To determine the effects of reaction
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FIGURE 6 | Pearson correlation of reaction frequency by knockout numbers (k), predicted using OptKnock.

knockouts over the cell, FBA was carried out and Euclidean
distance was calculated for each mutant predicted. Figure 7
illustrates the relationship between the number of knockouts,
succinic acid production, and growth rate using FBA and the
Euclidian distance between the WT and mutant strains using
MOMA. It can be seen that the number of reactions knocked is
highly related to high succinic acid production rates due to the
elimination of competitive by-products, such as acetate, formate,
and lactate, requiring at least three to four deletions. The highest
succinate production (∼8.5 mmol/g DW h−1) was observed in
mutants predicted in ECC2 when 9 or 10 reactions were deleted.
However, this implies a substantial reduction in the growth rate
to ∼4% compared with the WT strain. Thus, selecting these
mutants is unrealistic for the industrial production of succinic
acid. The same behavior in the reduction of the growth rate
was observed for those mutants that required more than six
deletions in mutants predicted in iTA818 and iTA821. In contrast,
a considerable reduction in the growth rate (28% of the WT
growth rate) as well as an increasing succinic acid production
rate (around 30% more than those with 9–10 knockouts) for
those mutants with six knockouts was observed. In addition, it
was observed that there is no direct correlation, in the same
magnitude for all the mutants, between the Euclidean distance
and the numbers of knockouts in each mutant. However, Figure 7
shows amplifications in the Euclidian distance between the
WT and the mutants when succinate production and knockout
numbers increase and growth rate decreases.

Identification of Critical Metabolic
Targets and Potential Mutants
OptKnock results are a large list of knockout combinations where
maximum product synthesis occurs at a maximum growth rate
reachable (Burgard et al., 2003). However, it has been observed

that the optimal solution of the target given by OptKnock is
not necessarily growth-coupled, and some mutants predicted do
not increase the product target. Consequently, selecting a mutant
to be tested in the lab could be really difficult and probably
result in a laborious process. Assuming that each mutant product
growth “coupled” predicted will result in a successful biological
production, these mutants can ensure high productivity over time
and initially solve this situation (Shabestary and Hudson, 2016).
To identify growth-coupled production solutions, a COBRA
Toolbox function was used to verify the minimum and maximum
production rates given a set of reactions to be knocked out. As
a result, the same minimum and maximum flux for the desired
product should be obtained when the maximum growth rate
is achieved. One thousand seven hundred ninety-nine (1,799)
mutants were predicted to be growth-coupled, 539 to be growth-
coupled non-unique (maximum flux - minimum flux > 0.1), and
64 mutants were categorized as not growth-coupled (maximum
flux < 0.1). For the mutants categorized as growth-coupled non-
unique, an FBA was carried out to predict the succinic acid
production rate (Figure 7), where 279 mutants were predicted
to have a difference between the maximum production rate
predicted by the function and FBA < 2, resulting in 2,078 in silico
mutants that overproduce succinic acid.

In order to filter and select potential mutants to be tested
in the lab, a random forest model to predict the importance of
each reaction knockout was developed based on the OptKnock
predictions. Each possible combination of reactions using binary
values that increase the succinic acid production was associated
with the flux of the extracellular succinic acid and biomass
reaction obtained by FBA and the Euclidian distance obtained
by MOMA. The dataset was divided into two groups: 70% for
training and 30% for the test. Following feature selection and
cross-validation, a robust model that associated any combination
of 58 reaction variables to a predicted growth rate and succinic
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FIGURE 7 | Relationship between the number of knockouts, succinic acid production, growth rate, and flux difference.

acid production ratio was obtained. A measure of the importance
of the contribution of each feature to the random forest model
is shown in Figure 8 indicated by IncNodePurity. This model
exhibited a mean square error (MSE) value of 0.293 when using
the reaction flux of EX_succ_e flux obtained by FBA as a variable
response. For growth rate (biomass reaction) as a response
variable, the MSE value was 0.0002. Finally, when the Euclidian
distance for each mutant was used as the response variable, the
MSE value was 9,175.158, indicating that the Euclidian distance
is not a good response variable to predict cell behavior when
using the random forest model. Moreover, this result allows the
use of machine learning models to predict the largest number of
mutants than those obtained by OptKnock in terms of growth
rate and succinic acid production since OptKnock is more time-
consuming.

