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Mass spectrometry is a widely applied technology with a strong impact in the
proteomics field. MALDI-TOF is a combined technology in mass spectrometry with
many applications in characterizing biological samples from different sources, such as
the identification of cancer biomarkers, the detection of food frauds, the identification
of doping substances in athletes’ fluids, and so on. The massive quantity of data,
in the form of mass spectra, are often biased and altered by different sources of
noise. Therefore, extracting the most relevant features that characterize the samples
is often challenging and requires combining several computational methods. Here,
we present GeenaR, a novel web tool that provides a complete workflow for pre-
processing, analyzing, visualizing, and comparing MALDI-TOF mass spectra. GeenaR is
user-friendly, provides many different functionalities for the analysis of the mass spectra,
and supports reproducible research since it produces a human-readable report that
contains function parameters, results, and the code used for processing the mass
spectra. First, we illustrate the features available in GeenaR. Then, we describe its
internal structure. Finally, we prove its capabilities in analyzing oncological datasets by
presenting two case studies related to ovarian cancer and colorectal cancer. GeenaR is
available at http://proteomics.hsanmartino.it/geenar/.
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INTRODUCTION

Mass spectrometry (MS) is the experimental technology widely applied in proteomics studies to
reveal signals of peptides, proteins, and other molecules in samples from various sources (Boersema
et al., 2015). In the last years, researchers carried on many proteomics studies, with an increasing
interest in upcoming results: nowadays, data from MS technologies are an essential resource for
proteomics analysis (Wagner et al., 2003; Han et al., 2008; Li and Tang, 2016). The MS analysis of
a mixture of proteins or peptides generates a spectrum of mass/charge signals representing the
sample proteomic profile. The computational analysis of a large number of samples may lead
to their classification, based on the profile’s features, or to identify marker signals, considered
as fingerprints for several conditions. Many studies in the biomedical area take advantage of
proteomics and MS data, looking for information useful to diagnostic, classification, or novel
biomarkers discovery of a pathological state under investigation (Mazzeo et al., 2008; Liu and
Ouyang, 2013; Prieto et al., 2014).
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One of the most common MS technologies used in proteomics
is named MALDI-TOF (Matrix-Assisted Laser Desorption and
Ionization Time-Of-Flight). This technology concerns proteins
of a sample that are co-crystallized with compounds suitable for
absorbing UV radiations: when a UV laser beam hits the crystal,
energy absorbed by the compounds vaporizes the crystals, and
the proteins are ionized, desorpted and then addressed to the MS
analysis. SELDI-TOF (Surface-Enhanced Laser Desorption and
Ionization Time-Of-Flight) is a modified version of the MALDI-
TOF technology, also used for biomarkers discovery (Cotter,
1998; Greco et al., 2018). The output from a spectrometer is
a set of raw mass spectra from different samples. Usually, the
scientist collects one mass spectrum per sample (or more mass
spectra per sample, if technical replicates are present). Mass
spectra are affected with disturbs, such as not constant variance
of noise, spike noise, background noise or batch noise, which
need robust pre-processing steps before a more in-depth analysis
(Coombes et al., 2007).

As for other omics technologies, MS produces a high volume
of experimental data. Many online repositories in the proteomics
field, such as the best-known PRoteomics IDEntification database
(PRIDE) (Perez-Riverol et al., 2019) or ProteomicsDB (Samaras
et al., 2020) are fundamental to let worldwide researchers retrieve
datasets for their studies. The ProteomeXchange consortium
(Vizcaíno et al., 2014; Deutsch et al., 2017) is active in the
standardization of data submission and the dissemination of
mass spectrometry proteomics data, guiding the researchers to
download robust proteomic datasets.

The extraction of the most relevant features that characterize
the samples is still challenging and requires combining several
computational methods. Consequently, mass spectra processing
and analysis is an active field of investigation, with novel tools
continuously developed (Basharat et al., 2019; Chen et al., 2019;
Bouyssié et al., 2020). In particular, the tools for analyzing
these data require not only to improve their performances and
adapt their application to the changing technology but also
enhance the usability and the reproducibility of results. Two
well-known software packages for analyzing proteomics data
are MaxQuant (Tyanova et al., 2016) and OpenMS (Pfeuffer
et al., 2017). Both tools are freely available, together with the
manuals. MaxQuant is specialized in high-resolution MS data,
with many labeling techniques, label-free quantification methods,
a viewer application for the visualization of raw mass spectra
and results, and the possibility of a framework for the statistical
analysis of the output. OpenMS is a versatile open-source library
for mass spectrometry data analysis, with workflows usable by
command-line or integrated on a platform, comprehensive of
viewer application and report capabilities. Overall, MaxQuant
and OpenMS are complete tools with a large number of
functionalities. However, their usage requires experienced users
and suitable computational resources.

The reproducibility and transparency of the computational
analysis of biological experiments are an essential part of the
research process to assess and validate the findings and compare
them with results obtained under different conditions or by
applying other methods and parameters. Unfortunately, several
publications with omic data analysis are (at least partially) false

or not entirely reproducible, as reported in Ioannidis (2005),
due to poorly described computational protocols. Therefore,
the scientific community has underlined the importance of
adopting reproducible research standards when analyzing high-
throughput omics data (Russo et al., 2016a; Brito et al., 2020).
The work of Sandve et al. (2013) provides golden rules to obtain
a (computationally) reproducible research. The main idea is
to incorporate data, user parameters and results in a human-
readable document built under the principles of literate statistical
programming (Peng, 2011). While such approaches are becoming
popular in statistics, their use within web-tools or graphical
user-friendly interfaces is still challenging, with few exceptions
(Russo et al., 2016b).

In the past years, we developed Geena and its evolution
in Geena 2, a tool for managing MALDI-TOF mass spectra
(Romano et al., 2016, 2018), to offer a user-friendly tool useful
for filtering, averaging different volumes of data, and comparing
them by mass spectra alignment. Our group and other researchers
adopted these tools for the differential analysis of peptidomes
in oncological studies (Profumo et al., 2013; Boccardo et al.,
2015; Sun et al., 2017; Standke et al., 2019). Starting from the
architecture of Geena 2 and the preliminary results obtained in
Del Prete et al. (2016), here we present GeenaR, an original user-
friendly web tool, available online, based on the R environment
and conceived for the automation of different tasks in MALDI-
TOF mass spectra analysis. GeenaR provides the possibility to
handle several file formats for the mass spectra, offers a wide
range of statistical methods for pre-processing mass spectra, and
visualizes results in a graphical form. Moreover, GeenaR also
produces a human-readable report that contains the choice of
the function parameters, the executed steps, the results, and the
code used for processing the mass spectra. Above all, GeenaR is
user-friendly, and its usage does not require any computational
language knowledge. In this work, we illustrate the workflow
available in GeenaR. Then, we describe its internal structure.
Finally, we demonstrate the capabilities of GeenaR by presenting
the results of two case studies taken from literature, referring to
ovarian cancer and colorectal cancer datasets.

