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The molecular basis of porcine coping behavior (CB) relies on a sophisticated
interplay of genetic and epigenetic features. Deep sequencing technologies allowed
the identification of a plethora of new regulatory small non-coding RNA (sncRNA). We
characterized mRNA and sncRNA profiles of central parts of the physiological stress
response system including amygdala, hippocampus, hypothalamus and adrenal gland
using systems biology for integration. Therefore, ten each of high- (HR) and low- (LR)
reactive pigs (n = 20) carrying a CB associated haplotype in a prominent QTL-region
on SSC12 were selected for mRNA and sncRNA expression profiling. The molecular
markers related to the LR group included ATP1B2, MPDU1, miR-19b-5p, let-7g-5p, and
5′-tiRNALeu in the adrenal gland, miR-194a-5p, miR-125a-5p, miR-7-1-5p, and miR-
107-5p in the hippocampus and CBL and PVRL1 in the hypothalamus. Interestingly,
amygdalae of the LR group showed 5′-tiRNA and 5′-tRF (5′-tRFLys, 5′-tiRNALys, 5′-
tiRNACys, and 5′-tiRNAGln) enrichment. Contrarily, molecular markers associated with
the HR group encompassed miR-26b-5p, tRNAArg, tRNAGlyiF in the adrenal gland,
IGF1 and APOD in the amygdala and PBX1, TOB1, and C18orf1 in the hippocampus
and miR-24 in the hypothalamus. In addition, hypothalami of the HR group were
characterized by 3′-tiRNA enrichment (3′-tiRNAGln, 3′-tiRNAAsn, 3′-tiRNAVal, 3′-tRFPro,
3′-tiRNACys, and 3′-tiRNAAla) and 3′-tRFs enrichment (3′-tRFAsn, 3′-tRFGlu, and 3′-
tRFVal). These evidence suggest that tRNA-derived fragments and their cleavage activity
are a specific marker for coping behavior. Data integration revealed new bio-signatures
of important molecular interactions on a multi-transcript level in HPA axis and limbic
system of pigs carrying a CB-associated haplotype.
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INTRODUCTION

Situations that induce a physiological stress reaction (e.g.,
psychosocial stress in intensive pig production settings) require
an adaptive strategy in order to minimize the damaging outcomes
of chronic stress, including decreased fertility and growth rates
as well as compromised immune competence (Moberg and
Mench, 2000; Proudfoot and Habing, 2015; Gimsa et al., 2018).
Shedding light upon the molecular roots of this process called
coping is a challenging scientific endeavor, since functional traits
like behavioral characteristics have a highly complex underlying
genetic and epigenetic basis. Evolution has produced diverging
adaptive response patterns to external stressors (coping styles)
that can broadly be distinguished into a pro-active or active
and a re-active or passive coping style. Differences between the
pro-active and the re-active coping style are increased levels of
aggression and territorial control as well as a more pronounced
sympathetic nervous system activity in the pro-active type.
The activity of the hypothalamic-pituitary-adrenal (HPA)-axis is
moderate in the pro-active and high in the re-active coping style
(Koolhaas et al., 1999, 2010).

In our previous studies, we analyzed differential mRNA
expression between two haplotypes in a coping behavior
associated QTL region in the four tissue types adrenal gland,
hypothalamus, amygdala and hippocampus (Gley et al., 2019a,b).
In a further study, we used a deep sequencing approach to explore
small non-coding RNA (sncRNA) expression in central parts
of the physiological stress and anxiety response system in the
same animals (Haack et al., 2019). The non-coding fraction of
the transcriptome consists of several types of RNA molecules
which share the characteristic that they are not translated
into a protein. Functionally important types of non-coding
RNA (ncRNA) include transfer RNAs (tRNAs), ribosomal RNAs
(rRNAs), long ncRNAs as well as the group of small non-coding
RNAs (sncRNAs). MicroRNAs (miRNAs) are short (20–24 nts)
evolutionary highly conserved sncRNAs that affect stability as
well as translation of their mRNA targets via base-pairing (Bartel,
2004). Binding to the 3′-UTR of the mRNA decreases its stability
and terminates protein translation. Alternatively, the miRNA can
prevent translation by inhibition of 5′-cap reading (Liu et al.,
2014). It is estimated that up to 60% of mammalian genes are
targeted by miRNAs, hence they are considered to be key players
in post-transcriptional gene expression regulation (Friedman
et al., 2009). Recent studies found evidence that a multitude of
miRNAs are highly expressed throughout the central nervous
system where they are considered to be crucial regulators of
processes like cell proliferation, differentiation and apoptosis as
well as neuronal protection, development and synaptic plasticity
(Krichevsky, 2007; Bak et al., 2008). tRNAs act as mRNA-
decoding adapter molecules in gene translation. Additionally
to this traditional function, emerging research indicated that
tRNAs form a major source of regulatory sncRNA displaying
a variety of distinct functions (Anderson and Ivanov, 2014).
tRNA-derived sncRNA can be categorized into tRNA-derived
stress-induced RNA (tiRNA), also known as tRNA halves, and
tRNA-derived fragments (tRFs). Importantly, both tRNA-derived
sncRNAs are not generated by random degradation but rather

are the result of precisely coordinated biogenetic processes
(Anderson and Ivanov, 2014). tiRNAs are specific cleavage
products (29–50 nt long 5′-tRNA and 3′-tRNA halves) which
are formed by angiogenin action under various stress conditions
like starvation, hypoxia and oxidative stress (Yamasaki et al.,
2009). With a length of 16–28 nts, tRFs are shorter tRNA-
derived fragments. Depending on their sites of origin, they
are classified into tRF-5, tRF-3, tRF-1, and i-tRF fragments
(Anderson and Ivanov, 2014). Beyond their canonical role, both
tRF as well as tiRNAs can perform a variety of biological functions
including cell signaling and survival processes, apoptosis, amino
acid and porphyrine metabolism, and stress response programs
(Phizicky and Hopper, 2010; Raina and Ibba, 2014). These
diverse roles are performed by acting as sncRNAs in different
ways: They can exert RNA interference in a fashion similar to
miRNAs, directly inhibit protein synthesis by eIF4G translation
initiation factor displacement, regulate target mRNA stability
by protein factor binding and modulate apoptosis in concert
with cytochrome C (Gebetsberger et al., 2012; Sobala and
Hutvagner, 2013; Saikia et al., 2014). Stress-related functions of
tiRNAs and tRFs are the assembly of stress granules and p53
linked oxidative-stress sensitization and apoptosis (Hanada et al.,
2013). Further noticeable sncRNA species include yRNA, piRNA
as well as snoRNA.

