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Genomic-assisted breeding has become an important tool in soybean breeding.
However, the impact of different genomic selection (GS) approaches on short- and
long-term gains is not well understood. Such gains are conditional on the breeding
design and may vary with a combination of the prediction model, family size, selection
strategies, and selection intensity. To address these open questions, we evaluated
various scenarios through a simulated closed soybean breeding program over 200
breeding cycles. Genomic prediction was performed using genomic best linear unbiased
prediction (GBLUP), Bayesian methods, and random forest, benchmarked against
selection on phenotypic values, true breeding values (TBV), and random selection.
Breeding strategies included selections within family (WF), across family (AF), and within
pre-selected families (WPSF), with selection intensities of 2.5, 5.0, 7.5, and 10.0%.
Selections were performed at the F4 generation, where individuals were phenotyped
and genotyped with a 6K single nucleotide polymorphism (SNP) array. Initial genetic
parameters for the simulation were estimated from the SoyNAM population. WF
selections provided the most significant long-term genetic gains. GBLUP and Bayesian
methods outperformed random forest and provided most of the genetic gains within
the first 100 generations, being outperformed by phenotypic selection after generation
100. All methods provided similar performances under WPSF selections. A faster decay
in genetic variance was observed when individuals were selected AF and WPSF, as
80% of the genetic variance was depleted within 28–58 cycles, whereas WF selections
preserved the variance up to cycle 184. Surprisingly, the selection intensity had less
impact on long-term gains than did the breeding strategies. The study supports that
genetic gains can be optimized in the long term with specific combinations of prediction
models, family size, selection strategies, and selection intensity. A combination of
strategies may be necessary for balancing the short-, medium-, and long-term genetic
gains in breeding programs while preserving the genetic variance.
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INTRODUCTION

Soybean [Glycine max (L.)] is the most important source of
protein for animal feed and an important source of oil for
human consumption, biofuel, and other industrial applications.
Soybeans are cultivated globally, and the largest producers
include Brazil, United States, Argentina, Paraguay, and China
(FAO, 2021). Soybeans are bred for several traits, but grain yield
is considered as the most important.

Genome-wide prediction is a key tool in soybean breeding.
It is utilized for faster and more accurate selection of superior
individuals (Meuwissen et al., 2001). Methodologically, genomic
models recreate the framework utilized for pedigree analysis, but
using genomic relationships instead (VanRaden, 2008; Habier
et al., 2011; VanRaden et al., 2011). Other factors that may
have contributed to the increasing adoption of genomic selection
(GS) in plants include the decreasing cost of genotyping and
the availability of software tools and computing power to
analyze large datasets.

Studies involving GS in plants have been mostly focused on
prediction for advancement purposes, hence restricted to the
evaluation of genetic gain within a single generation (Schmutz
et al., 2010; Sonah et al., 2013; Jarquin et al., 2016; Xavier
et al., 2016, 2018a,b; Diers et al., 2018; Smallwood et al., 2019).
Studies of long-term gains based on GS are expensive and
time-consuming; consequently, the literature is scarce (Wray
and Goddard, 1994; Goddard, 2009; Yabe et al., 2016; Gorjanc
et al., 2018; Allier et al., 2019a). In addition, evaluation with
real data from breeding programs faces additional challenges,
such as the ongoing changes in breeding pipelines driven by
business decisions, changes in the genotyping technology, and
annual changes in resources. Conversely, the deployment of
simulations has become an instrumental decision tool in plant
breeding. It enables the assessment of genetic gain under different
scenarios. In part, the increasing popularity of simulations is due
to the quantity and flexibility of software made available (Faux
et al., 2016; Pook et al., 2019; Toledo et al., 2019). For instance,
breeders are now capable of simulating entire breeding programs
with the intent of tuning the breeding parameters to maximize
genetic gains in the short and long term (Hickey et al., 2014;
Gorjanc et al., 2018), along with the best allocation of resources
for a given budget.

By assessing predictive models and contrasting selection
strategies, this study envisioned analyzing the influence of a set
of variables on long-term genetic gains based on a simulated
soybean breeding program and providing insight into the best
practices for optimizing genetic gains.