Figure 8A shows that PFL, LDH_D, GLYCDx, G3PD2, PDH,
and POX are the most important reactions to increase the amount
of succinic acid. These reactions are mainly associated with
the GldA–DhaKLM fermentative route and the Gly-3-P route
(Figure 1) in glycerol utilization (Blankschien et al., 2010), as well
as acetyl-CoA generation given by the PDH knockout. In around
24% of the mutants predicted, a combination of GLYCDx and
G3PD2 reactions was found to increase succinic acid production.
However, POX and LDH_D reactions were not present in iTA818
and iTA821 models, and PDH, G3PD2, and PFL were also found
to be the most important reactions, predicted to have an effect on
growth rate (Figure 8B).

The pyruvate dehydrogenase complex is a critical connection
point between glycolysis and the TCA cycle, both of which
function during aerobic respiration through catalyzing the
conversion of pyruvate to acetyl coenzyme A (acetyl-CoA)
(Schutte et al., 2015). PDH deactivation results in PFL carrying
the flux from pyruvate to acetyl-CoA (Khodayari et al., 2015).
Simple reaction knockouts show that PDH deletion results in a

growth rate reduction of ∼5%. Additionally, five reactions (FUM,
GAPD, PGK, PGM, and TPI) were predicted to have the most
significant reduction (8–10%) in growth rate during glycerol
utilization. Of those reactions, only FUM has a significant
positive effect over succinate production when this deletion was
carried out alone. However, in mutants in which both FUM
and PDH were predicted (59.45%), TPI appeared in around
12.60% (Figure 5). Then, the deletion of genes associated with
TPI in addition to FUM and PDH reactions could negatively
affect growth rate.

DISCUSSION

Glycerol metabolism in E. coli has been described in the literature
(Murarka et al., 2008; Booth, 2014). However, cell changes
are carried out as a response to stressful situations. In this
study, two conditions were tested for transcription response in
E. coli to further integrate to metabolic network modeling. Gene
expression-wide analyses reveal how cells have the ability to avoid
glycerol toxicity, increasing consumption. The most striking
response to glycerol consumption and the possible mechanism to
optimize succinic acid production from glycerol were revealed by
the combination of the transcriptome, metabolic modeling, and
machine learning analyses.

After glycerol incorporation in the cell mediated by GlpF,
glycerol can be metabolized through two pathways. The first is
mediated by the glycerol kinase GlpK through phosphorylation
of glycerol to Gly-3-P, followed by GlpD activity under aerobic
conditions, leading to dihydroxyacetone phosphate (DHAP)
(Figure 1). The alternative pathway consists of an oxidation
step by glycerol dehydrogenase (GldA) to yield dihydroxyacetone
(DHA), followed by phosphorylation by DHA kinase (DhaK) to
yield DHAP as well. In this study, overexpression of glpK was
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FIGURE 8 | Top 20 node purities obtained using random forest for reactions predicted by OptKnock. (A) Reaction knockout importance on succinic acid production.
(B) Reaction knockout importance in growth rate reduction. (C) Reaction knockout importance in Euclidian distance.

observed in both conditions, with a difference of around 20%.
This result is not surprising since the GlpK-mediated reaction
is a rate-limiting step in glycerol utilization (Herring et al.,
2006). However, it has been observed that under the optimized
culture conditions, the glycerol utilization rate is higher than
that in the evolved conditions, suggesting that other mechanisms
should exit in the cell to enhance glycerol utilization. Gly-3-P
is the first intermediate between the glycerol pathway and the
TCA cycle, as well as between the biosynthesis and catabolism
of lipids; however, accumulation of Gly-3-P can become toxic.
Thus, it is carefully regulated (Booth, 2014). The export of Gly-
3-P could be mediated by phoE and ompF membrane porins;
however, downregulation of phoE (−8.67 and −9.04 log2 FC for
the optimized culture and the evolved strain, respectively) and

upregulation of ompF (log2 FC 2.43) in the optimized culture
suggest that it could play an essential role in E. coli ATCC 8739
glycerol metabolism at high uptake rates avoiding toxicity.