Previous studies focused primarily on the identification of
small subsets of molecules for the explanation of phenotypes
and, moreover, used univariate approaches, where each biological
feature is considered independently. Based on our previous
work, which showed that coping behavior was associated with
a prominent QTL region on SSC12 (Ponsuksili et al., 2015)
and individuals of each group are characterized by specific gene
expression patterns in all four tissues (Gley et al., 2019a,b),
we hypothesize that integration of mRNA and sncRNA data
measured on the same animals reveal distinct group-specific
biomarker panels. We combined large-scale biological data
sets including microarray mRNA as well as deep sequencing
sncRNA expression data for the discovery of novel molecular
insights underlying different coping behavior phenotypes, adding
to the knowledge of the complex interplay between different
transcriptomic layers.

MATERIALS AND METHODS

Ethics Approval, Health, and Safety
Animal care and tissue collection procedures followed the
guidelines of the German Law of Animal Protection and the
experimental protocol was approved by the Animal Care
Committee of the Leibniz Institute for Farm Animal Biology
as well as by the State Mecklenburg-Western Pomerania
(Landesamt für Landwirtschaft, Lebensmittelsicherheit
und Fischerei; LALLF M-V/TSD/7221.3-2.1-020/09). The
experimental protocol was carried out in accordance with the
approved guidelines for safeguarding good scientific practice
at the institutions in the Leibniz Association and the measures
were taken to minimize pain and discomfort and accord
with the guidelines laid down by the European Communities
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Council Directive of 24 November 1986 (86/609/EEC). All
mandatory laboratory health and safety procedures have been
complied within the course of conducting any experimental
work reported in our study.

Animals Selection, Coping Behavior
Assessment, and Sample Collection
The animals used in this study were selected from a bigger pool
consisting of 294 German Landrace (DL) piglets, which were
used in our previous GWAS (Ponsuksili et al., 2015). Inclusion
criteria for the present study are phenotypic extremity for early
life coping behavior trait as well as the haplotypes at a coping
behavior-associated QTL (Gley et al., 2019a,b). Using the same
animals, early life coping style and haplotype-based classification
allowed the selection of 20 pigs—10 high reactive (HR) animals
and 10 low reactive (LR) animals. Early life coping behavior
phenotype was assessed using backtests according to Zebunke
et al. (2017). Early life backtest behavior reflects the coping
strategy and is a heritable and repeatable indicator also at later
age. Our previous study including a much larger data set of
3,555 animals, of which the animals used here represent a subset,
could demonstrate that the correlations among the backtest traits
frequency, duration and latency of struggles were moderate to
high at a single time point (rs = | 0.63–0.78|) and moderate
between each trait at different time points (rs = | 0.19–0.44|).
Genetic correlations were high for all traits and time points
(rg > 0.89). Backtests were conducted on days 5, 12, 19, and 26
post natum. In brief, piglets were swiftly put onto their backs in
a cellulose-padded V-shaped device. After reaching immobility, a
60 s test period started. Recorded backtest parameters included
Latency (interval between initial immobility and first struggling
attempt), Duration (total time spent struggling) and Frequency
(count of escape attempts). In a subsequent step, the total
scores of latency (tL), duration (tD), and frequency (tF) were
determined by summing up the individual parameters on days
5, 12, 19, and 26 post natum. For a detailed description
of haplotype estimation and trend regression analysis (Gley
et al., 2019a). As described in our previous study, average 157
days post natum, experimental animals were weighed, stunned
by electronarcosis and slaughtered by exsanguination (Gley
et al., 2019a). Immediately after exsanguination, adrenal glands
were collected and sampling of intra-cranial structures was
carried out by swiftly removing the pig’s brain. The amygdala
(including sub-nuclei), the hypothalamus and the hippocampus
were anatomically localized and excised using a stereotaxic
atlas of the porcine brain as reference guide. Tissue samples
were flash-frozen in liquid nitrogen and stored at –80◦C for
transcriptome profiling.

Microarray Data
We used microarray data from our previous studies (Gley et al.,
2019a,b). In brief, whole porcine transcriptomes of amygdala,
adrenal gland, hippocampus and hypothalamus were analyzed
using Affymetrix snowball arrays (Affymetrix, Santa Clara,
CA, United States). The amplified sense strand cDNA for
microarray hybridization was generated using the Ambion WT

Expression Kit (Ambion, Austin, TX, United States). The cDNA
fragmentation and biotin-labeling steps were carried out using
Affymetrix GeneChip WT Terminal Labeling Kit (Affymetrix,
Santa Clara, CA, United States) and individual samples were
hybridized on the gene chips. Following staining, washing and
scanning of the arrays, data was processed using Affymetrix
GCOS 1.1.1 software. The raw data was deposited in the NCBI
Gene Expression Omnibus1 (GEO: GSE125079, GSM3562317-
GSM3562336; GSE125080, GSM3562337-GSM3562356;
GSE109155, GSM293170-2933189, and GSM2933190-2933209).
Raw data was normalized by the robust multichip average
algorithm (RMA) and further pre-processed using the detection
above background (DABG) algorithm in Affymetrix Expression
Console 1.3.1.187 (Affymetrix, Santa Clara, CA, United States).
Merely probes that were present in at least 80% of the
total number of samples were kept. These normalized and
filtered data was transformed into a mixOmics compatible
numeric data matrix.

Illumina Hiseq Next-Generation Deep
Sequencing Data
In our previous study (Haack et al., 2019), raw sncRNA deep
sequencing datasets were converted to FASTQ format and
submitted to ArrayExpress. It can be accessed at http://www.ebi.
ac.uk/arrayexpress (accession number: E-MTAB-7499). We used
this data in our present study and applied the following further
processing steps: Adapter trimming and filtering of contaminated
sequences as well as low-quality reads using Flexbar v3.2 and
FastQC v0.11.5 was followed by removal of low abundance reads
(<10 reads/sequence). The produced reads are referred to as
clean reads. The number of reads (in millions) and mapping
statistics from all samples have been reported previously (Haack
et al., 2019). Briefly, in amygdala, hippocampus, hypothalamus,
and adrenal gland, there are 101, 99, 139, and 59 M unique
reads, respectively, with an average of 95% mapped reads in the
porcine genome (Ssc11.1). Where necessary, unique sequence
reads were generated by collapsing identical sequence reads
within one set of clean reads. CCA sequences that were attached
to tRNA 3′ tails during post-transcriptional processing were
removed before mapping of the sequences. In a next step, we
used the bowtie aligner to map the reads to sus scrofa genome
RefSeq assembly 11.1 (GCF_000003025.6). Two mismatches were
allowed and the best mapped reads according to the “best
strata” mode were retained. Sus scrofa annotation release 106 was
used for annotation and complemented by miRDeep2 for high
confidence annotation of existing miRNA as well as discovery
of putative novel miRNA (Friedlander et al., 2012). In order
to further illuminate the identity of non-miRNA sncRNAs, we
consulted the high confidence annotation set provided by Anthon
et al. (2014). Additionally, we carried out a homology-based
database matching with the pan-specific RNAcentral database2

(Petrov et al., 2017). RNAcentral assesses mapping quality
regardless of taxonomic similarity. Since there is a higher level
of ncRNA conservation among taxonomically closely related

1www.ncbi.nlm.nih.gov/geo
2https://rnacentral.org
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FIGURE 1 | DIABLO plots of the adrenal gland (A), amygdala (B), hippocampus (C) and hypothalamus (D) showing individual correlation strengths between the
different RNA pairs. Red color indicates low-reactive (LR) group and blue depicts high-reactive (HR) group association.

species, we evaluated the confidence of RNAcentral results
against this background.