MATERIALS AND METHODS

GeenaR Workflow
GeenaR is a web-tool that provides a complete workflow for
the analysis of MALDI-TOF mass spectra. The user can upload
the mass spectra files, select the steps-methods to perform on
the dataset, and obtain all the plots of mass spectra (raw and
processed) and other graphical results, together with a resume
report with the results and the R code (if selected). In other words,
GeenaR allows a user to execute a pipeline consisting of different
modules. Each module performs one or more tasks. Figure 1
illustrates the workflow implemented in R.

GeenaR user interface imports the mass spectra and the target
file that describes the mass spectra metadata (filename, sample,
replicate, and group). Then, it imports the job name/dataset
name, the user’s choices for the modules that have to be executed,
and the parameters selection. After that, it loads the necessary
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FIGURE 1 | GeenaR workflow. The workflow implemented in GeenaR consists of several modules that are executed in cascade. Each module performs one or more
tasks and transfers the intermediate results to the subsequent module. The reporting module collects results from the other modules.

libraries and all the modules for the step-by-step processing.
Then, it calls the required modules until the end of the workflow.
After completing a module, it stores the results in pre-organized
folders using pre-established file formats. Finally, it returns the
results to the user interface. We describe each module below.

The Reading Spectra Module
This module allows reading the raw mass spectra and the target
file that describes the experimental design. Then, it creates the
R object that GeenaR will use during the analysis. Data and
meta-data are internally stored in the MassSpectrum class format.
The target file with information on mass spectra is a text file
with the name and extension of the files, samples, replicates, and
groups (if available).

The Quality Control Module
This module performs a preemptive exploratory analysis of the
raw mass spectra and allows identifying potential outliers. It also
plots the raw mass spectra and stores the files in a subfolder that
the user can retrieve at the end of the analysis. This module also
provides a log file with a summary of the processed files. The log
file reports the following information:

– the methods and parameters selected by the user, as taken
from the attributes file of the process;

– the list of the mass spectra as taken from the folder with the
mass spectra files, with the information about samples and
replicates;

– the numerosity of m/z values for each mass spectra
(associated with the resolution);

– the range of m/z values for each mass spectra (i.e.,
minimum and maximum values);

– the range of the intensity values for each mass spectrum
(i.e., minimum and maximum values);

– the possible presence of empty mass spectra;
– the possible presence of resolution irregularity (i.e.,

irregular frequency of m/z values in intervals, compared to
a fixed threshold).

GeenaR identifies potential mass spectra outliers using the
atypicality score (A score), defined as the Rousseeuw’s Q value

normalized to the median intensity of the raw mass spectrum
(Hedges, 2008). In particular, GeenaR suggests the mass spectra
with an A score above an upper bound or below a lower bound
as potential outliers. However, it does not remove them from the
analysis: the choice of eliminating the mass spectra from the data
set under analysis is left to the user. Quality control is executed
both before and after the mass spectra trimming when requested
to verify if the trimming modifies, reduces, or eliminates the
potential outliers.

The Trimming Spectra Module
This module allows selecting a pre-specified range of m/z values
from the raw mass spectra. Then, it plots all the trimmed mass
spectra and stores them in a subfolder for the retrieval at the end
of the analysis. The user can specify the trimming range by fixing
the lower and higher m/z values.

The Cleaning Spectra Module
This module completes multiple consecutive tasks for the
adjustment of the mass spectra. More in detail:

– Variance Stabilization. This task applies a transformation
on the mass spectra intensities to cope with possible
very high values and reduce the dependency between
variance and mean value. Square root transformation and
log transformation (e-, 2-, and 10- base) are available
(Välikangas et al., 2018);

– Smoothing. This task smooths the mass spectra to reduce
possible spikes that are close to each other (spike
noise), improving the profile of the signal. The available
smoothing filters are Savitzky-Golay (Fredriksson et al.,
2007) and Moving Average (Mo et al., 2010). Both filters
need the user to specify the window size, i.e., the number
of m/z values to be included as the local range to use;

– Baseline Correction. This task corrects the mass intensities
to remove possible differences in the signal coming from
changes or interferences in the experimental condition
(background noise), which may alter the base level of the
mass spectra. The baseline correction methods available
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in GeenaR are Statistics-sensitive Non-linear Iterative Peak-
clipping (SNIP) (Ryan et al., 1988), Top Hat (van Herk,
1992), Convex Hull (Andrew, 1979), and median (Gil and
Werman, 1996). SNIP method requires the user to specify
the number of iterations, whilst Top Hat method requires
the user to specify the window size. GeenaR removes the
estimated value of the baseline to all the mass spectra;

– Normalization. This task normalizes the mass spectra
intensities to overcome differences due to mass spectra
acquisition times. Indeed, the spectrometers need
frequent calibrations, and results may have slight changes
between different calibrations (batch noise). The available
normalization methods are Total Ion Current (TIC),
Probabilistic Quotient Normalization (PQN) (Dieterle
et al., 2006), and median.

GeenaR plots all the transformed, smoothed, corrected, and
normalized mass spectra and stores them in the corresponding
subfolders that the user can retrieve at the end of the analysis.

The Aligning Spectra Module
This module executes the tasks of averaging, aligning, and
plotting processed mass spectra. If any replicates are present
for one or more samples, GeenaR computes an average mass
spectrum from all the replicate mass spectra of a single sample
representative of all the replicates. The user should specify if
desires to perform this task and the method to use (sum, mean,
or median). Then, GeenaR aligns all the mass spectra (averaged
or not) and calibrates them (phase correction) using one of
the following functions: lowess, linear, quadratic, and cubic.
Furthermore, it calculates an overall estimation of the noise using
the Median Absolute Deviation (MAD) or the Super Smoother
algorithm (Friedman, 1984), after the selection of the signal-to-
noise (SNR) values, the window size, and the tolerance value
for the resolution inside the window size. GeenaR creates two
subfolders in the presence of replicates, one for the plots of all
the averaged mass spectra and one for the plots of all the aligned
mass spectra; if replicates are absent, GeenaR creates only the
second subfolder.