MATERIALS AND METHODS

Simulated Populational Parameters
The founder breeding population contained 200 individuals.
Those were simulated based on the genomic parameters using
the Markovian Coalescent Simulator (MaCS; Chen et al., 2009),
which recreates the evolutionary process with multiple cycles
of drift, mutation, and selection. The genomic parameters for

the simulations reproduce the soybean genome with detailed
information (Schmutz et al., 2010). We considered a genetic map
architecture of 20 chromosomes with 115 cM average length,
which collectively spanned 950 Mb. For each chromosome, 1,000
segregating sites were assigned.

Our study focused on the simulation of grain yield (in tons per
hectare) as the primary trait of interest. The genetic architecture
of the simulated trait was assumed to be infinitesimal with
70% of all segregating sites, which were not necessarily utilized
as markers, having a non-zero effect sampled from a normal
distribution. The genotype-by-environment variance provided
a non-heritable variation attributed to the season. Residual
variance remained constant throughout the simulation, causing
a reduction in heritability overtime as the genetic variance
decreased. Simulations began assuming an average yield of 3.00 t
ha−1. The function addTraitAEG from the AlphaSimR package
was utilized for the simulation of the phenotypic values. All
simulation code is available on GitHub.1

Additive genetic effects, genotype-by-environment
interaction, and residuals were simulated from Gaussian
distribution using variance components estimated from the
SoyNAM dataset (Diers et al., 2018; Xavier et al., 2018a) as
σ2

a = 25, σ2
G ×E = 49, σ2

e = 121, and h2
= 0.12. The

parameter estimation from the SoyNAM dataset was based on a
multivariate genomic best linear unbiased prediction (GBLUP)
model with unstructured genetic covariance and diagonal
residual covariance, fitting grain yield from all 18 environments
as response variables and using as explanatory variables the
overall mean (fixed) and a polygenic term (random). The
final estimates of the variance components for σ2

a , σ2
e , and

h2 were obtained as averages across the 18 environments,
whereas σ2

G ×E was computed as the average off-diagonal of the
variance–covariance matrix.

The main simulation settings followed a soybean breeding
program with 300 families per cycle and with 50 individuals per
family, producing a total of 15,000 individuals per cycle. After
crossing, the populations were inbred via single seed descendent
(SSD) until F2:4, as shown in Figure 1, where lines were
evaluated in field trials and genotyped with a single nucleotide
polymorphism (SNP) array similar to the Soybean 6K SNP chip
(Akond et al., 2013). Individuals were then selected to become
parents of the upcoming breeding cycle using the phenotypic and
genotypic information. The calibration of genomic prediction
leveraged data from the previous three breeding cycles, thus
leveraging information from up to 45,000 individuals per model.
The processes of selecting and crossing were repeated for 200
cycles to capture the theoretical plateau of genetic gains across all
simulated parameters. Each breeding scenario was reproduced 60
times with different computational random seeds.

A second simulation with 100 breeding cycles was performed
with varying numbers of families and offspring, where five
combinations that use the same number of resources were
chosen—300 × 50, 250 × 60, 200 × 75, 150 × 100, and
100 × 150—where the combinations correspond to the number

1https://github.com/Ederdbs/GenomicSelection
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FIGURE 1 | Simulated families created and inbreeding using single seed descent (SSD).

of families and individuals per family, respectively. Each breeding
scenario was reproduced 45 times with different random seeds.

Genotypic and phenotypic data were simulated with the
R package AlphaSimR (Gaynor et al., 2020), reproducing the
previous methodological framework (Faux et al., 2016). The
software was utilized to simulate the founder population,
perform selection, fingerprint individuals with the specified SNP
chip, make crosses, generate offspring, inbred individuals, and
simulate phenotypic values. All simulations and subsequent
statistical analyses of the results were performed using R software
(R Core Team, 2020). The code was run in parallel by distributing
the multiple breeding scenarios over 960 cores, requiring
approximately 10 h of computation per run. The R package
doParallel (Ooi et al., 2019) was utilized to parallelize the runs.