Integration of mRNA, miRNA, and tRNA
Data
We used the R package MixOmics v6.8.5 to integrate Omics
data. This tool provides an array of multivariate methods for
exploration, integration as well as visualization of large-scale
biological datasets from different sources (Rohart et al., 2017).
Our input dataset comprised microarray mRNA expression data
as well as NGS miRNA and tRNA data measured on the same
20 samples. mRNA data were normalized, log2 transformed
and filtered. The tRNA as well as miRNA read count matrices
were transformed and normalized using the DESeq2 method
“variance-stabilizing transformation” (VST) (Love et al., 2014).
All input files were converted to mixOmics compatible numeric
data matrices and the Data Integration Analysis for Biomarker
Discovery (DIABLO) using Latent cOmponents implementation

was employed (Singh et al., 2019). DIABLO is able to integrate
complex data sets of heterogenerous origin generated by
different platforms and measured on different scales. Since high
throughput biological data integration produces multiple highly
correlated variables, we used the sparse partial least squares
regression discriminant analysis (sPLS-DA) for variable selection
(Lê Cao et al., 2011). sPLS-DA represents a natural extension to
the classic sPLS proposed by Lê Cao et al. (2008). We applied
the mixOmics block.splsda() function for the identification of
highly correlated variables (X) which simultaneously explain
the categorical variable (Y) used to supervise the analysis.
To assess the number of parameters, the global performance,
the balanced error rate (BER), and to select the optimal
metric distance and define the number of components kept for
our block.splsda analysis, we computed the evaluation criteria
using the perf() function from DIABLO. As input arguments
we used our block.splsda object (without variable selection),
Mfold validation (n = 10), repeated the cross-validation (50
repetitions), and calculated the area under the curve (AUC).
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FIGURE 2 | Representation of the optimal biomarker panel of mRNA, miRNA, and tRNA correlated to coping behavior haplotype groups over two component sets in
the adrenal gland. DIABLO minimal set of feature selection across data types could discriminate between high-reactive (HR) and low-reactive (LR) groups in
component 1 (A) and component 2 (B). Blue-colored bars are indicators for the HR group, yellow-colored bars indicate the LR group (DIABLO: Data Integration
Analysis for Biomarker discovery using Latent cOmponents).

We fine-tuned our model using tune.block.splsda() function,
and determined the optimal number of variables kept for our
final block.splsda analysis and the downstream analysis. We
ran tune.block.splsda() using the results from our perf() run
indicating the use of mahalanobis distance, two components
and two cross-validation steps (nrepeat = 2). We then applied
the mixomics block.splsda() function using the our data as
input, three components, and the features to select from each
component. We created performance plots in order to observe
the overall balanced error rate (BER) and determine the optimal
number of components. The centroids.dist graph seems to
produce the best accuracy. The output variable $choice.ncomp
integrates the centroids.dist distance as well as the BER and
indicates the optimal number of components for the final
DIABLO model. On average across all four tissues, the greatest
decrease of the BER occurred from first to second component,
hence we decided to select 2 as optimal number of components.
We visualized these components of the block.splsda results using
the plot.loadings() function. This function creates a horizontal bar
plot visualization of loading vectors. Each variable’s contribution

to each component is depicted in a bar plot where length
of the bars correspond to the loading weight (representing
importance) of the feature. For discriminant analysis, highest
or lowest median values of the variables with color code
corresponding to the outcome of interest are visualized, where
color corresponds to the group in which the feature is most
abundant. Additionally, a circos plot was created from the
block.splsda results, depicting the highest and lowest Pearson’s
correlations between most discriminant mRNAs, miRNAs and
tRNAs. Relevant associations between the X and Y variables
were displayed using the network() function, by using a pairwise
association score. To achieve improved clarity of the depicted
network, a threshold score (cut-off) of 0.80 was set in order
to exclusively represent variables X and Y with an association
score greater than that threshold. In the resulting network, each
X- and Y-variable corresponds to a node and the edges portray
the association between them. Finally, all identified molecules
linked to coping behavior haplotypes in each tissue were mapped
to the pig genome (Sscrofa 11.1) using the R package circlize
(Gu et al., 2014).
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FIGURE 3 | Representation of the optimal biomarker panel of mRNA, miRNA and tRNA correlated to coping behavior haplotype groups over two component sets in
the amygdala. DIABLO minimal set of feature selection across data types could discriminate between high-reactive (HR) and low-reactive (LR) groups in component
1 (A) and component 2 (B). Blue-colored bars are indicators for the HR group, yellow-colored bars indicate the LR group (DIABLO: Data Integration Analysis for
Biomarker discovery using Latent cOmponents).

Prediction of miRNA Targets and
Correlation Between miRNA and mRNA
Profiles
Based on Ensembl annotation version 101, 17064 3′-UTR
sequences, 16857 5′-UTR sequences and 20320 coding sequences
were extracted from the Sus scrofa genome (Sscrofa11.1).
Extracted sequences were split into 2 kb fragments with a 50
base overlap. The outputs were considered as potential base
pairing targets to the given miRNA using RNAhybrid version
2.1.2 with a binding energy cut-off of –25 k, a helix constraint
ranging from 2 to 7, and one hit per target setting (Krüger
and Rehmsmeier, 2006). Each potentially hybridizing miRNA-
mRNA pairing is summarized by its minimum free energy and
its p-value. The mRNA expression data of the same samples
was used for a pairwise correlation analysis. Pearson correlations
between miRNA and mRNA profiles of the same samples in each
tissue were calculated and considered significant at FDR < 5%.
Only negatively correlating miRNA/mRNA pairs were included

in further analyses and subjected to IPA software (Ingenuity
Systems, Redwood City, CA) for functional analysis. This
software categorizes genes based on annotated gene functions
and statistically tests for over-representation of functional terms
within the gene list. Benjamini-Hochberg p-value adjustment was
applied using cut-off level FDR < 0.05.

