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Since the emergence of the Phytophthora sojae infection, economic losses of 10–20 
billion U.S. dollars have been annually reported. Studies have revealed that P. sojae works 
by releasing effect factors such as small RNA in the process of infecting soybeans, but 
research on the interaction mechanism between plants and fungi at the small RNA level 
remains vague and unclear. For this reason, studying the resistance mechanism of the 
hosts after P. sojae invades soybeans has critical theoretical and practical significance for 
increasing soybean yield. The present article is premised on the high-throughput data 
published by the National Center of Biotechnology Information (NCBI). We selected 732 
sRNA sequences through big data analysis whose expression level increased sharply 
after soybean was infected by P. sojae and 36 sRNA sequences with massive expression 
levels newly generated after infection. This article analyzes the resistance mechanism of 
soybean to P. sojae from two aspects of plant’s own passive stress and active resistance. 
These 768 sRNA sequences are targeted to soybean mRNA and P. sojae mRNA, and 
2,979 and 1,683 targets are obtained, respectively. The PageRank algorithm was used 
to screen the core functional clusters, and 50 core nodes targeted to soybeans were 
obtained, which were analyzed for functional enrichment, and 12 KEGG_Pathway and 
18 Go(BP) were obtained. The node targeted to P. sojae was subjected to functional 
enrichment analysis to obtain 11 KEGG_Pathway. The results show that there are multiple 
Go(BP) and KEGG_Pathway related to soybean growth and defense and reverse resistance 
of P. sojae. In addition, by comparing the small RNA prediction model of soybean resistance 
with Phytophthora pathogenicity constructed by the three machine learning methods of 
random forest, support vector machine, and XGBoost, about the accuracy, precision, 
recall rate, and F-measure, the results show that the three models have satisfied 
classification effect. Among the three models, XGBoost had an accuracy rate of 86.98% 
in the verification set.
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INTRODUCTION

Soybean is an indispensable high-protein food, healthy vegetable 
oil, and raw material for essential health products. Widely 
planted across the globe and having a history spanning 
5,000  years of cultivation, soybeans are integral in agricultural 
products. As a vital basic material related to the national 
economy and people’s livelihood, soybean is the most 
economically beneficial crop. Notably, the demand for soybean 
in China is about 110  million tons per year, while the output 
of soybeans is about 17  million tons. Thus, increasing soybean 
production is a significant issue linked to the livelihood of people.

Root rot is one of the primary diseases of soybeans (Ranathunge 
et al., 2008). Often appearing and causing harm during the entire 
growth cycle of soybeans, this disease will cause seed rot before 
emergence, plant wilt after emergence, and leaf wilting and 
yellowing during adult plant stage and will cause rot and stunted 
growth and so on (Dorrance, 2018). Every year, root rot caused 
by Phytophthora sojae is estimated to incur economic losses of 
more than 1 billion U.S. dollars in soybean production worldwide 
(Kaufmann and Gerdemann, 1957). Determining how to reliably 
prevent root rot has always been an extensively discussed research 
issue. In particular, as the soybean planting area has continued 
to increase in recent years, research on this issue has quickly 
become urgent. Hence, in the present study, a new perspective 
was adopted in exploring the resistance mechanism of soybeans 
after being infected by P. sojae, and the effects of soybeans on 
themselves and P. sojae after infection were analyzed. The main 
reason for this was because study of durable and broad-spectrum 
control strategies suitable for soybeans is of considerable significance 
for increasing soybean production and income.

Since the first experimental discovery of sRNA in 1993, 
sRNA research has made a considerable amount of progress, 
and researchers have progressively devoted themselves to sRNA 
research (Brodersen and Voinnet, 2006; Pertea et  al., 2016; Li 
and Li, 2018). sRNA interferes with the standard translation 
of RNA through complementary base pairing with mRNA and 
even degrades mRNA to cause the silencing thereof, thereby 
affecting the protein expression level of organisms and having 
a regulatory function in the growth and development of organisms 
(Gottesman, 2005; Huang et al., 2009; Attila et al., 2010; Aucher 
et  al., 2013; Chen et al., 2020). In addition to having the 
previously mentioned regulatory function in the organism itself, 
recent research has demonstrated that sRNA can also enter 
other species through filming and other methods to maintain 
activity and control other species’ life process (Deng et  al., 
2018). For example, Zhang et al. (2011) discovered that miR168a 
in plant rice can enter animals through ingestion and inhibit 
the standard translation process of mRNA that translates LDLRAP1 
protein in animal liver tissues, as well as achieve cross-species 
regulation of animals. Research by Zhou et  al. (2015) verified 
that plant miRNAs can stably exist in the lungs of experimental 
mice and inhibit the self-replication of influenza A virus.

In recent years, studies have determined that sRNA can 
be  utilized as an effector to be  transmitted between interacting 
pathogenic bacteria and plants and can regulate the expression 
level of target mRNA according to the RNA interference 

mechanism. This mechanism is referred to as a cross-species 
regulatory mechanism (Weiberg et al., 2015). For instance, Arne 
W et  al. discovered in 2013 that when Botrytis cinerea infects 
tomatoes, sRNA molecules are released, thereby invading the 
tomatoes, inducing silencing of genes related to tomato immunity, 
and achieving an inhibitory effect on the host plant’s immune 
process (Altuvia, 2007; Weiberg et  al., 2013). Weiberg et  al. 
(2015) confirmed through experiments that the sRNA of B. cinerea 
can silence the mRNA of Arabidopsis translating AGO1 protein 
by pairing and binding, thereby affecting the normal immune 
response of Arabidopsis. Arabidopsis sRNA can also be transmitted 
to the pathogen B. cinerea and inhibit the expression of 
pathogenicity-related genes of the pathogen B. cinerea, as found 
by Cai et  al. (2018). The aforementioned research offers a new 
direction and further ideas for plant disease research.