The Peak Extraction Module
This module executes various consecutive tasks to identify the
most relevant peaks for each mass spectrum and the entire
dataset. More in details:

– Peak Detection. GeenaR defines a peak as a local maximum
of the mass spectra. In this step, peaks are identified for
each mass spectrum (or averaged mass spectrum). GeenaR
inherits the algorithm, MAD or Super Smoother, and the
related parameters, the window size and the SNR, from the
aligning task;

– Peak Binning. Since peak positions might be very similar
(but not identical) after the alignment, GeenaR performs
a binning step. In this step, peaks in the different mass
spectra are assigned to the same m/z value by considering a
tolerance value. The binning method concerns the concept
of strict and relaxed bins, respectively, when all the peaks
or just the highest ones are selected;

– Peak Filtering. The user can control the occurrence of
peaks over all the mass spectra in terms of percentage.
The coverage parameter defines the percentage of samples
supporting the peaks, acting as a trade-off between variance
and bias, and globally controlling the number of significant
peaks.

GeenaR generates the feature matrix (peak matrix) with the
peaks list, where the columns represent the m/z values of the
most important peaks, and the rows represent the intensities
of the peaks for each sample. Furthermore, the feature matrix
is provided as one of the results of the analysis. Therefore,
the user could use it with their favorite methods available in
another computational environment. Moreover, GeenaR depicts
the feature matrix in the form of a heatmap, to show the peak
distribution for the mass spectra, and stores the plots of the peaks
for each mass spectrum in the corresponding subfolder, providing
a series of statistical methods for its analysis.

The Clustering Spectra Module
This module processes the feature matrix and allows carrying out
different tasks for inspecting sample profiles and clustering the
mass spectra. As the first step, GeenaR performs the Principal
Component Analysis (PCA) on the feature matrix (Shao et al.,
2012) and displays the results by projecting the samples in the
first three principal components space. This projection allows
exploring the data and identifying similarities among samples.
Then, GeenaR computes the similarity matrix using the pairwise
cosine correlation as a similarity measure. The conversion in
a distance matrix allows the creation of a dendrogram for
the mass spectra, and the linkage methods available are ward,
complete linkage, average linkage, or Gower’s median, respectively.
If the user does not suggest an expected number of clusters,
GeenaR provides either the gap statistic or silhouette methods for
estimating this number.

The Reporting Module
The analysis performed using GeenaR is fully reproducible since
at the end of the analysis it is possible to obtain a human-readable
report that includes all the steps that the user performed. In
particular, the report is in .html format with information about
the R packages used in the GeenaR workflow, the values of
the parameters selected by the user, the names of the uploaded
files, the results from quality control, and the plots generated
for the heatmap, the estimate of clusters number, and cluster
dendrogram. Furthermore, the user can download the log file,
the feature matrix, and all the mass spectra plots (raw, trimmed,
stabilized, smoothed, corrected, normalized, averaged, aligned,
and peaks) in a compressed format, from links at the end
of the report. Finally, for transparency, GeenaR generates a
version of the report with all the R code processed by the
pipeline (without the embedded mass spectra), thus the user
can reproduce the results and apply the workflow with different
methods/parameters, or with other datasets.

Web User’s Interface
The user-friendly web interface is divided into three main
sections: “Job information,” “Input data,” “Steps, methods and
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parameters,” as shown in Figure 2. The user should compile
the requested fields, then press the Submit button and wait to
visualize the results as a human-readable report with links to
data and figures.

The “Job information” section captures the job name to
identify the analysis, the name of the dataset, an email for
any contact about the work evolution, and the user’s country
for a simple statistical purpose. The email address must be
the same used at uploading time, when the dataset was
submitted to the server.

The “Input data” section allows uploading the target file (i.e.,
a .txt file with the mass spectra file names along with the metadata
on samples, replicates, and groups). In this section, the user can
also upload a precompiled attributes file that configures the steps
and parameters of the analysis to execute. Alternatively, the user
can select the desired attributes by filling in the “Steps, methods,
and parameters” section. Moreover, in the same section, the user
can choose the trimming range and select the quality control and
the reporting steps.

The “Steps methods and parameters” section consists of
three vertical subpanels denoted Step, Method, and Parameters.
The subpanel Step is divided into three main parts: (1) pre-
processing of mass spectra, (2) peak identification, extraction,
and selection, (3) clustering and visualization. The subpanel
Methods allows selecting the desired algorithms/functions for
the execution of tasks. The subpanel Parameters allows defining
numerical values that are required for the previous methods.
The user can select (check) methods in the Methods subsection
and write values in the Parameters subpanel. Table 1 reports
all the tasks, steps, methods, and parameters available, both
automatic and user-selectable. GeenaR proposes default values
for most of the cases.

The GeenaR web user’s interface also contains (a) an upload
page to submit mass spectra to the server; (b) a help page with
all the information necessary for the user to understand how
GeenaR works and how to select methods and parameters for
the analysis of the mass spectra; (c) an information page, with
details on the mass spectrum formats that GeenaR can handle,
and how the user should provide the target and attributes files
(see Project Links).

The upload page is especially useful since it allows the user to
upload data once and then analyze them many times, with various
parameters, thus significantly reducing the overall execution
time. Users can upload the mass spectra of a dataset by submitting
a .zip compressed file (allowed mass spectra file formats are those
accepted by the MALDIquantForeign R package). The dataset
name and the email address are used jointly in order to define
for each dataset a unique folder, from which mass spectra are
retrieved at the execution time. Mass spectra can be incrementally
added into the folder, thus allowing uploading of subsets of the
same dataset at different times. Users can then make reference
to mass spectra in a given dataset if and only if they know all
related information: mass spectra file name, dataset name and
email address. Datasets incidentally sharing the same name do
not overlap, unless they are linked to the same email address.

Type of Data: Input and Output
To start the analysis with GeenaR, the user has to provide (1) a
target file (a .txt file) with the list of MALDI-TOF mass spectra
and the metadata of the experimental design and (2) the set
of mass spectra that he/she wants to analyze. Optionally the
user can provide an attributes file that contains the list of steps,
methods, and parameters to apply to the mass spectra dataset.