Validation of miRNA NGS Data With
Quantitative Real-Time PCR
The cDNA synthesis of selected miRNAs was performed
according to Mentzel et al. (2014). Briefly, 1 unit of poly(A)
polymerase 1 µM was used to attach poly(A) tails to 250 ng
of small RNA. The product was reverse transcribed using
RT-primers (CAGGTCCAGTTTTTTTTTTTTTTTVN where
V equals A, C, and G and N equals A, C, G, and
T), 0.1 mM of NTPs and 100 units of MuLV reverse
transcriptase (Invitrogen, Carlsbad, CA, United States). The
synthetic cDNA spike-in miR-39-1 was added to the RT
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FIGURE 4 | Representation of the optimal biomarker panel of mRNA, miRNA, and tRNA correlated to coping behavior haplotype groups over two component sets in
the hippocampus. DIABLO minimal set of feature selection across data types could discriminate between high-reactive (HR) and low-reactive (LR) groups in
component 1 (A) and component 2 (B). Blue-colored bars are indicators for the HR group, yellow-colored bars indicate the LR group (DIABLO: Data Integration
Analysis for Biomarker discovery using Latent cOmponents).

mix to monitor RT efficiency variance. The RT mix was
incubated at 42◦C for 1 h. Subsequently, enzymatic activity
was terminated by a 95◦C step. In total, expression of 12
miRNAs from 80 individual samples was investigated using the
Fluidigm BioMark HD qPCR System (Fluidigm Corporation,
San Francisco, CA). Specific target amplification (STA) was
conducted following manufacturer’s recommendations. In a next
step, pre-amplification sample mixtures with a total volume
of 5 µL, containing 1.25 µL of cDNA, 1 µL PreAmp Master
Mix (Fluidigm PN 1005581), and 0.5 µL Pooled Delta Gene
Assay Mix (500 nM) were composed. After incubation of
pre-amplification mixtures, exonuclease I treatment as well as
10 × dilution of STA with DNA suspension buffer (TEKnova,
PN T0221) followed. Quantitative real-time measurements were
carried out using 96.96 (96 samples × 96 assays) dynamic
arrays (Fluidigm Corporation, CA, United States) as instructed
by the manufacturer. Resulting data were analyzed with
proprietary real-time PCR analysis software in the BioMark HD
instrument. The miRNAs 5S and cel-miR-39-3p were used as

references and calculations were based on the 2−1Ct method.
Primer sequences were shown in Supplementary Table 1.
Pearson correlation coefficient (r) calculations between the NGS
miRNA data and qPCR data were performed using the rcorr
() function in R.

RESULTS

Tissue samples of porcine adrenal gland, amygdala,
hippocampus and hypothalamus using microarray-based
mRNA expression profiling as well as sncRNA deep
sequencing from our previous studies were used for
downstream analyses (Gley et al., 2019a,b; Haack et al.,
2019). Discovered sncRNA structures mainly consisted of
miRNA, Rrna, and tRNA, with additional low abundance
RNA species including yRNA, piRNA as well as snoRNA.
All data sets were measured on the same samples and
were normalized and filtered as well as integrated by using
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FIGURE 5 | Representation of the optimal biomarker panel of mRNA, miRNA, and tRNA correlated to coping behavior haplotype groups over two component sets in
the hypothalamus. DIABLO minimal set of feature selection across data types could discriminate between high-reactive (HR) and low-reactive (LR) groups in
component 1 (A) and component 2 (B). Blue-colored bars are indicators for the HR group, yellow-colored bars indicate the LR group (DIABLO: Data Integration
Analysis for Biomarker discovery using Latent cOmponents).

mixOmics in order to create coping haplotype related
biomarker panels.

Integration and Identification of a
Biomarker-Related Coping Style
Haplotype
After filtering of NGS data, in total 363 miRNAs and 173
tRNAs including their cleavage products were retained and used
for subsequent analyses in all tissues. Numbers of post-filter
analysis ready mRNAs were 11,837 for the adrenal gland, 9,312
for the amygdala, 9,769 for the hippocampus and 10,795 in
case of the hypothalamus. We applied the sPLS-DA function of
the mixOmics R package for the identification of relationships
between highly discriminant mRNAs, miRNAs, and tRNAs
separately for all four tissues. The optimal bio-signature of
different transcript types in adrenal, amygdala, hippocampus,
and hypothalamus was identified via 2 components. In addition,

these identified markers were also correlated with each other, as
indicated by a positive or negative relationship.

We created DIABLO plots to demonstrate the correlation
strengths between the different RNA types [Figure 1; Adrenal
gland (a), amygdala (b), hippocampus (c), hypothalamus (d)].
Strong correlations ranging from r = 0.79 to r = 0.87 could be
observed between mRNA and miRNA, mRNA and tRNA and
miRNA and tRNA in the adrenal gland. The corresponding RNA
pairs in the other tissues were moderately to highly correlated:
0.54 ≤ r ≤ 0.74 in the amygdala, 0.70 ≤ r ≤ 0.86 in the
hippocampus and 0.82 ≤ r ≤ 0.89 in the hypothalamus. Next,
we used the plotLoadings() function to present the contributions
of the mRNAs, miRNAs and tRNAs that were associated with
each group on the first and second component for each tissue.
The contributions on components 1 and 2 of block “mRNA,”
“miRNA,” and “tRNA” were shown in Figures 2A,B for the
adrenal gland, Figures 3A,B for the amygdala, Figures 4A,B
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FIGURE 6 | (A) Circos plot of mRNA, miRNA, and tRNA linked to coping behavior haplotype groups in the adrenal gland. Positive correlations are indicated by
brown-colored connectors, while black connectors indicate negative correlation between mRNA, miRNA and tRNA. Blue and orange colored lines in the outer circle
highlight expression levels in either high (HR) or low (LR) reactive coping group. (B) Network visualization of mRNA, miRNA, and tRNA panels indicating correlated
variables in the adrenal gland (r > | 0.80|). Purple colored nodes represent mRNA, red nodes indicate miRNA and green nodes highlight tRNA biomarkers. Correlation
between nodes is indicated by edge color as shown in the color key. Negative correlation is depicted by green edges, while red edges represent positive correlation.