There are no on the construction of sRNA prediction models 
concerning soybean resistance to P. sojae infection combined 
with machine learning. Research on the possibility of reverse 
regulation of P. sojae by soybeans from the sRNA level remains 
in the infancy stage, while the analysis of sRNA remains at 
the stage of biological experiments. There is no report on the 
data analysis method of combining computer methods to study 
plant resistance to fungal infection. In the present article, the 
differentially expressed sRNA sequences of soybeans infected 
by P. sojae were adopted as the data basis. Construction of 
an sRNA prediction model for soybean resistance to Phytophthora 
pathogenicity was deemed as being of major significance for 
predicting the disease resistance potential of unknown soybean 
sRNA and its close-source sRNA. At the same time, the sRNA 
sequences were respectively targeted to soybean and Phytophthora 
and predicated on the PageRank algorithm to mine the core 
regulatory modules, analyze the function of the regulatory 
pathway, and then verify the role of the selected soybean disease 
resistance key sRNA sequence in resisting Phytophthora disease. 
The present article is innovative in studying the possible regulatory 
effects of soybean on autoimmune response and P. sojae in 
sRNA. Meanwhile, the present paper provides a data basis for 
the research on the interaction mechanism of soybean and 
P. sojae, a theoretical basis for increasing soybean yield and 
income, and a data analysis plan for the research on other 
plant fungi interactions, having vital scientific significance.

DATA AND METHODS

Pursuant to the National Center of Biotechnology Information 
(NCBI) public database, the aim of the present article was to 
obtain soybean sRNA data before and after being infected by 
Phytophthora sojae, and through preprocessing such as removal 
of joints, removal of low-quality data, and standardization. After 
statistical analysis, the differentially expressed soybean sRNA data 
before and after infection by P. sojae were acquired. First, by 
targeting the differentially expressed soybean sRNA to the mRNA 
data of soybean and P. sojae, the target mRNA was analyzed 
for functional enrichment, and the biological processes and 
functional pathways related to the defense of passive and active 
resistance in soybean to infection were discovered. In addition, 

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chi et al. Bioinformatical Research on Phytophthora Infection

Frontiers in Genetics | www.frontiersin.org 3 February 2021 | Volume 12 | Article 634635

by comparing the sRNA prediction model of soybean resistance 
with Phytophthora pathogenicity constructed by the three machine 
learning methods, a finding was that XGBoost had a better 
effect. The overall process of this article is revealed in Figure  1.

Data Source and Preprocessing
Data Sources
In the present article, data were obtained from NCBI for 
samples with the same culture conditions except for infection, 
namely, soybean sRNA infected by P. sojae and blank samples 

(GSM1370294) for soybeans that were not infected by P. sojae. 
The data included P. sojae genome data (P. sojae V3.0), soybean 
genome data (Wm82.gnm1), P. sojae mRNA data (W05.gnm1), 
and soybean mRNA data (Wm82.gnm1.ann1).

Joint Treatment
Since the data downloaded on NCBI are in SRA format, the 
tools of sratoolkit.2.10.41 were adopted in the present article 

1 https://hpc.nih.gov/apps/sratoolkit.html

FIGURE 1 | Research flowchart of soybean resistance mechanism.
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for conversion to FASTQ format. After conversion, the sRNA 
sequence of the same length was obtained. In the vein of obtaining 
the correct actual sequence, removal of the linker was necessary. 
The linker sequence was found to be  “TGGAATTCTCGG 
GTGCCAA” after consulting. To obtain valid data without 
redundant information, the Cutadapter2 was employed to remove 
the joints of the experimental group of soybeans infected by 
P. sojae and the blank group sequence not infected by P. sojae. 
The joint processing process is shown in Figure  2.

Quality Information and Length Processing
Upon analyzing the data after removing the joints, an observation 
could be  made that the original data had not been operated 
on length, quality control, etc. The specific length and the 
sequence number distribution corresponding to each length 
are presented in Figures  3A,B. Considering the limitations of 
instruments, equipment, and difficulty in condition control 
during biological experiments, certain errors in the data can 
easily occur. To ensure the rigor of the experiment, FastQC3 
was employed in the present article to control the sequence 
quality. Here, at least 80% of the bases in each sRNA sequence 
to were set to have a quality value greater than or equal to 
33. The length distribution diagrams obtained after controlling 
the quality are exhibited in Figures  3C,D. The present article 
assumes that the length of the sRNA sequence that can target 
soybean and P. sojae genes should be  18–25  nt, only sRNA 
sequences of 18–25  nt are retained. Upon removing joints and 
removing low quality and length control, sequence expression 
statistics were respectively performed on the blank group 
soybean sRNA data; and the experimental group sRNA data 
infected by P. sojae, the specific method, were the data 
de-duplicated to obtain the sequence type, and the number 
of each sequence in the statistical data file was the expression 
level of the sequence. The quantity statistics of the two groups 

2 https://cutadapt.readthedocs.io/en/stable/
3 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

of sRNA are reported in Table  1, where soybean is the blank 
group of soybean sRNA sequence, and infected mixed data 
are the sRNA sequence of the experimental group after infection.

Data Mapping to the Phytophthora sojae 
Genome
To guarantee that the sRNA data belonged to soybean and 
not P. sojae or pollutants, the present article mapped the sRNA 
sequence infected by P. sojae to the soybean genome and 
retained the matched sequence. Subsequently, the obtained 
sequence was mapped to the P. sojae genome, with unmatched 
sequences being kept. Here, the present article used bowtie2-
2.3.4.1,4 a tool for mapping short sequences to the genome, 
and samtools-1.9,5 a tool set for manipulating SAM and BAM, 
to map sequences to the genome, as can be  observed in 
Figure 4. The specific steps included the following: (1) building 
a database based on the soybean genome to obtain an index 
file package for matching operations; (2) mapping the FASTQ 
file of the sRNA sequence infected by P. sojae and the fasta 
file of the blank sample sequence, using the bowtie tool to 
perform strict matching based on the index package of the 
first step, setting the mismatch parameter to 0 and keeping 
all the comparison results output to the SAM file; (3) using 
SAMtools to convert SAM files to BAM files; (4) performing 
de-redundancy and keeping matching sequences; (5) converting 
BAM files to FASTQ files; and (6) repeating the same as above 
to build a library of P. sojae genes, performing the above 
operation on the FASTQ data retained in the soybean genome, 
and retaining the data that do not match the Phytophthora 
soybean genome.