Evaluation of Simulated Scenarios
Evaluation of the breeding strategies, selection intensities, and
selection models was based on previous studies (Daetwyler et al.,
2013). The evaluation criteria included the population mean
across breeding cycles, genetic variance, and accuracy. Analyses
were performed within a generation, combining the data from the
repeated simulation runs. The statistical model for the analysis of
simulated data was the following:

y = 1µ+ Xmm+ Xss+ Xii+ Xpp+ ε

where y is the vector of the random variable of the simulated
population; µ is the model intercept; X represents the incidence
matrix, which is further divided to accommodate the three factors

under evaluation (Xm, Xs, Xi, and Xp); m for the selection
model; s for the breeding strategy; i for the selection intensity;
p for the population design, as combinations of the number
of families and individuals per family; and ε is the vector
of residuals, assumed to be distributed as ε ∼ N

(
0, Iσ2

ε

)
. The

statistical test of multiple comparison was based on Tukey’s
range test with 5% probability of error fit using the built-
in R function TukeyHSD. This model was used to generate
Figure 2.

Selection Models
The following selection models are evaluated: (1) True breeding
values (TBV)—true breeding value, which serves as the upper
limit of the achievable prediction power; (2) Random—
random selection of individual, as the worst-case scenario; (3)
Pheno—phenotypic-based selection without the use of genomic
information; (4) GBLUP—the genomic best linear unbiased
predictor fitted with REML (restricted maximum likelihood)
variance components (Nejati-Javaremi et al., 1997; Habier
et al., 2007); (5) BayesA—Bayesian shrinkage regression that
assigns a t prior to marker effects (Meuwissen et al., 2001);
(6) BayesB—an extension of BayesA with variable selection
(Meuwissen et al., 2001); (7) FLM—fast Laplace model (Xavier,
2019), an empirical Bayes model with a double exponential
prior for marker effects; and (8) RF—random forest regression
(Breiman, 2001), a common machine learning procedure based
on bootstrapping aggregation of multiple decision trees. The
models GBLUP, BayesA, BayesB, and FLM were fitted using
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FIGURE 2 | Evaluation of individual factors on population means. Multiple comparison test: Capital letters indicate difference in means across factor with Tukey’s
range test with 5% alpha level contrasting the levels of each factor (prediction method, selection intensity, balance between population size and family size, and
breeding strategy) on generations 10, 50, and 100.

the R package bWGR (Xavier et al., 2019) and solved via
expectation–maximization (EM). The model RF was fitted
using the R package ranger (Wright et al., 2020) with
default settings.

As a brief description of the GS model, these models in
function on genomic information can be written in terms of the
linear model:

y = Xb+ f (M)+ ε

where y is the vector of phenotypic values; X is the incidence
matrix of the environment term treated as a fixed effect; b is a
vector of environmental means; f (M) is the function of markers
that describe the genetic merit of individuals; and ε is a random
vector of residuals, assumed to be distributed as ε ∼ N

(
0, Iσ2

ε

)
.

The genetic function of markers, f (M), varied from model to
model. For GBLUP, BayesA, and FLM, the function was linear
and the marker effects were strictly additive; thus, the function of
markers was f (M) = Mβ. The distinction of the models was the
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prior assigned to the distribution of marker effects, being normal
for GBLUP, distributed as Student’s t for BayesA, and distributed
as a double exponential for FLM. The function describing BayesB
was f (M) = Mβγ, which is also linear, but with a variable
selection term (γ) that caused further shrinkage to the Student’s
t prior assigned to the marker effects. The only non-linear model
under evaluation was random forest, in which case the genetic
function is a linear ensemble of multiple independent regression
trees (T): f (M) = n−1 ∑ T (m ∈ M).

Breeding Strategy
The breeding strategies were based on soybean breeding designs
previously described in the literature (Backes et al., 2003;
Sebastian et al., 2010; de Cássia Pereira et al., 2017; da Silva et al.,
2018; Smallwood et al., 2019). The following approaches were
considered in this study:

AF: across-family selection. Genotypes are selected across
families based on their estimated genetic merit, without regard
for their family structure or any constraint for selecting multiple
individuals from the same pedigree.