for the hippocampus and Figures 5A,B for the hypothalamus.
The CircosPlot() function using the correlation cutoff | r|
> 0.8 was applied to illustrate the correlation between the
various omics blocks for each tissue (Adrenal gland: Figure 6A,
amygdala: Figure 7A, hippocampus: Figure 8A, hypothalamus:
Figure 9A). The relevance networks created by the network()
function depict the correlation levels between the top molecules.
At cutoff level 0.80, the adrenal network (Figure 6B) consisted
of seven mRNAs (TCN2, FKBP10, ATP1B2, MPDU1, LPCAT3,
UXT, and LOC100155098), three miRNAs (miR-19b-5p, miR-
26b-5p, and let-7g-5) and nine tRNAs (tRNAArg , 5′-tiRNALys,
tRNAGlyiF , 5′-tiRNALeu, 5′-tRFAla, tRNALeu, tRNASer , tRNAGluiF ,
3′-tiRNAGly). In the amygdala network (Figure 7B), SELL
was identified as biomarker linked to coping behavior. While
correlated miRNAs including miR-194a-5p, miR-7-1-5p, miR-
402-1-3p showed positive correlation, the tRNA molecules 5′-
tRFLys and 5′-tiRNAGln were negatively correlated to SELL. Other
strong coping behavior associated biomarkers in this subnetwork
comprised the mRNAs SNX17,APRT, EXOSC5 the miRNAs miR-
486-1-5p and 5′-tiRNALys. IGF1 mRNA was connected to miR-
58-5p, 3′-tRFVal and 3′-tRFGlu. The mRNA of PCGF5 was linked
to miR-181b-1-5p and miR-59-5p as well as tRNATrp. In total
19 mRNAs at cutoff level 0.8 were included in the hippocampus
network (Figure 8B). Important examples were TOB1, HIPK2,
SOBP, MCCC2, KAL1, PAPOLG, PBX1, NR2F2, TCEB3, and
ZNF516. miR-125a-5p, miR-194-5p, miR-7139-5p as well as miR-
216b-5p represented the miRNA share of the hippocampus
network while the eight tRNAs included 3′-tiRNAPhe, tRNASer ,

3′-tRFPhe, 5′-tRFGly, 5′-tRFIIe, tRNAGly, tRNATrp, and tRNAGlu.
Prominent mRNA biomarkers in the hypothalamus network
(Figure 9B) included TTC39B, C6orf134, ANXA11, TMEM219,
and CBL. Additionally, three miRNAs, miR-188-5p, miR-24-5p
and miR-24-1-5p as well as the three tRNAs 3′-tiRNAIIe, tRNAIIe

and tRNAGlu were found in the panel. The mixOmics framework
DIABLO constructs components as linear combinations of
mRNA, miRNA and tRNA which are maximally correlated across
all input data types with a specific outcome variable—in our study
the high and low -reactive coping behavior groups. Simultaneous
minimal marker selection associated with the outcome groups is
performed. The optimal different transcript types bio-signature
in adrenal gland, amygdala, hippocampus and hypothalamus
was identified in this study consisting of in total 228 molecules
including 86 mRNA, 61 miRNA, and 81 tRNA and their cleavage
products across two component sets (Supplementary Table 2).
The whole set of molecules was mapped to the pig genome as
shown in Figure 10 and Supplementary Table 1.

miRNA Bio-Signature and Target
Prediction
We further selected the miRNA bio-signature for target
prediction. In this part, we used the identified miRNAs and
all transcripts that negatively correlated with these miRNAs
and were predicted to be putative targets. With this analysis,
we can see the pathways that were regulated by the identified
miRNAs. Sus scrofa genome (Sscrofa11.1) was used for the
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FIGURE 7 | (A) Circos plot of mRNA, miRNA, and tRNA linked to coping behavior haplotype groups in the amygdala. Positive correlations are indicated by
brown-colored connectors, while black connectors indicate negative correlation between mRNA, miRNA, and tRNA. Blue and orange colored lines in the outer circle
highlight expression levels in either high (HR) or low (LR) reactive coping group. (B) Network visualization of mRNA, miRNA and tRNA panels indicating correlated
variables in the amygdala (r > | 0.80|). Purple colored nodes represent mRNA, red nodes indicate miRNA and green nodes highlight tRNA biomarkers. Correlation
between nodes is indicated by edge color as shown in the color key. Negative correlation is depicted by green edges, while red edges represent positive correlation.

prediction of miRNA targets. Functional network analysis using
IPA software was conducted in order to get biological insights
into the interaction of the miRNAs and their predicted targets.
After combining the correlation analysis and target prediction
results, 9 miRNA (miR-15b-5p, miR-342-3p, miR1307-5p, miR-
125-1-5p, miR-24-1-5p, miR-191-5p, miR-188-5p, miR-132-
5p, and miR-24-5p) from hypothalamus target in total 1,290
transcripts (Supplementary Table 3). The number of targets
of individual miRNAs ranged from 2 to 591 transcripts. The
associated biological pathways of each miRNA target was shown
in Figure 11. Interestingly, the target transcripts of miR-
188-5p and miR-15b-5p enriched in Semaphorin Signaling in
Neurons. Additionally, miR-15b-5p targets were enriched in
Reelin Signaling in Neurons. Targets of miR-1307-5p and miR-
24-1 were enriched in GP6 Signaling Pathway. Six miRNA (let7g-
5p, miR-532-5p, miR-551a-3p, miR-26b-5p, miR-370-3p, and
miR-19b-5p) of bio-signature sets from the adrenal gland target
82 transcripts (Supplementary Table 4). The number of miRNA
targets ranged from 1 in case of miR-370-3p to 56 transcripts in
case of let7g-3p. The biological pathways of each miRNA target
was shown in Figure 11. The targets of let7g-3p were enriched
in Insulin Secretion Signaling Pathway, while targets of miR-
551a-3p were enriched in Semaphorin Signaling in Neurons. At
a significance level of FDR < 0.05, no targets from bio-signature
miRNA of amygdala and hippocampus were found. Finally, we
selected 3 miRNAs in each tissue for qPCR validation as shown in
Figure 12. Our NGS miRNA data and qPCR miRNA data of the

identical samples showed good consistency with the coefficient of
correlation ranging from r = 0.50 to r = 0.72 at significance level
p < 0.05.