The present article was written based on the type of analysis 
of the small RNA sequence after P. sojae infection. Following 
statistics, after removal of the joints, quality information 
processing, and length control, but not yet mapping, the sequence 

4 https://sourceforge.net/projects/bowtie-bio/files/bowtie2/2.3.4.1/
5 http://www.htslib.org/download/

FIGURE 2 | Data preprocessing flowchart.
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types were 1,251,487. There were 1,112,350 kinds of small 
RNA sequences mapped to the soybean genome. There were 
1,091,544 kinds of small RNA sequences that mapped to the 
soybean genome and could not be  mapped to P. sojae. As 
revealed in Table  2, after this step, a determination could 
be  made that the remaining 1,091,544 sRNAs belonged to 
soybean sRNA. Pursuant to the data of 1,091,544 kinds of 
sRNA, the expression changes before and after infection were 

compared and analyzed in the present paper, and the differentially 
expressed sRNA was screened.

Data Standardization and Multiple Analysis 
of the Difference
An observation can be  made from Table  1 that the overall 
expression and types of sRNA notably changed before and 
after infection. Thus, the commonly used normalization, Min-Max 
standardization, log function conversion, and anta function 
conversion were not suitable for standardizing current data. 
Here, the quartile standardization of the expression levels before 
and after infection was conducted to render the two comparable. 
By sorting all sequences in ascending order on the basis of 
the expression level and then selecting the three-quarter position 
as the reference point, the expression level was set to 1,  
while the expression levels of other sequences were converted 
into multiples of the expression level at the reference point. 

A B

C D

FIGURE 3 | FastQC sequence evaluation results. (A) The sRNA data of the blank group of soybeans without quality control. (B) The sRNA data of the experimental 
group infected by Phytophthora sojae without quality control. The abscissa in the figure signifies the sequence length and the ordinate indicates the number of 
sequences. (C,D) The corresponding quality control results. The ordinate represents the number of sequences, while the abscissa denotes the average base quality 
of the sequences.

TABLE 1 | Data volume statistics before and after quality control.

Raw data After adapter 
(not de-

duplicated)

Length and 
quality control 

(not de-
duplicated)

De-duplicated

Soybean 8,828,481 3,226,820 902,702
Infected mixed data 22,405,771 6,073,928 1,251,487
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After this step, the expression levels of all sequences in the 
sample were converted into multiple relationships relative to 
the expression level of the sample’s reference point. This method 
can avoid the difference in base, type, and quantity between 
different samples.

The present paper compares the 1,091,544 sRNA sequences 
that match soybean and do not match the P. sojae genome 
with the blank group. A finding was that 192,283 species existed 
in the sequence before and after infection, and only 899,261 
species existed in the sequence after infection. In terms of 

FIGURE 4 | Roadmap for data mapping to genome technology.
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the 192,283 species that appeared before and after infection, 
the present paper assumes that after normalizing the data, the 
expression level after infection is significantly higher than the 
expression level before infection; that is, after the multiple 
increase, the sequence with higher expression level after infection 
is a positive sample that is integral in the soybean resistance 
mechanism. The specific calculation method is denoted in Eq. 1:
 

Rate=
count after count before

count before
( ) - ( )

( )  (1)

In the present paper, the positive samples were based on 
both the growth rate and the expression level, and the data 
after infection and mapping were screened. The first part is 
the sample shared by the infected group and the blank group 
that meets the growth rate higher than 10 and the expression 
level higher than 200. Two conditions resulted in 732 sequences. 
The difference in expression levels before and after infection 
is exhibited in Figure  5. The abscissa indicates the sequence 
index, which is sorted in lexicographic order, and the ordinate 
refers to the expression level. Owing to the excessive expression 
of individual positive samples, Figure 5 is not clear and intuitive. 
An observation can be made from the figure that most sequences’ 
expression quantity was less than 2,000. Hence, Figure  6 was 
drawn with the expression level of 2,000 as the upper limit, 
where the expression level of the same sequence was substantially 
different before and after infection. The second part is the 
newly generated sequence in the infection group, with the 
blank group having no corresponding sequence. Here, 36 

sequences with expression levels higher than 100 were selected, 
and a total of 768 sequences were utilized as positive samples.

Target Gene Prediction
Predicated on the 768 sequences selected above, in order to 
find the biological processes and regulatory pathways related 
to the soybean resistance mechanism, the target genes of soybean 
and P. sojae were respectively predicted. At this point, the Tapir-
1.26 was applied in the present article to make predictions. 
First, the file was converted to FASTA format, and all T bases 
were replaced with U bases, and then the target prediction was 
performed on the mRNA data of soybean and P. sojae, respectively, 
using the default parameters of the Tapir tool, namely, mimic = 0, 
score  ≤  4, mfe_ratio  ≥  0.7. The target gene prediction results 
were counted after running on the server, with the results 
indicating that a total of 2,979 types of soybean mRNA and 
a total of 1,683 types of P. sojae mRNA can be  targeted.