WF: within-family selection. In this strategy, all families were
equally represented in the advancements. The best genotypes
from each family are selected to become parents in the
upcoming generations.

WPSF: within the pre-selected family. This strategy comprises
two steps. Firstly, the family level selection is performed to
identify the best-performing families (top 30%). Secondly, the
selection of individuals occurs within the family. With fewer
families to select from, more individuals per family will be
parenting the upcoming generation compared to WF.

Selection Intensity
Four levels of selection intensity were considered: 2.5, 5.0, 7.5,
and 10.0%. These values represent the percentages of individuals
selected to be used as parents of the next generation. The selection
of parental combinations was performed at random; thus, it is
possible that not all selected individuals served as parents.

RESULTS

Genetic Gains
The simulation results presented in Figure 3 summarize the
population means over the course of 200 cycles. Supplementary
Table 1 provides the population means for all combinations of
treatments under evaluation in breeding cycles 10, 100, and 200.
Across all scenarios, the population mean of random selection is
anchored at the starting point. Selection of TBV represents the
upper boundary of each scenario; hence, these are particularly
useful to contrast the potential of the different scenarios. The
highest long-term population means from selection on TBV
occurred WF with loose selection intensities (7.5–10%). Genetic
gains were generally closer to those from TBV when selections
were performed WPSF.

Phenotypic selection outperformed GS over the course of
200 breeding cycles. Selection using random forest provided
poor predictive performance in all scenarios, possibly due to

the non-additive nature of the regression trees fitting a strictly
additive genetic architecture. All linear genomic models (BayesA,
BayesB, FLM, and GBLUP) provided similar outcomes. When
conditioning for all other varying parameters, BayesA and FLM
were the best-performing models within the first 100 breeding
cycles (Figure 2).

After 10 cycles of selection, the highest gains were attained
at the highest selection intensity (2.5%), which characterizes the
short-term gain benefit from a higher selection pressure while
the genetic variance is still abundant. After 100 breeding cycles,
the genetic gains are affected by the combination of selection
intensity and breeding strategy. For example, selection performed
AF using BayesA provided the highest gains with a selection
intensity of 10%, whereas, under WF, the highest gains occurred
with a selection intensity of 2.5%. Such discrepancy is attributed
to the amount of genetic variance left for long-term selection.

The highest long-term gains were reached when selections
were performed WF. The maximum attainable, as benchmarked
by selection upon TBV, resulted in a grain yield of 54 t ha−1

(WF), being 35% higher than AF selections and 46% higher than
WPSF (Supplementary Table 2). The overall trend for long-
term gains using GS followed the order WF > WPSF > AF.
When the selections were based on phenotypic values, the genetic
gains outpaced the GS run for all strategies (AF, WPSF, and
WF), whereas that was not observed within the first 100 cycles
(Figure 1). In fact, phenotypic selection WF was the third highest
performing model, behind AF and WF selections performed on
TBVs. The impact of each factor on the prediction accuracy over
200 breeding cycles is provided in Supplementary Figure 1.

Figure 2 summarizes the results of the simulation performed
within 100 cycles, where different family sizes were an additional
variable under evaluation. Within 10 breeding cycles, the scenario
of 100 families with 150 individuals displayed the highest average,
although the differences were negligible. Over the course of
50 and 100 breeding cycles, the number of families and the
family sizes displayed significant differences in the genetic gains,
with larger differences as generations progressed. The overall
trend was that a greater number of families increase the gain
in the long term.

Diversity Loss
The decay in genetic variance overtime is presented in Figure 4.
The number of cycles to exhaust 80% of the genetic variance is
provided in Supplementary Table 3. The study simulates closed
populations without the inflow of external variation, the existing
genetic variance consumed overtime as selection takes place.
Overall, a fast decay in genetic variance is observed under a higher
selection pressure, whereas a lower selection pressure preserved
more genetic variance in the long term. When selection was
performed at random, over 80% of the initial genetic variance
remained after 200 breeding cycles. The interaction between
the selection intensity and selection strategy was significant
(p < 0.01) across all selection models.