FIGURE 2 | GeenaR web user’s interface. The web user’s interface of GeenaR consists of the following sections: Job Information, Input Data,
Steps-Methods-Parameters. By selecting suitable steps, methods, and parameters, the user can customize the analysis of a given dataset. For ease of usage, most
of the elements present default values. Moreover, the interface provides contextual help by moving the mouse over an icon.
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TABLE 1 | List of tasks, steps, methods, and parameters of GeenaR web user’s interface.

Task Step Method Parameters

Reading Import files

Read target file

Acquire metadata

Quality control Create log file

Detection of outliers

Plot raw spectra

Trimming Trim raw spectra Min-Max, User

Plot trimmed spectra

Cleaning Variance stabilization sqrt, logE, log2, log10

Plot stabilized spectra

Smoothing Savitzky-Golay, Moving Average Half window size

Plot smoothed spectra

Baseline correction SNIP Number of iterations

Top Hat Half window size

Convex hull, median

Plot corrected spectra

Normalization TIC, PQN, median

Plot normalized spectra

Averaging and aligning Average replicates Mean, median, sum

Plot averaged spectra

Align samples a. MAD, Super Smoother Half window size, SNR

b. Lowess, linear, quadratic, cubic (*) Tolerance

Plot aligned spectra

Peak extraction Peak detection MAD, Super Smoother Half window size, SNR

Peak binning Strict, relaxed Tolerance

Peak filtering Minimum frequency

Create feature matrix

Create heatmap

Plot peaks

Clustering and visualization PCA

Plot PCs and top loadings

Estimate number of clusters Gap statistic, silhouette User

Clustering Ward, complete, average, median

Plot clusters estimation

Plot dendrogram

Reporting Generate html report with spectra

Generate html report with R code

The tasks are in the first column, the steps are in the second column, the methods are in the third column, and the parameters are in the fourth column. Rows indicate
methods and parameters related to the corresponding steps. Selectable steps-methods are slightly different from the web page. (*) Two different kinds of methods for the
same step.

If not provided, GeenaR generates the attributes file using the
user choices in the section “Steps, methods and parameters.”
The information page includes a detailed description and an
example of how to organize and format both the target file and
the attributes file.

Usually, MALDI-TOF mass spectra consist of two columns:
the first column represents the m/z value (x-axis), and the second
represents the intensity (y-axis). Therefore, each couple m/z
value-intensity depicts a point, and all the points plot a mass
spectrum, where higher intensity values are considered peaks.

A set of peaks can represent the entire mass spectrum. GeenaR is
able to read many file formats for the MALDI-TOF mass spectra
(.txt, .tab, .csv, .fid, .ciphergen, .mzXML, .mzML, (Deutsch, 2010),
imzML, .analyze, .cdf, .msd) with an automatic detection.

GeenaR provides the name of the main folder (job name) and
all the steps, methods, and parameters to the analysis layer (see
Overall Structure description) in the form of a .csv file (attributes
file), and creates two subfolders: Spectra, where it stores all the
mass spectra for temporary usage, and Results, where it writes all
the files generated from the workflow during its execution.
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FIGURE 3 | Structure of the data folder of a project. GeenaR associates the analysis of each dataset with a project and a folder, where it locates Results and
Spectra subfolders, respectively. Subfolder Spectra contains the uploaded mass spectra, subfolder Results is organized in different folders according to the steps of
the analysis. The folders are: RDS for the R object files; RAW for the raw mass spectra; TRIM, for the trimmed mass spectra; STAB for the stabilized mass spectra;
SMOO for the smoothed mass spectra; BASE for the corrected mass spectra; NORM for the normalized mass spectra; AVER for the averaged mass spectra (when
replicates are available); ALIG for the aligned mass spectra (for samples); PEAK, for the peaks from mass spectra. Other files: FM, feature matrix; QC, quality control;
RE, report.

We illustrate the schema of the main folder in
Figure 3. Each module saves .rds files (R object files),
which are requested as input for the following modules,
in the “Results/Rds” subfolder. GeenaR stores all the
mass spectra, from raw to peak, in devoted subfolders,
as .png graphic files.

Moreover:

• the plots of the graphic results (quality control (QC), PCA,
heatmap, gap statistic/silhouette, dendrogram) are saved
as .png graphic files;

• the feature matrix (FM) is a .csv file;
• the analysis reports (RE) are in .html readable from a web

browser.

Note that GeenaR embeds the log file, the feature matrix and
the processed mass spectra plots in the .html report files. There
are two report files: (i) a simple document that includes the
descriptions of the steps that GeenaR executed, the parameters
used and a selection of plots, (ii) a detailed document that also
incorporates the R code used for processing the spectra. The
second report is especially suited for expert users which are
familiar with the R language and want to inspect and reproduce
the findings in a transparent way. Both reports contain links to
the log file, the feature matrix and the entire set of figures and data
produced by GeenaR The user can download the corresponding
files by clicking on the links: a. csv file for the feature matrix and
a .zip file for each set of figures.

At the end of the analysis, GeenaR provides an output page
including: (a) job summary section, with the information on
the reference dataset and the uploaded target file, the generated

attributes file (which can be downloaded for later reuse), the
steps and methods performed during the job; (b) elaboration
section, that is filled with detailed information on the ongoing
elaboration and the timeline of each step, and links to download
the feature matrix and the reports at the end of the analysis;
(c) results section, including some essential plots generated by
GeenaR. Furthermore, GeenaR sends a summary of the job with
links to results to the user, by email.

Overall Structure
Starting from the background structure of Geena2, we developed
GeenaR, an integrated web tool that allows the user to pre-
process and analyze MALDI-TOF mass spectra. GeenaR is
based on the Linux-Apache-MySQL-PHP (LAMP) environment,
a well-known open-source web service stack, and integrates it
with the R programming language and environment (R Core
Team, 2020). We already tested the efficiency and stability of
LAMP with Geena2. Here, we choose to develop the statistical
core using the R environment for its portability and the
availability of several statistical analysis methods. Conceptually,
the architecture consists of three layers inside the LAMP system,
as shown in Supplementary Figure 1:

1. the analysis layer, in which different cascade modules (i.e.,
scripts) in R language perform all the methods for pre-
processing and analyzing data, plotting and storing results;

2. the interconnection layer, in which a PHP script collects the
choice of the user, prepares the execution environment by
also providing all parameters to the analysis layer, monitors
the execution, and provides access to results;
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3. the web user-interface, in the HTML and Javascript
languages, that facilitates the selection of the methods
and parameters by the user and passes them to the
interconnection layer.