Select the Core Node That Targets the 
Soybean Itself
In the present paper, String database7 and SoyBase database8 
were adopted for KEGG_Pathway regulatory pathway analysis 
and GO(BP) function enrichment analysis. Because of the large 
number of target prediction results for soybeans, the obvious 
enrichment pathways were not clear and intuitive. PageRank is 
a method used by Google to identify the rank/importance of 
a web page and is the only standard used by Google to measure 
the quality of a website. The algorithm is predominantly premised 
on two assumptions: first, if a node is pointed to by many 
nodes, the node is considered to be more important; and second, 
if the value of a node itself is relatively high, the node pointed 
to by the node is considered to be more important. The functional 

6 http://bioinformatics.psb.ugent.be/webtools/tapir/
7 https://string-db.org/
8 https://www.soybase.org/

TABLE 2 | Data volume statistics before and after map.

Sequence category Number of sequence types

Original infection sequence 1,251,487
Matches to soybean and does not 
match to Phytophthora sojae genome

1,091,544

FIGURE 5 | Seven hundred thirty-two changes in expression before and after infection.
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path enrichment network has similar features in function. If 
there are more nodes in the functional path pointing to a certain 
node, the node is often the main control function. In parallel, 
the general functionality of the node pointed to by the important 
node is also stronger. Therefore, in the present paper, the PageRank 
algorithm was utilized to screen the core function clusters. The 
specific calculation method is denoted in Eq.  2:
 

PR a
a

( )= ( )
( )=

∑
b B

B PR b
L b

1

   (2)

Among them, PR(a) refers to the PageRank value of the 
u-th node, B(a) signifies the set of incoming links of all a, 
and L(b) indicates the degree of all outgoing links of the v 
node pointing to the a node.

The network – based on the core function clusters – was 
analyzed again to select the more significant functions further. 
The core functional cluster regulatory network diagram of the 
selected 50 nodes is revealed in Figure  7.

Predictive Model Construction
Negative Sample Selection
A total of 768 differentially expressed sRNA sequences in 
2.2 were selected as the positive samples in the present article. 
Then calculations were performed on the intersection of the 
blank group of soybean data and the experimental group 
data infected by P. sojae to obtain coexisting data. The 
sequences with a growth rate of 1 before and after infection 
were screened from the data, and then the same number 
of sRNA sequences as the positive samples was randomly 
selected as negative samples. The comparison chart of positive 
and negative sample expression is revealed in Figure 8, where 
the abscissa represents the sequence index, which is sorted 
in dictionary order, and the ordinate signifies the expression 

of the sequence. Since the expression of individual positive 
samples was too large, the image was blurred, but observation 
can be  made that the nodes’ expression in the graph was 
mostly concentrated below 2,000. For this reason, Figure  9 
was drawn as presented. A further observation can be  made 
that the difference between the positive and negative samples 
was significant, but the negative sample was still not clear 
enough; thus, the negative sample expression map was drawn 
as shown in Figure  10.

Feature Extraction
Under the verified features and the analysis of the current 
sequence, the present paper proposed a total of 114 features 
including sequence features (sequence length and local base) 
and structural features [guanine-cytosine (GC)%, motif frequency 
(1–3  nt), and minimum free energy (MFE)]. Regarding the 
local base and 3'-end double base and 5'-end double base, 
the values were A, G, C, U, and N. If the length was less 
than 25  nt, N was used to substitute in addition to that. Since 
the features needed in machine learning were digital, one-hot 
encoding was performed for these sequence features. The 
specific encoding form is presented in Table  3. The RNAfold9 
tool was adopted to acquire the MFE. The specific feature 
selection information, the number of each feature, the number 
of features after one-hot encoding, and the total number of 
features are listed in Table  4. These 203 features were used 
for subsequent operations.

Local base: used to indicate the type of base at positions 
1 to 25  in the sequence. The length of the sequence is less 
than 25  nt, and the insufficient part is filled with N. Sequence 
length: indicates the length of sRNA; here, it refers to 18–25 nt. 
GC%: The ratio of the number of occurrences of “G (guanine)” 

9 http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi

FIGURE 6 | Changes in expression level (upper limit 2,000) before and after infection.
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and “C (cytosine)” in the sequence to the total length of the 
sequence. GC content has a significant effect on the stability 
and structure of sRNA. MFE: The MFE of sRNA is an important 
measure of its structural stability. In this paper, the MFE is 
obtained using the RNAfold tool. Under normal circumstances, 
this indicator can measure the probability of interaction between 
RNAs and can be  used as a standard to distinguish all coding 
and non-coding RNAs. 5'-end double base, 3'-end double base: 
Since DNA transcription and RNA translation have specific 
sequence and directionality, the first two bases at the 3'-end 
and 5'-end are used to mark the beginning of various processes. 
Motif (1–3 nt): small sequence fragments with specific functions 
that repeatedly appear in the sequence. The number of their 

appearances can play a certain role in determining the overall 
feature function of the sequence. Among them, 1  nt has four 
features, 2  nt has 16 features, and 3  nt has 64 features.

After the feature selection was completed, low-variance 
features were removed, and then subsequent model selection 
and training were performed. This was because there may 
have been redundant features in those mentioned above, which 
would affect the classifier’s prediction effect.

Selection of Model Algorithm
Based on sRNA’s characteristics, constructing a predictive 
model of soybean differentially expressed sRNA can reduce 
the cost of experimental research. Because this article is a 

FIGURE 7 | Core nodes targeting soybeans screened by PageRank algorithm. Here, the confidence line type was selected, where the nodes in the figure represent 
the proteins targeted to soybeans, and the connections between the nodes represent the interaction relationships between the proteins. Thickness indicates the 
strength of the interaction between proteins.
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prediction model constructed for high-dimensional, small-
sample binary classification problems and does not have too 
many requirements for time and space complexity, three 
machine learning models, which are support vector machines 
(SVMs), random forests, and XGBoost, are used to deal with 
classification problems.

SVM is a binary classification technique based on supervised 
learning in machine learning. It is called the optimal edge 
classifier. It has good learning performance and has good 
performance in the classification of high-dimensional data. The 
effect is that it is not easy to overfit. It can effectively classify 
samples with small data volumes, avoid the problem of neural 

network structure selection and local minimum points, and have 
been widely used.