DISCUSSION

Technological advances have allowed the collection of data
from different layers of transcriptomic complexity, resulting in
multiple omics (multi-omics) data obtained from the same set of
samples. In our previous studies, using microarray technology,
we identified mRNA transcriptomic profiles of the hypothalamic-
pituitary-adrenal (HPA) axis (hypothalamus and adrenal gland)
and the limbic forebrain system (amygdala and hippocampus),
that differed between HR and LR groups enriched the molecular
signaling pathways, and candidate genes underlying coping
behavior in pigs (Gley et al., 2019a,b). In addition, using NGS
sequencing technology, we reported small non-coding RNA
(sncRNA) expression in central parts of the physiological stress
and anxiety response system (Haack et al., 2019). Particularly,
we observed marked differences in the expression profiles of
limbic system tissues compared to those associated to the
HPA/stress axis, with a surprisingly high aggregation of 3′-tRNA
halves (3′-tiRNA) in amygdala and hippocampus (Haack et al.,
2019). Potential causes for tiRNA formation are stressors like
tissue hypoxia, nutrient deprivation, oxidative dysbalances, and
metabolic abberations, where levels of tiRNAs are correlated
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FIGURE 8 | (A) Circos plot of mRNA, miRNA, and tRNA linked to coping behavior haplotype groups in the hippocampus. Positive correlations are indicated by
brown-colored connectors, while black connectors indicate negative correlation between mRNA, miRNA, and tRNA. Blue and orange colored lines in the outer circle
highlight expression levels in either high (HR) or low (LR) reactive coping group. (B) Network visualization of mRNA, miRNA and tRNA panels indicating correlated
variables in the hippocampus (r > | 0.80|). Purple colored nodes represent mRNA, red nodes indicate miRNA and green nodes highlight tRNA biomarkers. Correlation
between nodes is indicated by edge color as shown in the color key. Negative correlation is depicted by green edges, while red edges represent positive correlation.

with the degree of tissue damage (Anderson and Ivanov, 2014).
Human studies showed a cell type and phenotype specific
composition and abundance of tRFs and tiRNAs, which raises the
possibility of using them as biomarkers (Telonis et al., 2015).

By incorporating data from different layers of biological
complexity, system biology approaches provide improved
biological insights compared to traditional single data analyses.
Single omics analyses omit the interactions occurring between
different omic layers and as a consequence, prevent the
reconstruction of accurate molecular biological networks.
Therefore, integrating multi-transcript level data in a holistic
approach may bridge the information gaps, provide deeper
knowledge about the transcriptional interplay shaping behavioral
traits and uncover molecular networks underlying complex
phenotypes like coping behavior. In the present study, the
integrative analysis of mRNA, miRNA and tRNA revealed
molecular drivers explaining the variation between the HR
and the LR coping behavior group. The deduced molecular
panels conveyed novel insights into various RNA classes building
behavior-linked regulatory networks. We demonstrated potential
mRNA-sncRNA interactions occurring in the animals that
represent the extremes for varying coping behavior phenotypes.

Two microarray probe sets of the ATP1B2 transcript led
the list of top contributors on component 1, block “Mrna”
in the adrenal gland. This gene encodes the ATPase Na+/K+
transporting subunit beta 2. Network visualization demonstrates

a negative correlation between ATP1B2 and miR-26b-5p and let-
7g-5p, prompting the assumption of regulatory miRNA-mRNA-
interaction between these RNAs. Furthermore, the tRNAArg and
tRNAGlyiF correlated positively to miR-19b-5p, miR-26b-5p, and
let-7g-5p, whereas the tRNA halve 5′-tiRNALeu was negatively
correlated. microRNAs and tRFs share many functional features
including biogenesis in a Dicer-dependent manner, RNA
silencing as well as RISC complex formation with Argonaute
proteins (Kumar et al., 2014). Even direct mapping of mirBase
cataloged miRNAs to tRF sequences has been demonstrated
(Venkatesh et al., 2016). In our present study we showed miRNA
and mRNA correlation of tRNAArg , tRNAGlyiF and 5′-tiRNALeu

suggesting the assumption that they play a particular role as
regulators of gene expression and as signaling molecules in the
different coping behavior haplotypes.

The mRNA of Mannose-P-dolichol utilization defect 1
(MPDU1) gene followed ATP1B2 in the list of top contributors on
component 1 in the adrenal gland, explaining the LR group. The
adrenal gland network showed negative correlation of MPDU1
with miR-26b-5p, miR-19b-5p, tRNAArg , tRNAGlyiF , let-7g-5p
suggesting a functional interplay of these coping behavior linked
biomarker molecules. Emerging evidence of miR-19-5p as a
stress biomarker in relation to stressful events such as piglet
castration and tail docking (Lecchi et al., 2020) and even as a
widespread pain and posttraumatic stress symptom biomarker
is accumulating (Linnstaedt et al., 2020). Negative correlation of

Frontiers in Genetics | www.frontiersin.org 11 August 2021 | Volume 12 | Article 635794

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-635794 August 14, 2021 Time: 15:46 # 12

Gley et al. Bio-Signatures for Coping Behavior

FIGURE 9 | (A) Circos plot of mRNA, miRNA, and tRNA linked to coping behavior haplotype groups in the hypothalamus. Positive correlations are indicated by
brown-colored connectors, while black connectors indicate negative correlation between mRNA, miRNA and tRNA. Blue and orange colored lines in the outer circle
highlight expression levels in either high (HR) or low (LR) reactive coping group. (B) Network visualization of mRNA, miRNA, and tRNA panels indicating correlated
variables in the hypothalamus (r > | 0.80|). Purple colored nodes represent mRNA, red nodes indicate miRNA and green nodes highlight tRNA biomarkers.
Correlation between nodes is indicated by edge color as shown in the color key. Negative correlation is depicted by green edges, while red edges represent positive
correlation.

5-tiRNALys as well as positive correlation of 5′-tRFAla and 5′-
tiRNALeu with MPDU1 was observed. MPDU1 is required for
the synthesis of both lipid-linked oligosaccharides (LLOs) and
glycosylphosphatidylinositos (GPI) which previously have been
linked to traits like porcine disease resistance (Yang et al., 2005)
and might also play a role in coping behavior. MiRNA-mRNA
target prediction revealed that 56 mRNAs in the adrenal gland
samples are predicted targets of let-7g-5p. Functional pathway
analysis highly significantly enriched these mRNA targets in the
Insulin Secretion Signaling Pathway (Figure 11). This finding is
in line with previous studies which identified the let-7 family as a
central regulator of mammalian glucose metabolism (Zhu et al.,
2011; Katayama et al., 2015; Ponsuksili et al., 2017). Dysregulation
of this pathway was associated with impaired glucose tolerance
and insulin resistance (Zhu et al., 2011; Katayama et al., 2015;
Ponsuksili et al., 2017). Although the exact function of insulin
in the brain and its effect on behavior is not well-understood,
insulin secretion is known to modulate reproduction, feeding and
cognition (Gerozissis, 2003; Erion and Sehgal, 2013).

Potential mRNA targets of miR-551a-3p in the adrenal
gland were associated with Acyl-CoA Hydrolysis Signaling
by IPA. Recent studies suggest that acetyl-CoA represents
a sentinel metabolite which acts as key indicator of the
cellular metabolic state (Shi and Tu, 2015). Cellular growth
states are marked by a high nucleocytosolic acetyl-CoA level
promoting its use for lipid synthesis and histone acetylation
whereas low acetyl-CoA amounts promote ATP and ketone body

synthesis (Shi and Tu, 2015). Importantly, the lipid cholesterol
is synthesized from acetyl-CoA and acts as starting material for
adrenal steroidogenesis (Baba et al., 2018). It is tempting to
assume that miR-551a-3p and its predicted mRNA targets affect
coping behavior by influencing acyl-CoA signaling and ultimately
adrenal steroidogenesis.