The marked upregulation of glpQ (5.351 and 5.597 log2
FC for the optimized culture and evolved strain, respectively),
which catalyzes the hydrolysis of glycerol-phosphodiesters to
alcohol plus Gly-3-P together with ompF, could explain the
partially higher transcript abundance of glpT since the externally
generated (or supplied) Gly-3-P activates GlpT (Wong and
Kwan, 1992; Lemieux et al., 2005). This protein exchanges
Gly-3-P for phosphate, avoiding the toxicity of both Gly-3-P
and the inorganic phosphates (Booth, 2014). As a result and
considering that phosphate is necessary to increase glycerol
utilization, autoregulation of the PhoB/PhoR two-component

Frontiers in Genetics | www.frontiersin.org 12 March 2021 | Volume 12 | Article 633073

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-633073 March 22, 2021 Time: 13:41 # 13

Tafur Rangel et al. Systems-Based Metabolic Engineering for Bio-Factories Design

regulatory system needs to be down-expressed. Downregulation
of PhoB/PhoR was observed in this study, which could explain
the achievement of optimal density (Gao and Stock, 2013), as well
as contribute to the regulation of glycerol phosphate metabolism
(Baek and Lee, 2007).

The transcriptional analysis also identified the differential
expression of both flavin oxidases glpD and glpABC. Once Gly-
3-P is in the cytoplasm, it is oxidized to dihydroxyacetone
phosphate by one of two flavin-dependent oxidases encoded by
glpD or glpABC genes under aerobic or anaerobic conditions,
respectively (Blankschien et al., 2010; Booth, 2014). In the
presence of oxygen or nitrates, GlpD transfers electrons to
the respective terminal oxidized. In contrast, under anaerobic
conditions, the GlpABC system transfers the electrons to
fumarate or nitrates (Unden and Bongaerts, 1997). GlpD
upregulation was expected since culture conditions were under
aerobic conditions, but a higher expression of the glpABC
system was surprising. Overexpression of glpABC under aerobic
conditions could be elucidated because of the activation of
fumarate reductase enzymes (Table 1) in the evolved strain
as a result of high cell densities during the ALE process.
However, in glycerol fermentation studies, the 1frdA mutant
has been shown to be beneficial for glycerol fermentation
because it prevents the negative impact of hydrogen by
maintaining suitable redox conditions (Murarka et al., 2008).
Moreover, its activity could be supported by sdhABCD since
they are structurally and functionally homologous (Guest, 1981).
Therefore, we hypothesized that frdABCD upregulation could
be the reason why enhancement in glycerol utilization was not
observed in the evolved strain, even when an optimized culture
medium was employed.

Insights on the molecular adaptive responses of E. coli to
glycerol consumption revealed by the transcriptional datasets
identified a marked hdeAB upregulation only in the evolved
strain. This is attractive since HdeAB are periplasmic proteins
that play a role in optimal protection at low pH (Masuda and
Church, 2003; Kern R. et al., 2007). Therefore, differences in
hdeAB upregulation in the evolved strain and the optimized
culture medium probably occur because acetate is the main
product in glycerol utilization, and under ALE conditions, pH
was not controlled. Moreover, the addition of a phosphate buffer
system using the salts Na2HPO4 and KH2PO4 provides the
culture medium used directly for the optimized condition with
a buffering capacity.

It was observed that the main and preferable route for glycerol
consumption is the pathway mediated by GlpK since this gene
was highly overexpressed in high glycerol consumption cultures.
Moreover, glpK deletion has also been observed to be essential for
glycerol utilization as the sole carbon source (Velur Selvamani
et al., 2014). Then, the deletion of this gene could result in a
non-effective bioconversion process. As a result, this gene should
not be taken into account for engineered E. coli strains using
glycerol as the carbon source even when the GLYK reaction was
repeatedly predicted to be knocked by OptKnock in ECC2 and
iTA821 since two pathways for glycerol utilization in E. coli exist.

Based on OptKnock and random forest model predictions,
four critical control points, glycolysis, pyruvate metabolism, the

pentose phosphate pathway, and the TCA cycle, are associated
with the overproduction of succinic acid. FUM and SUCDi
appear to be the most significant keys in the TCA cycle for
succinate overexpression. The results of this study suggest that
they are mutually exclusive. Parallelly, the knockout of by-
products such as acetate, formate, and lactate by deleting POX,
ACKr, PTAr, PFL, and LDH_D was highly predicted to be
knocked out. Those results are interesting since one of the
bottlenecks for industrial production of bio-based products is the
elimination of by-products, which could facilitate the recovery
and purification process. These results and those obtained in the
transcriptional responses suggest that deletion of the pta needs
to be, almost as mandatory, carried out since acetate production
becomes a competitive pathway in glycerol metabolism for
succinic acid production (Zhang et al., 2010).