Random forest is a supervised learning algorithm, it is the 
most representative of ensemble algorithms, and it shows amazing 
performance in classification and regression. The basic idea of 
the algorithm is to construct multiple weak classifier decision 
trees by randomly extracting samples and features. Only when 
more than half of the base classifiers make mistakes will they 
make wrong predictions. It can handle high-dimensional data 
without feature selection (because the feature subset is randomly 
selected). Due to random sampling, the trained model has small 
variance and strong generalization ability and is not easy to overfit.

FIGURE 9 | Comparison chart of positive and negative sample expression (upper limit 2,000).

FIGURE 8 | Comparison of positive and negative sample expression levels.
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XGBoost is a scalable machine learning system for tree boosting. 
The system has been widely recognized in a large number of 
machine learning and data mining challenges due to its outstanding 
efficiency and high prediction accuracy. The XGBoost algorithm 
realizes the generation of a weak learner by optimizing the 
structured loss function (the loss function of the regular term 
is added, which can reduce the risk of overfitting), and the 
XGBoost algorithm does not use the search method but directly 
uses the loss function and the first-order and second-order 
derivatives of, and the presorting, weighted quantile and other 
techniques to improve the performance of the algorithm significantly.

Data Set Sample Division and Standardization
As mentioned in Negative Sample Selection section, there were 
1,536 positive and negative samples. In the present article, 
the training set and the validation set were constructed 
according to the ratio of 3:1. Then, the training set data 
were employed for model training and parameter adjustment, 
and the validation set data were applied to evaluate the final 
trained model.

To ensure that all the features had a similar effect on the 
model, the data set needed to be  standardized after the feature 
extraction, and then the standardized data set was utilized for 
model training. Because the present article’s model needed to 
use distance to measure similarity, and individual feature data 
have outliers, the Z_Score standardization method was adopted 
to process 203 feature data sets. The specific calculation method 
is as shown in Eq.  3:
 

Feature
Feature

new =
  µ

σ  (3)

where μ is the mean of all sample data, σ is the standard 
deviation of all sample data, Featurenew  is the standardized 
data set, and Feature is the pre-standardized data set.

Model Cross-Validation to Select Optimal 
Parameters
The aforementioned divided data set was employed to 
construct a binary classification model using three methods: 
random forest, SVM, and XGBoost. The models were adjusted 
to the optimal parameters through cross-validation, so that 
each model had the best effect. For a two classifier, the 
evaluation indicators mainly included accuracy, recall, 
precision, and F1 value. The accuracy rate was used to 
calculate the correctly classified samples’ ratio in the classifier 

FIGURE 10 | Display of negative sample expression.

TABLE 3 | Codes corresponding to bases.

Base One hot

N 0000
A 0001
G 0010
C 0100
U 1,000

TABLE 4 | Features selected by prediction model.

Feature name Feature number One hot number

Local base 25 100
Sequence length 1 1
GC% 1 1
MFE 1 1
5'-end double base 1 8
3'-end double base 1 8
Motif frequency (1–3 nt) 84 84
Total 114 203

MFE, minimum free energy.
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to the total samples. The specific calculation method is as 
exhibited in Eq.  4:
 

Accuracy=
+

+ + +
TP TN

TP TN FP FN
   (4)

Evaluating an algorithm model solely on accuracy is far 
from being scientific and comprehensive. Under normal 
circumstances, the precision rate, recall and F1 value can better 
predict skew problems. Accuracy refers to the proportion of 
correct predictions that are positive to all positive predictions, 
while recall denotes the proportion of correct predictions that 
are positive to all actuals that are positive. The F1 value is 
evaluated by calculating the harmonic mean of precision and 
recall. The calculation methods for precision, recall, and the 
F1 value are as presented in Eqs.  5–7:
 

Precision
TP

TP FP
=

+
 (5)

 

Recall
TP

TP FN
=

+
 (6)

 

F1
2 2

2
=
+
=

+ +
PR

P R
TP

TP FP FN
 (7)

In the present article, TP refers to the number of positive 
samples classified correctly, TN signifies the number of negative 
samples classified correctly, FN indicates the number of positive 
samples classified as negative samples, and FP is the number 
of negative samples classified as positive samples.

Since the deviations of the data set in the present article 
have already been discussed in Feature Extraction section, 
accuracy was adopted as the main evaluation index, with recall, 
precision, and F1 being auxiliary evaluation indexes. The 
parameters of the three models were then accordingly selected. 
Because there are many parameters to be determined, the present 
paper utilized grid search combined with cross-validation to 
determine the optimal parameters. In the training process of 
SVM, the inner product kernel function could be used to replace 
the nonlinear mapping to the high-dimensional space. The final 
decision was only determined by a small number of support 
vectors. The overall complexity thereof depended on the number 
of support vectors and was not sensitive to abnormal data. 
Hence, the choice of the number of support vectors was integral 
in the overall effect of the model, and the gamma parameter 
was a parameter of the radial basis function (RBF) kernel 
function, and the specific value thereof was inversely proportional 
to the number of support vectors. Thus, in the present article, 
gamma and model error tolerance C are primarily determined.

Multiple base learners jointly determined the results of random 
forest and XGBoost, and the two parameters n_estimators and 
max_depth had a greater impact on the effects of these two 
models. n_estimators refers to the maximum number of base 
learners that need to be  divided, and a compromise is needed 
to select the optimal number of base learners. This is because 
normally as the number of base learners increases, the model’s 

error rate will gradually converge, but the code complexity will 
gradually increase. max_depth denotes the maximum depth of 
the decision tree, where generally, the deeper the depth of the 
tree, the better the fit. Yet overfitting is common. The present 
article included a large number of features, and the selection 
of this value needed to be  considered. In addition, the random 
forest also selects the max_features parameter, which indicates 
the maximum number of features considered when randomly 
selecting features and is equivalent to a decision tree when 
equal to the number of features. XGBoost also selects the 
gamma parameter and subsample parameter. The gamma 
parameter specifies the minimum loss function drop required 
for node splitting. The larger the value of this parameter, the 
more conservative the algorithm. The subsample parameter 
controls the random sampling ratio of each tree and does not 
put back sampling. Decrease the value of this parameter, and 
the algorithm will be  more conservative and avoid overfitting. 
However, if this value is set too small, it may cause underfitting.