By using the approach of integrating multi-level transcript
data in order to identify key molecular drivers, we confirmed
the results of our previous study showing that ATP1B2 and
MPDU1, genes located in the same prominent coping behavior
haplotype associated QTL region on SSC12 and differentially
expressed between both groups, represent meaningful molecules
for coping behavior in the adrenal gland (Gley et al., 2019b). In
addition miRNA and tRNA as well as their cleavage products
were identified as molecules linked to coping behavior in
the adrenal gland.

Interestingly, component 1 of the amygdala was marked
by enrichment of 5′-tiRNA and 5′-tRFs which were associated
with the LR group and included 5′-tRFLys, 5′-tiRNALys, 5′-
tiRNACys and 5′-tiRNAGln. In contrast to that, the HR group
was marked by enrichment of 3′-tRFs including 3′-tRFAsn, 3′-
tRFGlu and 3′-tRFVal. A previous cell culture study reported
that 5′-tiRNA halves including 5′-tiRNACys enhanced stress
granule formation, which were shown to be comparatively
more potent translation repressors than other 5′-tiRNA species
(Ivanov et al., 2011). In addition, the accumulation of 5′-
tiRNA halves resulted in translation repression, activation of
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FIGURE 10 | Genomic positions of mRNA (depicted as circularly shaped),
miRNA (triangularly shaped) and tRNA (star-shaped) coping behavior related
molecules derived by DIABLO analysis of adrenal gland, amygdala,
hippocampus and hypothalamus. Molecules were mapped to the Sus scrofa
reference genome. Coping behavior haplotype group association is indicated
by line color and its length, which illustrates the variation (red highlights the
low-reactive (LR) and blue indicates the high-reactive (HR) group).

cell stress pathways and increased neuronal apoptosis (Blanco
et al., 2014). tRNA-derived small RNA fragments (tRFs) were
shown to be capable of transcription repression induction
(Goodarzi et al., 2015). Here we found the tRNA fragment 5′-
tRFLys belonging to the LR group linked molecular markers
that is located in the coping behavior associated QTL region
on SSC12. In the amygdala the strongest contribution on
component 2, block mRNA was exerted by IGF1. The associated
outcome is the HR group, showing negative correlation. In
the compiled network, IGF1 is negatively correlated to miR-58-
5p, and positively correlated to 3′-tRFVal and 3′-tRFGlu. IGF-1
signaling is widely known to play a role in the regulation of
systemic metabolic processes especially via the hypothalamus
(Soto et al., 2019). Additionally, studies in mice showed IGF-
1 receptors in hippocampus and amygdala (Soto et al., 2019).
Inactivation of these IGF-1 receptors resulted in decreased
levels of the GluA1 subunit of the glutamate AMPA receptor
leading to increased anxiety-like behavior and impaired cognition
(Soto et al., 2019). In the model organism Caenorhabditis
elegans insulin/IGF-1 signaling activity was shown to regulate
the expression of members of the miR-58 microRNA family,
indicating that these miRNAs are part of the extended IGF-1
signaling network (Zhang et al., 2018). In contrast to IGF-
1 mRNA, expression of APOD was positively correlated to
the HR group. The corresponding protein, apolipoprotein D
(APOD), is distributed throughout the central and peripheral
nervous system, where it has been shown to increase during
neuro-regenerative processes as well as neurodegenerative and
neuropsychiatric disorders (Rajput et al., 2009). ApoD(−/−)

mice exhibited decreased expression of the neurotransmitter and
neuromodulator somatostatin (SST) in cortex and hippocampus
and increased SST expression in striatum and amygdala (Rajput
et al., 2009). In a study with humans, significantly elevated apoD
levels have been observed in the amygdalae of subjects with
schizophrenia (Thomas et al., 2003).

Pre-B-cell leukemia homeobox transcription factor 1 (PBX1)
was associated with the HR outcome in the hippocampus
plot loadings () results, contribution on component 1, block
mRNA. A novel transcriptional network under the control
of PBX1 has been shown to be required for midbrain
dopaminergic specification and survival (Villaescusa et al.,
2016). PBX1 is responsible for the protection of dopaminergic
neurons from oxidative stress and reduced levels of nuclear
PBX1 were associated with Parkinson’s disease in humans.
miR-194a-5p contributed on component 1, block miRNA in
the hippocampus plot loadings () results and was linked to
the LR outcome. Transfection of miR-194a-5p mimics into
human cortical neurons increased neuronal death in stressed
(oxygen-glucose deprivation) cells (Wang et al., 2018). Another
mRNA associated with the HR outcome in the same loadings
plot is TOB1. The mRNA of TOB1 showed positive plot
network () positive correlation to 3′-tRFPhe and negative
correlation to tRNASer as well as miR-194a-5p, suggesting
common post-transcriptional regulation to some extent in
the specific coping behavior groups. Moreover, TOB1 was
positively correlated to 3′-tiRNAPhe and miR-125a-5p. In the
brain, TOB1transcripts have been specifically detected in the
hippocampus and their function has been associated with
learning and memory (Jin et al., 2005). Transient increases
in Tob1 protein expression could be detected after behavioral
training of fear conditioning (Jin et al., 2005). Furthermore,
Tob1 has been linked to TGFß family mediated signaling
and regulation of transcription (Baranzini, 2014). Interestingly,
another gene in the hippocampus network, C18orf1, has been
identified as a novel regulator of TGFß signaling (Nakano
et al., 2014). Further top miRNA which belonged to the
marker molecule included miR-7-1-5p, miR-107-5p, and miR-
125a-5p. These miRNAs were also reported to be involved in
schizophrenia and Alzheimer’s disease (miR-7-5p) (Zhang et al.,
2015; Puthiyedth et al., 2016), or as potential biomarkers for
Acute Ischemic Stroke (miR-125a-5p) (Tiedt et al., 2017). In
our network () results C18orf1 correlated negatively to miR-
7-1-5p and tRNAGlu and—like TOB1—positively to 3′-tRFPhe.
The central role of 3′-tRFPhe in the hippocampus deserves
further investigation.