The pyruvate dehydrogenase complex is a critical connection
point between glycolysis and the TCA cycle, both of which
function during aerobic respiration through catalyzing the
conversion of pyruvate to acetyl coenzyme A (acetyl-CoA)
(Schutte et al., 2015). PDH deactivation results in PFL carrying
the flux from pyruvate to acetyl-CoA (Khodayari et al., 2015).
Simple reaction knockouts show that PDH deletion results in a
growth rate reduction of ∼5%. Additionally, five reactions (FUM,
GAPD, PGK, PGM, and TPI) were predicted to have the most
significant reduction (8–10%) in growth rate during glycerol
utilization. Of those reactions, only FUM has a significant positive
effect over succinate production when this deletion was carried
out alone. These results indicate that those mutants predicted by
OptKnock, where FUM and PDH are predicted, need to betested
in the lab because it has been observed that a low growth rate
could negatively affect the profitability of industrial bio-based
production products (Chen et al., 2013a; Tafur Rangel et al.,
2018). However, in mutants in which both FUM and PDH were
predicted (59.45%), TPI appeared in around 12.60% (Figure 5).
Then, the deletion of genes associated with TPI in addition to
FUM and PDH reactions could negatively affect the growth rate.
This is because in the absence of TpiA, DHAP is converted
to methylglyoxal, which, even at submillimolar concentrations,
is a toxic compound (Booth, 2014). DHAP is the result of
the alternative pathway on glycerol metabolization consisting
of an oxidation step by glycerol dehydrogenase (GldA). DHAP
must be transformed into the general glycolytic pathway
through isomerization by triosephosphate isomerase (TpiA) as
glyceraldehyde-3-phosphate (GA3P). Therefore, deletion of tpiA
could result in growth inhibition and cell death in the presence
of glycerol as the only carbon source (Velur Selvamani et al.,
2014). However, since FBA is not able to capture regulation, this
situation could not be predicted by OptKnock.

Finally, computational models suggest that deletions of just
six to seven reaction knockouts are beneficial for industrial
production since the growth rate does not decrease extremely.
It is important to consider that a similar succinate production
could be achieved if six to eight reactions are knocked out
for all models. An assumption using optimization methods to
predict cell capabilities is that the cell could quickly adjust the
metabolism to maximize growth under certain conditions. This
affirmation could be true for WT strains because FBA predicts an
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optimal condition. However, in metabolically engineered strains,
the cell attempts to compensate for the genetic changes carried
out by the fewest changes in gene regulation until it achieves an
optimal state that could be predicted using FBA (Senger et al.,
2015). Then, FBA in engineered strains predicts a long-term
evolved state. Thus, an alternative to evaluate unevolved mutants
is the MOMA method (Segre et al., 2002). MOMA solves this
problem by finding the solution that is most similar to the WT
state (maximization of WT growth rate). Figure 7 shows a jump
in the Euclidian distance between the WT and mutant strains
when succinate production increases. This result could imply that
after genetic manipulation, microbial cell factories require to be
evolutionarily engineered. ALE studies have shown to provide the
cell with the ability to grow under selection pressure to go up
from a suboptimal state to optimal growth rate predicted using
in silico models (Ibarra et al., 2002). Moreover, since OptKnock
seeks to maximize the flux of a target chemical while maximizing
the growth rate, our predictions could be beneficial for further
ALE experiments because microbial cell factories have naturally
evolved to maximize the growth rate. Thus, the succinic acid
production rate would increase as biomass formation increases
(Shabestary and Hudson, 2016) by using ALE rounds after
metabolically engineering cells (Graf et al., 2019).

CONCLUSION

By adopting tools from various disciplines, computational
methods for systems metabolic engineering have been developed
to understand cell behavior and how level systems (RNA,
proteins, and metabolites, among others) can interact inside
the cell for industrial purposes. In the same way, E. coli
has been extensively studied to become a cell factory for the
production of useful bio-based chemicals and materials through
its native capabilities. However, there are some challenges that
still need to be overcome.

This study proposes that computational tools can accelerate
the optimization of cell factories by identifying metabolic
engineering targets (genes/reactions) and not just by predicting
mutants that may be biologically unviable. Therefore, systems
metabolic engineering reduces time in rational strain design and
guides in the selection of metabolic engineering targets based
on cell behavior under experimental conditions. Simultaneously,

departing from traditional computational tools, new methods
such as machine learning could be proposed as an interesting
alternative for the reduction of computational demand. However,
these techniques are dependent on the level of completeness and
accuracy of the metabolic model considered, which could be
improved by using omics data.
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