R Packages
We implemented the statistical core of GeenaR using the R
language and wrapping several existing R packages, available
in Bioconductor (Huber et al., 2015) or Comprehensive R
Archive Network (CRAN) repositories. GeenaR executes several
modules in cascade, where each module corresponds to a specific
script. The modularity of this approach allows inserting new
functionalities without rewriting all the code.

Different R packages (libraries) perform the above mentioned
tasks: MALDIquantForeign enables the acquisition of the
MALDI-TOF mass spectra, with the automatic recognition of
the uploaded file type (Gibb, 2019); MALDIquant empowers
the creation of object classes for the treatment of the mass
spectra, a simple quality control, the trimming, the cleaning, the
averaging, the alignment, the peak extraction, and the creation
of the feature matrix (Gibb and Strimmer, 2012); MALDIrppa
allows the estimate of possible mass spectra that can be outliers
for the entire dataset (Palarea-Albaladejo et al., 2018); cluster
incorporates the application of the gap statistic method for
the estimation of the number of possible groups for the mass
spectra (Maechler et al., 2019); lsa allows the calculation of the
pairwise cosine correlation between the list of peaks from each
mass spectrum, with the subsequent creation of the similarity
matrix (Wild, 2020); dendextend allows a better dendrogram
of the mass spectra (Galili, 2015); mixOmics allows computing
PCA and plotting PC figures (Rohart et al., 2017); pheatmap
allows creating fancy heatmap, with many parameters under
user’s control (Kolde, 2019); rmarkdown enables the rendering of
the report, written with roxygen comments for documenting the
code (Xie et al., 2018; Allaire et al., 2020); kableExtra defines fancy
tables for the reporting (Zhu, 2019).

Project Links
GeenaR web tool is available at the following link:
http://proteomics.hsanmartino.it/geenar/. Datasets can
be uploaded from the upload page at http://proteomics.
hsanmartino.it/geenar/upload.php. The help page is available
at http://proteomics.hsanmartino.it/geenar/help.php and the
page with information on the format of files is available at
http://proteomics.hsanmartino.it/geenar/info.php.

RESULTS

Considering our previous experiences in the oncology domain for
the selection of the datasets to use as case studies, we illustrate
the capabilities of GeenaR in analyzing mass spectra data using
two case studies from two different typologies of tumor: one
dataset concerns an ovarian cancer (case study 1) and one dataset
concerns a colorectal cancer (case study 2).

Case Study 1: Ovarian Cancer
Low molecular weight serum protein patterns can help to
determine the pathological state of the organs, allowing the

detection of cancer in individuals. In an original study,
researchers analyzed sera for studying the difference between
women with ovarian cancer and healthy controls. They provided
evidence for the use of a proteomic pattern to screen all the stages
of ovarian cancer, both in high-risk and general subjects. More
details are reported in Petricoin et al. (2002).

The dataset consisted of 200 mass spectra divided into
four different groups of the same size: 50 samples with
ovarian cancer patients constituting the groups A-B and 50
healthy individuals forming the C-D groups (control groups).
Mass spectra were generated by the Surface-Enhanced Laser
Desorption and Ionization Time-Of-Flight (SELDI-TOF) mass
spectroscopy technique, a derived technology of MALDI-TOF
which couples it with a selective analyte capture mechanism,
and produces classical proteomic patterns (as explained in
Overall Structure section). Each mass spectrum consisted
of around 15,200 values, in the range 0–20,000 m/z. In this
illustrative example, we jointly analyzed with GeenaR the
mass spectra extracted from Clinical Proteomics Program
Databank—Proteomic Patterns, low-resolution SELDI-TOF
study sets, A. Ovarian Cancer Studies, 2. Data from unpublished
experimental studies, i. 4/3/02 Ovarian Study set (repository link:
https://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp,
dataset link: https://home.ccr.cancer.gov/ncifdaproteomics/
OvarianDataset4-3-02.zip, subfolders Cancer and Control).

After compiling a target file reporting the file names and the
group of belonging for each mass spectrum, we executed GeenaR
with the following choices:

A. we selected all the steps, skipping the average step;
B. we trimmed the raw mass spectra in the range 0–12,000

m/z;
C. we used the square root method for stabilization, Savitzky-

Golay method with a half window of 10 points for
smoothing, SNIP method with 25 iterations for baseline
correction, TIC method for normalization;

D. we chose the MAD method with a half window size
of 20 points, 2 as SNR, tolerance of 0.002 for the
noise estimation, and the lowess method for the phase
correction, both in alignment step;

E. we selected the strict method for peak binning and 50% of
coverage for peak selection;

F. we did not apply any clustering algorithm when plotting
the heatmap;

G. we used the average method as the link function for
clustering, with k = 4.

GeenaR did not detect any empty mass spectra. The quality
control pre-trimming identified as possible outliers the samples
D47, B17, C19, D10, as depicted in Figure 4A. The number of
potential outliers represented 2% of the mass spectra (4 out of
200). For illustrative purposes, here we trimmed the spectra in
the m/z range of 0–12,000. The quality control post-trimming
step showed how cutting the noise toward the tail can improve
the study and decrease the number of outliers. In this case, there
was only one outlier, sample A24, as depicted in Figure 4B. So,
the percentage of potential outliers reduced to 0.5% of the mass
spectra (1 out of 200).
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FIGURE 4 | Atypicality score plot before trimming (A) and after trimming (B) for Case Study 1 (ovarian cancer). Each green point represents a sample. The red
dotted lines represent the lower and upper values for the A-score. Samples with an A-score larger than the upper value or smaller than the lower value could be
potential outliers. They are colored in red and enlighten with their names. (A) Shows the samples before trimming, where D47, B17, C19, D10 are identified as
possible outliers. (B) Shows the case after trimming the mass spectra in the m/z range 0–12,000. The mass spectrum signed as A24 is a possible outlier.

From the trimmed samples, GeenaR extracted a feature matrix
with the 200 mass spectra and 31 relevant peaks, most of them
present in several samples. Figure 5 shows the spectrum of
sample A04 (m/z versus intensity) as raw, trimmed, smoothed,
normalized, and aligned, respectively. Moreover, it also shows
the list of relevant peaks identified in the sample. The difference
between the number of peaks identified for sample A04 (i.e., 27)
and the peaks present in the feature matrix (31) is due to the
absence of some peaks in the given sample.