The specific process for the grid search for optimal parameters 
was as follows: (1) selecting 1,152 test set sequences as the 
sample set for parameter optimization; (2) determining the value 
range of the main parameters to be  optimized. For SVM, C 
was 0.001–100, and gamma was 0.001–100; for the random 
forest, n_estimators was 1–102, max_depth was 3–14, and 
max_features was 3–11. For XGBoost, n_estimators was 10–100, 
max_depth was 2–14, subsample was (0, 1), and gamma was 
0–100. (3) For each model, selecting different parameter values 
for combination, the specific process being using accuracy as 
a measurement index, using three-fold cross-validation for training 
and evaluation, and recording the parameter corresponding to 
the maximum score. (4) Repeating operations (2) and (3) above 
and selecting the optimal parameters corresponding to each model.

The optimal parameters determined by the grid search were 
as follows: for the SVM, after selecting the RBF kernel function, 
the optimal parameters were 0.25 for C and 0.01 for gamma; 
for the random forest algorithm, the optimal parameters were 
91 for the number of base learners, 6 for the maximum depth, 
and 5 for the maximum number of features; for the XGBoost 
algorithm, the optimal parameters were 90 for the number of 
base learners, 2 for the maximum depth, 0.7 for subsample, 
and 0.001 for gamma.

RESULTS

Functional Enrichment Analysis of 
Soybean sRNA Targeting Nodes
Functional Enrichment Analysis of Targeting 
Soybean Itself
In the present paper, these 50 core nodes in Select the Core 
Node That Targets the Soybean Itself section were again imported 
into the String database, and the results reveal that the overall 
protein-protein interaction (PPI) enrichment p-value of the 
regulatory network was 1.96e−10. Among them, the p-value of 
12 KEGG_Pathway was less than the credibility threshold of 
0.05, as shown in Table  5. The regulatory pathways exhibited 
in the table were sorted according to credibility. In addition to 
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credibility, an observation can be made that the higher the number 
of genes in the pathway, the more significant the pathway’s effect.

The role of soybean after being infected by Phytophthora 
sojae can be predominantly divided into three categories: regulating 
the metabolic level thereof to resist Phytophthora infection, 
regulating the sRNA production process, and changing the 
membrane permeability. Among the aforementioned regulatory 
pathways, the higher-ranking pathways included plant-pathogen 
interaction (false discovery rate was 0.00014), mRNA surveillance 
pathway (false discovery rate was 0.00033), and protein processing 
in endoplasmic (false discovery rate was 0.0012). This indicates 
that soybean sRNA can indeed directly resist the infection of 
P. sojae. Further, the phosphoinositide metabolism and 
phosphatidylinositol signaling system with a false discovery rate 
of 0.0126 can change cell membranes’ permeability, having 
crucial effects on the binding of P. sojae to the soybean cell 
membrane to release sRNA into the soybean cell.

To further study the specific biological function of soybean 
for self-regulation, the GO biological function was analyzed 
in the present paper premised on mature annotation files.  

Since the target for target gene prediction was inconsistent 
with the mRNA version in SoyBase, the annotation 
file(Glyma_11_to_Glyma_20_Correspondence_Full) provided by 
SoyBase was first used to convert the mRNA version, and 
GO(BP) enrichment analysis was subsequently performed. The 
results highlight that there were 18 p-values less than the 
credible threshold of 0.05, as presented in Table  6.

From Table  6, observations can be  made on the regulation 
of transcription, DNA-dependent (false discovery rate was 
4.18E−07), sequence-specific DNA binding transcription factor 
activity (false discovery rate was 3.74E−06), translation factor 
activity, nucleic acid binding (false discovery rate was 0.001187864), 
ATP-dependent RNA helicase activity (false discovery rate was 
0.04021511), ligase activity, and forming aminoacyl-tRNA and 
related compounds (false discovery rate was 0.04668625). These 
five processes were directly or indirectly related to mRNA 
transcription and translation. With regard to the processes of 
DNA metabolic process (false discovery rate was 0.001424074), 
meiosis (false discovery rate was 0.004201701), G2/M transition 
of mitotic cell cycle (false discovery rate was 0.0119566168), 

TABLE 6 | Soybean resistance to Phytophthora infection sRNA targeting soybean GO enrichment results.

GO Description False discovery rate Number of genes

GO:0008026 ATP-dependent helicase activity 5.55E−09 15
GO:0004386 Helicase activity 3.65E−08 16
GO:0006355 Regulation of transcription, DNA dependent 4.18E−07 4

GO:0003700
Sequence-specific DNA binding transcription factor 
activity

3.74E−06 3

GO:0008135 Translation factor activity, nucleic acid binding 6.41E−05 5
GO:0004430 1-Phosphatidylinositol 4-kinase activity 0.000563865 4
GO:0003746 Translation elongation factor activity 0.001187864 6
GO:0006259 DNA metabolic process 0.001424074 7
GO:0003824 Catalytic activity 0.00359907 3
GO:0007126 Meiosis 0.004201701 8
GO:0003676 Nucleic acid binding 0.015695101 26
GO:0000086 G2/M transition of mitotic cell cycle 0.019566168 2
GO:0042817 Pyridoxal metabolic process 0.019566168 2
GO:0045876 Positive regulation of sister chromatid cohesion 0.019566168 2
GO:0051304 Chromosome separation 0.019566168 2
GO:0048015 Phosphatidylinositol-mediated signaling 0.040720139 3
GO:0004004 ATP-dependent RNA helicase activity 0.04021511 3

GO:0016876
Ligase activity, forming aminoacyl-tRNA and related 
compounds

0.04668625 3

TABLE 5 | KEGG_Pathway of soybean to resist Phytophthora infection sRNA targeting soybean mRNA.