Interestingly, we discovered 3′-tiRNA enrichment in the
hypothalamus of the HR group including 3′-tiRNAGln, 3′-
tiRNAAsn, 3′-tiRNAVal, 3′-tRFPro, 3′-tiRNACys, and 3′-tiRNAAla.
In comparison, the amygdala showed enrichment of 5′-tiRNA
related to the LR group. Such specific 3′-/5′-tiRNA profiles
linked to coping behavior were not found in the adrenal gland.
Indeed, our previous study revealed 3′-tiRNA enrichment in
amygdala and hippocampus while expression in hypothalamus
and adrenal gland was decreased (Haack et al., 2019). Similar
expression levels for 5′-tiRNAs was observed across all tissues
(Haack et al., 2019). These evidence suggest that tRNA-derived
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FIGURE 11 | Heatmap showing enriched canonical pathways derived from analyses of miRNAs and corresponding mRNAs. The first nine miRNA including
miR-15b-5p, miR-342-3p, miR1307-5p, miR-125-1-5p, miR-24-1-5p, miR-191-5p, miR-188-5p, miR-132-5p, and miR-24-5p belong to bio-signature miRNA of the
hypothalamus. The other five miRNA belong to bio-signature miRNA of the adrenal grand. The intensity of color indicates significance from light to dark.

fragments/halves and their cleavage activity are not only tissue-
specific but also a specific marker for coping behavior in the
brain. Knowledge about the regulatory impact of individual tRNA
fragments/halves is still limited. In the hypothalamus, miR-24-
5p contributed to the HR group on component 1, block miRNA.
This miRNA was negatively correlated to CBL in the network
() plot. By identifying negative miRNA-mRNA correlation pairs
and carrying out target prediction analysis, we confirmed
that CBL was a target transcript of miR-24-5p. MicroRNA
profiling in mice hypothalami found evidence for miRNA-
mediated neurohypophysial hormone regulation and highlighted
an oxytocin-regulating function of miR-24 (Choi et al., 2013).
Oxytocin is produced in the hypothalamic paraventricular and
supraoptic nuclei and it modulates stress responses and social
behavior including affiliative behavior and maternal aggression
to defend their offspring (Bosch, 2013; Ebert and Brüne, 2018;
Winter and Jurek, 2019).

Furthermore in the part of miRNA bio-signature and target
prediction, target prediction for miR-188-p and miR-15b-5p
followed by subsequent pathway analysis enriched the putative
target transcripts in Semaphorin Signaling in Neurons. Due
to the vast number and diversity of semaphorins, the list
of physiological processes that are controlled by semaphorin
signaling is continuously growing. In the nervous system,
semaphorins regulate neuronal proliferation and migration,
help in neural polarity determination, regulate the function
and formation of synapses and shape dendrite morphology
(Pasterkamp and Giger, 2009). Owing to their widespread
physiological functions, semaphorins have been linked to several

neurological diseases including schizophrenia (Fujii et al., 2011)
and anxiety disorder (Pasterkamp and Giger, 2009). Hence,
it appears very likely that semaphorin signaling plays an
important role in stress response and coping behavior, too.
In addition, miR-15b-5p targets mRNA transcripts which were
enriched in the Reelin Signaling in Neurons pathway. In the
brain, activation of reelin signaling promotes enhancement
of long-term potentiation, cell proliferation, cell migration
as well was dendritic spine morphogenesis (Fatemi, 2011).
Multiple studies have implicated underactive reelin signalin in
the etiology of several neuropsychiatric disorders, including
schizophrenia, bipolar disorder, autism and major depressive
disorder (Impagnatiello et al., 1998; Fatemi, 2005). Reelin
overexpression in a transgenic mouse model showed an anxiety-
reducing, anti-depressant effect, as well as a reduction in
psychotic and autistic behaviors (Teixeira et al., 2011).

In order to validate NGS generated miRNA data, we selected
3 miRNAs in each tissue and subjected them to qPCR analysis.
Correlation of NGS and qPCR miRNA data ranged between
r = 0.50 and r = 0.72 (p < 0.05), emphasizing reliable
NGS data quality.

Finally, all molecular biomarkers linked to the coping behavior
haplotypes were mapped to the porcine genome. We found
interesting molecular markers in this study, which are located
in the coping behavior associated QTL region of our previous
study (Gley et al., 2019b; Haack et al., 2019). These molecular
panels encompassing MPDU1, ATP1B2, SNORD65, 5′-tRFLys,
and METTL16, were associated with the LR group, while miR-
132-5p and 3′-tiRNAs were associated with HR coping behavior.
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FIGURE 12 | qPCR validation of selected miRNAs of the adrenal gland (A), amygdala (B), hippocampus (C) and hypothalamus (D). For each miRNA, variance
stabilized transformed NGS signals are plotted on the x-axis and qPCR (2ˆ–1Ct) data on the y-axis.
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CONCLUSION

The study reveals new insights into the regulatory networks
of RNAs of different classes including mRNA, miRNA, and
tRNA-derived fragments/halves in four tissues relevant to
coping behavior. We confirmed the previously demonstrated
role of ATP1B2 and MPDU1 in the adrenal gland and added
complementary mRNAs related to coping behavior included
IGF1 and APOD in the amygdala, CBL and PVRL1 in the
hypothalamus as well as PBX1, TOB1, and C18orf1 in the
hippocampus. Further we pointed out potential regulatory
roles of miR-19b-5p, miR-26b-5p, and let-7g-5p as well as
tRNAArg , tRNAGlyiF and 5′-tiRNALeu. Further interesting coping
behavior-haplotype-related miRNAs encompassed miR-58-5p
in the amygdala as well as miR-194a-5p, miR-125a-5p, miR-
7-1-5p, and miR-107-5p in the hippocampus. Additionally,
we revealed evidence for miRNA-mediated neurohypophysial
hormone regulation by miR-24 in the hypothalamus. We found
evidence of tRNA-derived fragments/halves as specific markers
for coping behavior in the brain. Most prominently, the central
role of 3′-tRFPhe in the hippocampus deserves further attention.
Hypothalami of the HR group were recognizably marked by
3′-tiRNA enrichment including 3′-tiRNAGln, 3′-tiRNAAsn, 3′-
tiRNAVal, 3′-tRFPro, 3′-tiRNACys, and 3′-tiRNAIle. Our study
demonstrated that amygdala and hippocampus harbor a high
aggregation of 3′-tRNA halves, while specific 3′-/5′-tiRNA
profiles linked to coping behavior were absent in the adrenal
gland. Detailed knowledge about the individual regulatory role of
tRNA cleavage products still remains subject of future research.
Small non-coding RNAs like miRNAs, tRNAs and their cleavage
products play an intricate role as gene expression regulators and
signaling molecules in the different coping behavior haplotypes.
Our integrative analysis of mRNA and sncRNA data on different
transcripts levels in the four tissues adrenal gland, amygdala,
hippocampus and hypothalamus revealed new bio-signatures
which explained the variation between the high reactive and low
reactive coping styles as the extremes for varying early life coping
behavior phenotypes.
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