From the feature matrix, GeenaR created the heatmap
shown in Supplementary Figure 2 that allows identifying
which peaks are essential for some mass spectra visually.
It is possible to notice that the most informative peaks
were: 1226.0592, 1573.8132, 1606.4189, 4051.5320,
4664.5196, 8072.7649. More in detail, 1573.8132 and
1606.4189 had an inverse trend for group C and part
of group D, and 4051.5320 was a little more relevant for
groups A-B.
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FIGURE 5 | Examples of plots created during the entire analysis for Case Study 1 (ovarian cancer). For each sample, GeenaR produces a series of visualizations of
the mass spectra as intensity versus m/z from raw, trimmed, smoothed, normalized, and aligned spectra, and so on. GeenaR also plots the most relevant peaks
with the 10 highest peaks enlighten in red: 1353.05, 1606.42, 2598.43, 2708.53, 3117.18, 3297.08, 4051.53, 4247.14, 4664.52, 8072.76. The panels show an
illustrative example with sample A04.

The PCA created three sub-plots offering a low dimensional
representation of all the samples. Denoting PC1, PC2, and PC3
as the first three principal components, Figure 6 shows the
projection of the samples in the PC1 versus PC2 and PC1 versus
PC3 spaces, respectively. From the figure, it is possible to notice
a clear overlap of the groups A-B. Instead, groups C-D are not
entirely overlapping because of the spread distribution of group
D samples. For completeness, Supplementary Figure 3 illustrates
the projection in the PC2 versus PC3 space.

GeenaR clustered the samples assuming that the number of
clusters is known and equal to four (k = 4). Figure 7 shows
the final dendrogram, where we enlighten two red rectangles.
The complete dendrogram on the left shows how the value of 4
clusters could be incorrect, because of a bunch of mass spectra
that probably seems outliers. The zoom reported in Figure 7
depicts a cut in the dendrogram that can be considered a good
cluster since it is mostly composed of samples from groups A-B
(68 out of 100). Moreover, the red rectangle on the left depicted
a higher cut (not reported as zoom) that consisted completely of
samples from groups C-D (50 out of 100).

Case Study 2: Colorectal Cancer
Glycans are polysaccharides conjugated with proteins, lipids, and
proteoglycans. Their profile, in terms of expression, changes
during the proliferation of cancer. Thus, they can be considered
as biomarkers for the study of pathology evolution and the
development of new treatments. We selected a study where
researchers used mass spectrometry to analyze differences in
N-glycan profiles between tumor and healthy samples. More
details are reported in Holm et al. (2020).

The dataset consisted of 47 mass spectra divided into two
different groups of different sizes: 37 with colorectal cancer
and 10 healthy colon tissue samples (from patients analyzed in
a previous workflow by the authors). Furthermore, 19 tumor
samples were from the right-side colon and 17 tumor sample
were from the left-side colon, with an additional difference in the
stage of the tumor (19 for stage II and 17 for stage III); five healthy
samples were from the right-side colon and five healthy samples
were from the left-side colon. The mass spectra were generated
by Matrix-assisted Laser Desorption and Ionization Time-Of-
Flight (MALDI-TOF) mass spectroscopy technique, in order to
show N-glycan profiles. Each mass spectrum consisted of around
175,000 values, in the range 500–5,000 m/z. In this example,
we jointly analyzed with GeenaR the mass spectra derived
from ProteomeXchange, ProteomeCentral, accession number
PXD018673 (repository link: http://www.proteomexchange.org/,
dataset link: http://proteomecentral.proteomexchange.org/cgi/
GetDataset?ID=PXD018673).

After compiling a target file reporting the file names and the
reference group for each mass spectrum, we executed GeenaR
with the following choices:

A. we selected all the steps, skipping the average step;
B. we trimmed the raw mass spectra is in the range 500–3,500;
C. we applied the square root method for stabilization,

Savitzky-Golay method with a half window of 10 points
for smoothing, SNIP method with 25 iterations for baseline
correction, TIC method for normalization;

D. we used MAD method with a half window size of 20 points,
2 as SNR, tolerance of 0.002 for the noise estimation, and
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FIGURE 6 | PC1vsPC2 and PC1vsPC3 plots for Case Study 1 (ovarian cancer). The PCA analysis of the feature matrix revealed that PC1, PC2, PC3 accounted for
54% of the total explained variance. (A) Shows the projection in the PC1 versus PC2 space, (B) the projection in the PC1 versus PC3 space. Samples are colored
according to their group. Ovarian cancer groups (A, B) are overlapping, whilst control groups (C, D) are not clearly overlapping, because group D is widespread.

lowess method for the phase correction, both in alignment
step;

E. we chose the strict method for peak binning and 50% of
coverage for peak selection;

F. we did not apply any clustering algorithm when plotting
the heatmap;

G. we used the average method as the link function for
clustering, with k = 2 as suggested using the silhouette
statistic technique.

GeenaR did not detect any empty mass spectra. The
quality control pre-trimming identified as possible outliers
samples AH25-31-3-1, AH25-31-34-1, AH25-31-5-1, AH25-31-
6-1, AH29-14-2-1, enlighten in Figure 8A. The potential outliers
represent about 11% of the mass spectra (5 out of 47). The
quality control post-trimming, with trimming in the m/z range
of 500–3,500, showed how cutting the noise toward the tail can
modify the study, changing which mass spectrum can be tagged as
potential outliers. In this case (see Figure 8B), samples AH25-31-
22-1, AH25-31-26-1, AH25-31-34-1, AH25-31-5-1, AH25-31-6-
1, AH29-14-2-1 are marked as potential outliers, but not removed
from the rest of the analysis. They represent about 13% of the
mass spectra (6 out of 47).

In this case, the feature matrix consisted of 47 mass spectra and
1,779 relevant peaks, that represent all the analyzed mass spectra.
Figure 9 shows the mass spectrum of sample AH25-31-7-1 (m/z
versus intensity) as raw, trimmed, smoothed, normalized, and
aligned, respectively. Moreover, it also shows the list of relevant

peaks identified in the sample. The number of peaks is very high,
but the highest peaks (signals) are recognizable.