Pathway Description False discovery rate Number of genes

gmx00230 Purine metabolism 0.00014 5
gmx04626 Plant-pathogen interaction 0.00014 5
gmx00240 Pyrimidine metabolism 0.00033 4
gmx01100 Metabolic pathways 0.00033 12
gmx03015 mRNA surveillance pathway 0.00033 4
gmx04141 Protein processing in endoplasmic reticulum 0.0012 4
gmx04136 Autophagy – other 0.0054 2
gmx03040 Spliceosome 0.0073 3
gmx03440 Homologous recombination 0.0082 2
gmx00562 Inositol phosphate metabolism 0.0126 2
gmx04070 Phosphatidylinositol signaling system 0.0126 2
gmx00480 Glutathione metabolism 0.0187 2
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and positive regulation of sister chromatid cohesion (false 
discovery rate was 0.0119566168), these were directly related 
to soybean metabolism, 1-phosphatidylinositol 4-kinase activity 
(false discovery rate was 0.000563865), and phosphatidylinositol-
mediated signaling (false discovery rate was 0.040720139), These 
in turn were directly related to membrane permeability. The 
above results indicate that these key sRNAs can directly participate 
in and regulate the metabolic level of soybeans to resist the 
pathogenicity of P. sojae and can regulate the pathway of 
Phytophthora infection by changing the membrane permeability.

Functional Enrichment Analysis of Targeted 
Phytophthora sojae
To further explore the regulatory effects of differentially expressed 
soybean sRNA on P. sojae, the 1,683 P. sojae mRNA obtained 
in this paper was first converted into a format recognized by 
the String database according to the String annotation conversion 
file (67,593.protein.aliases.v11.0). Subsequently, the converted 
sequence file was imported into the String database, and the 
overall network PPI enrichment p-value obtained was 1.0e−16. 
Among them, the p-value of 11 KEGG_Pathway was less than 
the credible threshold value of 0.05, as shown in Table  7.

As can be  observed from Table  7, the key soybean disease-
resistant sRNA can participate in and regulate various regulatory 
pathways of P. sojae, principally including P. sojae transmembrane 
transport, nucleotide excision, repair, and transportation processes. 
A finding was that differentially expressed sRNA can possess 
a regulatory function in transmembrane transport and the 
exercise of normal functions of P. sojae. In particular, the 
pathways directly linked to the entry of soybean sRNA into 
P. sojae cells through transmembrane transport were inositol 
phosphate metabolism (false discovery rate was 0.0236), 
phosphatidylinositol signaling system (false discovery rate was 
0.0236), glycerolipid metabolism (false discovery rate was 0.0489), 
and endocytosis (false discovery rate was 0.0489). The pathways 
that inhibited the function of mRNA through shearing and 
degradation with soybean sRNA include RNA transport (false 
discovery rate was 0.00033), nucleotide excision repair (false 
discovery rate was 0.0067), RNA degradation (false discovery 
rate was 0.0236), and phagosome (false discovery rate was 
0.0358). In accordance with the above analysis, an observation 
can be made from the data that the key soybean disease-resistant 
sRNA can completely regulate the permeability of the P. sojae 

membrane and provide an environment therefore to enter the 
P. sojae of active reverse infection. A further observation can 
be  made that the key soybean disease-resistant sRNA can 
completely regulate the permeability of the P. sojae membrane 
and provide an environment to enter the active reverse infection 
of P. sojae. On the other hand, the key sRNA of soybean 
disease resistance can completely affect the pathogenicity of 
P. sojae by removing and degrading the mRNA of P. sojae.

Summaries of Functional Enrichment Analysis
The results indicate that the differentially expressed soybean 
sRNA can regulate soybean metabolism, ligase, translation factor 
activity, transmembrane transport, and other biological processes 
related to disease resistance. Further, said sRNA can regulate 
the processes of P. sojae endocytosis, mRNA shearing and 
translation, and transmembrane transport. These processes are 
the central processes of soybean sRNA transboundary regulation 
of P. sojae. This chapter verifies that the selected 768 differentially 
expressed sRNAs are the key sRNAs for soybean disease resistance.

Comparison and Analysis of Models Based 
on Optimized Parameters
In the vein of comparing the above three models’ classification 
effects, 5-fold cross-validation was performed on the training 
set for the models with the selected optimal parameters, and 
statistics were calculated on the accuracy, recall, precision, and 
F1 value thereof, as exhibited in Figure  11.

The yellow, blue, and green lines in the above figure’s upper 
right label correspond to random forest, SVM, and XGBoost, 
respectively. The four subgraphs respectively represent the 
accuracy, recall, precision, and F1 value of the above algorithm 
for five cross-validations on the training set. As the above figure 
demonstrates, XGBoost and SVM performed well in all aspects.

The reason is that based on support vectors, SVM can avoid 
the complexity of high-dimensional space and can effectively 
classify small data samples. Both the number of samples and 
the number of sample features are suitable for this data set. 
The disadvantage is that it is not effective for multi-classification 
problems and large sample data, but the data in this article 
are a small sample data and a two-classification problem. Random 
forest builds multiple classifier decision trees by randomly 
extracting samples and features. Only when more than half of 
the base classifiers have errors will they make incorrect predictions 

TABLE 7 | Soybean resistance to Phytophthora infestation sRNA targeting Phytophthora sojae KEGG_Pathway.