From the feature matrix, GeenaR created the heatmap shown
in Supplementary Figure 4 that allows identifying visually
which peaks are essential for some mass spectra. Here, since the
number of peaks in the feature matrix is high, the heatmap was
transposed and depicted only the m/z range of 500–675 (the
complete heatmap is available in Supplementary Figure 5). It is
possible to notice that the most informative peaks are: 537.0479,
551.0338, 699.0588, 771.2873, 875.0307, 917.3404, 933.3372,
1037.0503, 1079.3900, 1095.3845, 1136.4096, 1175.3823,
1257.4398, 1419.4942, 1581.5488, 1647.5956, 1663.5933,
1743.5995, 1744.6009, 1809.6507, 1905.6517, 1906.6568. The
peaks after the m/z value 2,000 can be considered as low signals.

The PCA created three sub-plots offering a low dimensional
representation of all the samples. Figure 10 shows the projection
of the samples in the PC1 versus PC2 and PC1 versus PC3
spaces, respectively. As shown, it is possible to see a clear
superimposition of LH-RH groups located in both panels.
Supplementary Figure 6 shows the projection in the PC2
versus PC3 space.

For illustrative purposes, we assume that the number of
groups was unknown. Therefore, GeenaR evaluated the silhouette
statistics for a range of possible values of k and showed the
silhouette plot for the best value of k. Figure 11 shows the
silhouette plot for k = 2. Using this value as the number of clusters,
Figure 12 shows the final dendrogram, where we enlighten
one red rectangle. The zoom reported in the dendrogram
inside the red rectangle depicts a cut that can be considered
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FIGURE 7 | Samples dendrogram for Case Study 1 (ovarian cancer). On the left, the plot shows the overall dendrogram, where we enlighten two groups of samples
in red rectangles. The red rectangle on the left is a cluster of samples from groups C to D. The red rectangle on the right (zoomed) represents a cluster of samples
from groups A to B.

a perfect cluster since it is composed of samples from groups
LH-RH (10 out of 10).

Reporting
As already mentioned, GeenaR produces analysis reports in .html
file format that allows the user to keep track of the steps and
parameters used during the analysis, and to fully reproduce the
results from the version with the R code. The report is created
by agglomerating all the results and plots obtained with GeenaR.
The report relative to case study 2 (colorectal cancer) is available
in Supplementary Report. As shown, the table of content of the
report is composed of 10 paragraphs: (1) main loaded packages,
(2) selected tasks and used parameters, (3) acquisition of the
mass spectra, (4) quality control on mass spectra and possible
outliers, (5) all the processes to clean the mass spectra, (6) all the
processes to average/align the mass spectra, (7) peak detection,
(8) unsupervised analysis and clustering, (9) links to download
the log file, the feature matrix and all the mass spectra (raw
and cleaned), (10) session information about R environment. For
completeness, we remember that the version of the report with
the code has not the embedded plots of the mass spectra (available
in the version of the report without the code).

Performance Assessment
To assess the performances of GeenaR, we performed two tests. In
the first, we executed three times the analysis of each case study.

We computed the average execution times and comparatively
analyzed the time required for the individual analysis steps. In the
second, we created various subsets of different sizes of an existing
large spectra dataset related to a study on colorectal cancer
(Beitia et al., 2020). We investigated how the execution times vary
according to the dimension of the subset. We carried out the
full analysis in both tests, meaning that we required the system
to perform all analysis steps, including reading mass spectra,
quality control, trimming, cleaning, aligning, peak extraction,
clustering, and report.

We present the first test results on execution time in Figure 13,
with two sets of histograms. Figure 13A reports the execution
times (in seconds) of each analysis step and the overall time
(last column). The three most demanding steps are cleaning
(including variance stabilization, smoothing, baseline correction,
and normalization), spectra reading, and aligning (without the
averaging task). It is noteworthy that case study 2 shows a
slower overall execution despite a lower number of mass spectra
(47 spectra versus 200 for case 1). The reason is due to the
dimension of the file for each mass spectrum (which is much
larger). Figure 13B reports the distribution of execution times
for each step as a percentage of the overall execution time. For
case study 1, cleaning, spectra reading, and aligning steps account
for 25.7, 19.8, and 11,8% of the execution time, respectively. For
case study 2, the same steps account for 35.3, 19.3, and 14.6%.
As expected, the number of mass spectra has a notable impact on
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FIGURE 8 | Atypicality score plot without trimming (A) and with trimming (B) for Case Study 2 (colorectal cancer). Similar to Figure 4. (A) The mass spectra signed
AH25-31-1, AH25-31-34-1, AH25-31-5-1, AH25-31-6-1, AH29-14-2-1 are the possible outliers. (B) The m/z range of trimming is 500–3,500. The mass spectra
signed as AH25-31-22-1, AH25-31-26-1, AH25-31-34-1, AH25-31-5-1, AH25-31-6-1, AH29-14-2-1 are the possible outliers.

the reporting percentage for case study 1. This result is because
the report with mass spectra embeds all the plots from raw mass
spectra to peak lists.

Moreover, we present the second test results on the number
of mass spectra in Figure 14. In the upper plot (Figure 14A),
we show the evolution of the overall execution time and the
execution time of each analysis step, with the increase of the
number of mass spectra. We evaluated seven subsets of samples

(i.e., 5, 10, 20, 40, 60, 80, 100, 120, and 140). Each sample consists
of four replicates. All times increase in a linear progression.
Indeed, we observed a correlation factor of 0.999 between the
number of mass spectra and the overall execution time, and
correlation factors from 0.943 to 1.000 between the number of
mass spectra and the single analysis steps.

Furthermore, linear regression analysis showed different speed
increases for the steps leading, e.g., the time requested for
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FIGURE 9 | Examples of plots created during the entire analysis for Case Study 2 (colorectal cancer). Similar to Figure 5, with sample AH25-31-7-1. The most
relevant peaks with the 10 highest peaks enlighten in red are: 537.05, 699.06, 1257.44, 1419.49, 1420.50, 1581.55, 1743.60, 1744.60, 1905.65, 1906.66.

FIGURE 10 | PC1vsPC2 and PC1vsPC3 plots for Case Study 2 (colorectal cancer). Similar to Figure 7. The PCA analysis of the feature matrix revealed that PC1,
PC2, PC3 accounted for 56% of the total explained variance. Colorectal cancer groups (L2, L3, R2, R3) are less overlapping, whilst control groups (LH, RH) are
overlapping in the IV quadrant (left panel) and in the I quadrant (right panel).

clustering data overcame the time for reading data for a number
of mass spectra greater than about 160 (data not shown).
Figure 14B shows the execution time of each step as a percentage
of the overall execution time. The time associated with the

cleaning and reading steps has the highest impact on the overall
execution time. The most important evidence is the inversion of
the trends for the previous steps at around 120 mass spectra: after
this value of the number of mass spectra, the cleaning step has
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FIGURE 11 | Silhouette plot for Case Study 2 (colorectal cancer). Silhouette plot with the estimate of the best number of clusters k with the silhouette method: in this
case, k = 2.

a 40% impact on the overall execution time, while the reading
step tends to decrease progressively. Times associated with all
other steps remain almost stationary within the range 0–9% of
the overall execution time, independently from the number of
mass spectra: only the clustering step seems to show a slight
increasing slope.

DISCUSSION

Mass spectrometry is an analytic technique used in many
biological fields, which produces a massive quantity of data with
a particular connection with proteomic data. MALDI-TOF is
one the most used combined technology in mass spectrometry,
with many advantages in obtaining results in a short time,
with high resolution, and good accuracy. The main results from
the spectrometer are raw mass spectra, represented by a list
of intensities for different mass-to-charge ratio (m/z) values.
The analysis of raw mass spectra requires the application of
several computational methods to correct or reduce different
kinds of noise, which can affect data. Many software, open-
source or not, are available for the treatment of the raw mass
spectra, such as the abovementioned MaxQuant and OpenMS,
which can be considered the gold standard in pre-processing,
visualizing, and analyzing different kinds of mass spectra.
Nevertheless, although these tools incorporate a great number
of algorithms and functionalities, they are not straightforward
to use, and scientists need a significant effort in studying
manuals or attending courses before using available tools for the
analysis of their data. Moreover, they also require to set-up a

specific computational environment for their usage (from their
installation to the computational resources for their execution)
which might constitute another limit.

Geena2 is a straightforward tool for analyzing the MALDI-
TOF mass spectra, a revised, more efficient, and user-friendly
version of Geena. It is available as an open-access web-server
application, hence its usage does not require any installation or
computational resource from the user. Its main output consists
in the identification of peaks common among the mass spectra
so that a differential analysis can be carried out between groups
of spectra. The robust architecture of Geena2, both in terms of
the web platform and the background layer structure, suggested
us to implement new functionalities, with a better focus on the
visualization of mass spectra, the statistical analysis, and the
reproducibility of the findings. GeenaR is our new tool that copes
with all these features. It combines the architecture in Geena2
with the power of the R environment. The strong points of
GeenaR are:

1. User-friendliness. GeenaR follows the user during the entire
process, from the upload of the raw mass spectra to the
visualization of results. Thanks to a simple user-friendly
web page, the workflow is explained in all its features,
placing particular importance on the format of the files to
upload (mass spectra, target file, and attributes file) and on
the selection of steps, methods and parameters.

2. Multi-methods. The potentialities of R language and
packages allowed us to provide different methods to pre-
process and analyze mass spectra, and visualize results.
All the methods are immediately available and selectable
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FIGURE 12 | Samples dendrogram for Case Study 2 (colorectal cancer). On the left, the plot shows the overall dendrogram, where we enlighten one group of
samples in a red rectangle. This group consists of the cluster with samples from groups LH-RH. The other groups are mixed.

on the web page. Two case studies illustrate some of the
different functionalities that are available.

3. Modularity. The structure of GeenaR is modular: each
module performs one or more related tasks. The
intermediate output of each task is saved in a devoted
folder and transferred to the following module. This
architecture allows us to add new modules anytime,
implementing the corresponding R functions and revising
the interface accordingly.

4. Hardware requirements. GeenaR is on a host server, thus
the user does not need to download and install any tool, as
it happens for many software available online. Moreover,
the user has no constraints on the local hardware to run
the software: a standard browser is sufficient for a run of
GeenaR, obtaining all the results in .html format (readable
on the browser itself);

5. Computational reproducibility. GeenaR supports the
Reproducible (computational) Research improving
transparency, knowledge transfer, and reproducibility
of findings. For each job, GeenaR produces a human-
readable report that embeds the results with the selection
of parameters. Note that there is also a version of the

analysis report that includes the R code used to process
the mass spectra. The user can also re-execute the code
on a local machine with minimal experience with the R
language, such as suggested in Del Prete et al. (2018).
Moreover, researchers can use the report as supplementary
material in publications such as we did in the context
of RNA-seq data analysis (Costa et al., 2017). The
reproducibility of the computational analysis constitutes
one of the main advantages of GeenaR.

We demonstrated with the proposed two oncological case
studies that GeenaR can handle different resolutions in mass
spectra. Our results showed how it is possible to determine
outliers, visualize all the profiles (tumor and healthy samples),
make available a series of unsupervised techniques such as PCA,
heatmaps and cluster the mass spectra by their fingerprints
obtained from the feature (peak) matrix.

Finally, we are aware that several improvements are possible
in GeenaR. For example, we plan to include some supervised
analysis methods as a novel module inside our pipeline, add
different techniques for the selection of the most relevant peaks
and for the computation of the similarity matrix. Moreover,
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FIGURE 13 | Time performance comparison between Case Study 1 (ovarian cancer) and Case Study 2 (colorectal cancer). (A) Shows the execution time in seconds
for each step and for the entire process. (B) Shows the portion of execution time in percentage compared to the overall execution time.

although GeenaR is efficient, we plan to parallelize some parts of
the work to reduce the bottlenecks: importing the mass spectra in
MassSpectrum class and coping with the dimension of the report
embedded with files of all the mass spectra. For this version of
the tool, we set to 512 MB the maximum size of the compressed
archive of the mass spectra to be uploaded for the analysis.

However, the performances of the tool can be limited by various
parameters, including the number of mass spectra of the dataset
under analysis, the resolution for each mass spectrum, and the
number of signals detected as relevant for the clustering analysis,
which make up the feature matrix. For this reason, we could not
yet define the exact limitations of the system. Nevertheless, we
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FIGURE 14 | Time performance comparison on the number of processed mass spectra. This evaluation is performed on the dataset described in Beitia et al. (2020).
(A) Shows the performance of GeenaR to changes in the number of processed mass spectra. (B) Shows the impact of each step in percentage compared to the
overall execution time. The legend of the colors is reported in Panel A.

stressed the analysis up to 560 mass spectra without issues. We
plan to further investigate on the limitations of the system and
eventually make upgrades so that the number of mass spectra

under analysis can be safely increased. Nevertheless, we firmly
believe that GeenaR can help scientists to analyze proteomic
datasets in a reproducible and simple way.
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