Pathway Description False discovery rate Number of genes

psoj03013 RNA transport 0.00033 8
psoj03008 Ribosome biogenesis in eukaryotes 0.0012 6
psoj03420 Nucleotide excision repair 0.0067 4
psoj00562 Inositol phosphate metabolism 0.0236 4
psoj03018 RNA degradation 0.0236 4
psoj04070 Phosphatidylinositol signaling system 0.0236 4
psoj01100 Metabolic pathways 0.0333 17
psoj03030 DNA replication 0.0333 3
psoj04145 Phagosome 0.0358 3
psoj00561 Glycerolipid metabolism 0.0489 3
psoj04144 Endocytosis 0.0489 4

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chi et al. Bioinformatical Research on Phytophthora Infection

Frontiers in Genetics | www.frontiersin.org 15 February 2021 | Volume 12 | Article 634635

and handle high-dimensional data well. The disadvantage is 
that it will overfit in some noisy classification or regression 
problems, but the data in this article do not match it. It may 
not produce a good classification for small data or low-dimensional 
data (data with fewer features). Since this article is a small 
data sample, the effect will be  relatively poor. XGBoost uses 
parallel optimization on feature granularity, adds a regularization 
term to the objective function to prevent overfitting, and draws 
on the advantages of random forest support column sampling, 
which not only reduces overfitting but also reduces the complexity 
of calculation. At the same time, XGBoost can perform the 
next iteration process after completing one iteration; that is, 
the subsequent iteration process contains the predicted value 
of the previous iteration process, so it has a better classification 
effect for the data set of this article. The disadvantage is that 
the space complexity of the presorting process is too high and 
the execution speed is slower than random forest (bagging), 
but this article does not have too many requirements for these.

Receiver operating characteristic-area under the curve (ROC-
AUC) was adopted to evaluate the model further. The ROC 
curve used the true-positive rate (TPR) as the ordinate and 
the false-positive rate (FPR) as the abscissa. The TPR is the 
recall rate mentioned above. The calculation method of the 
FPR is shown in Eq.  8:
 

FPR
FP

TN FP
=

+
 (8)

In terms of the ROC curve, the (0, 1) point in the upper 
left corner, that is, the point where the FPR was 0 and the 
TPR was 1, indicates that FN was 0 and FP was 1, implying 
that all samples were correctly classified. The (0, 0) point in 
the lower left corner, specifically, the point where the FPR 
was 0 and the TPR was 0 implies that FP was 0 and TP was 
0, indicating that the classifier predicted all samples as negative 
samples. In parallel, the (1, 1) point in the upper right corner 
reveals that the classifier predicted all samples as positive 
samples. The (1, 0) point in the lower right corner, that is, 
the point where the FPR was 1 and the TPR was 0, means 
that the classifier misclassified all samples, that is, predicted 
all positive samples as negative samples and predicted all 
negative samples as positive samples. On the diagonal, FP = TN 
and TP = FN, namely, random classification. That is, the closer 
the overall trend was to the (0, 1) point, the more superior 
the model effect. In many cases, the ROC curve does not 
clearly indicate which classifier performs better. For this reason, 
the area under the ROC curve and the coordinate axis were 
used, in other words, AUC as the evaluation criterion, to 
compare the models more accurately. Figure  12 exhibits the 
ROC curves of the random forest, SVM, and XGBoost model 
verification and evaluation using 384 verification set data.

From the above figure, a finding can be  made that the 
areas under the three machine learning models’ curves were 
relatively large, the curves were relatively smooth overall, and 
no overfitting phenomenon occurred. In the present paper, 

FIGURE 11 | Three model evaluations.
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XGBoost with the highest AUC value was selected as the final 
classifier. Meanwhile, the classifier also performed well in terms 
of accuracy and recall. The accuracy thereof on the verification 
set was 86.98%, and the AUC value was 0.9465. In the training 
set, the AUC value was 0.9805, implying that the overall effect 
of the model was better. Hence, the model can also predict 
the differential expression of P. sojae sRNA mapped to the P. 
sojae genome after infection and has reference significance for 
the selection of differentially expressed sRNAs in plants infected 
by other types of fungi.

DISCUSSION

Limitations of Target Gene Prediction
In terms of differentially expressed sRNAs, because of the long 
running time, only TAPIR was utilized as a tool to predict 
the target genes thereof, upon which functional enrichment 
analysis was directly performed on these target genes. For 
plant-related target gene tools, psRNATarget and TAPIR are 

more commonly used. Concerning other target gene prediction 
software, the algorithms therein are different. Only TAPIR was 
adopted in the present article, meaning that the results obtained 
may not be complete. A better prediction effect may be produced 
if a variety of related software is employed.

Discover the Significance of Biological 
Processes and Regulatory Pathways
The present study found that the differentially expressed sRNAs 
of soybean can regulate multiple disease-resistant and growth-
related biological processes of soybean itself and the core 
processes of multiple Phytophthora sojae. The present research 
has laid the foundation for the potential of other plants to 
resist fungal infection. Further, when various plants resist fungal 
infection, there are certain similarities between the biological 
processes and regulatory pathways thereof that are worthy of 
discussion and research. If the connection between these 
processes can be discovered, this will provide crucial theoretical 
basis and new control ideas for the control of plant diseases.

FIGURE 12 | Receiver operating characteristic (ROC) curves of the three models.
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Model Universality
XGBoost was selected as the final classifier in the present 
paper, which has a good predictive effect for predicting the 
correlation between unknown soybean sRNA sequence and 
resistance to P. sojae infection. This provides theoretical guidance 
for the conduct of biological experiments and reduces 
experimental costs. Be  that as it may, whether this model is 
applicable to other plants and fungi-based resistance analysis 
based on sRNA remains undetermined and requires further 
study. With sufficient data, the key sRNAs for plant antifungal 
disease can be  predicted premised on the data analysis and 
model construction methods proposed in the present article 
to test the model’s universality.

Application of Machine Learning Models
The present article utilized only random forest, SVM, and 
XGBoost, which are the three methods to construct a sRNA 
prediction model for soybean resistance to Phytophthora 
pathogenicity. There are numerous models in machine learning 
that can also classify samples, using more models potentially 
finding better prediction results.
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