Within-family selection preserved the genetic variance for
more cycles (Figure 4). Selection WF based on TBVs exhausted
80% of the genetic variance within 48–69 breeding cycles,
whereas AF and WPSF selections on TBVs exhausted 80% of
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FIGURE 3 | Population means across 200 breeding cycles. Colors correspond to the different selection methods, grid columns represent the selection intensity (2.5,
5, 7.5, and 10%), and grid rows represent the breeding strategies, where individuals were selected across family (AF), within pre-selected families (WPSF), or
within-family (WF).

the diversity between 25 and 42 cycles (Supplementary Table 3).
Depletion of genetic variance was more pronounced with GS.
Under the selection intensity of 10%, BayesA selection WF
exhausted 80% of the variance after 184 cycles, whereas selections
AF and WPSF display the same diversity loss after 54 and 58
cycles, respectively.

Diversity loss attributed to genetic drift is presented in
Figure 5. These results assess the impact of bottlenecking
the population through the various combinations of breeding
strategy and selection intensity, utilizing random selections to
avoid the confounding effect of directional selection. Higher
rates of drift occurred under a higher selection pressure (2.5%).
Strategy-wise, losses were highest for selection WPSF, with little
difference across the selection intensities, ranging from −0.325
to −0.353%. The lowest rate of drift was observed under WF
selection, with the rate of losses ranging from−0.199 to−0.136%.

DISCUSSION

Genomic prediction has become an important tool for selection
and breeding in agriculture as it can enhance the rate of

genetic gain in comparison to pedigree and phenotype-based
selection by leveraging information on relationship and the
linkage disequilibrium between the marker and the quantitative
trait locus (QTL; Meuwissen et al., 2001; Habier and Fernando,
2009; Bernardo, 2010; Crossa et al., 2013, 2017; Daetwyler
et al., 2013; de Los Campos et al., 2013). In soybean, the
value of genomic prediction has been assessed and described
in recent years (Jarquín et al., 2014; Xavier et al., 2016,
2018a,b; Diers et al., 2018; Matei et al., 2018; Xavier and
Rainey, 2020). These studies agreed that adequate composition
of the training data is imperative to successful and accurate
prediction. The definition of an optimized training set entails
(1) maximizing the genetic relationship between the training
and target populations and (2) collecting phenotypic information
from year–location combinations that represent the target
population of environments. Whereas factors that affect genomic
predictions for short-term gains have been well characterized,
it is unclear which factors affect long-term genetic gains. The
answer for that would come from long-term simulations, such as
the present study. Primarily, simulations enable the optimization
of the modern breeding program in animal and plant species
(Yu et al., 2005; Hickey et al., 2014; Cowling et al., 2015, 2020;
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FIGURE 4 | Genetic variance across 200 breeding cycles. Colors correspond to the different selection methods, grid columns represent the selection intensities (2.5,
5, 7.5, and 10%), and grid rows represent the breeding strategies, where individuals are selected across family (AF), within pre-selected families (WPSF), or within
family (WF).

Gorjanc and Hickey, 2018; Muleta et al., 2018) by enabling the
assessment of the breeding conditions that increase the rate of
genetic gains, the conservation of useful genetic diversity, and the
best allocation of breeding resource, such as the number of field
plots, genotyping density, number of crosses, and population size
(Heffner et al., 2010; Gonen et al., 2017; Gorjanc et al., 2017a,b).

Simulations indicate that linear models outperformed random
forest for complex traits controlled by additive genetics and
additive genotype-by-environment interactions. Under different
scenarios, other studies found machine learning methods to
display similar performances (Li et al., 2018; Ali et al., 2020). The
discrepancy in the results is likely due to the nature of trait and
population under evaluation, as machine learning predictions
could be suitable for more structured populations and with some
degree of epistatic control (Xavier, 2019; Abdollahi-Arpanahi
et al., 2020). We also acknowledge that random forest was run
with default settings in this study, and parameter tuning would
benefit its predictive performance.

Selection factors provided a similar outcome to the findings
in other studies (Gorjanc and Hickey, 2018; Santantonio and
Robbins, 2020), where the authors assessed balancing short-

and long-term sustainable gains in plant breeding. Their results
indicate that higher population sizes provide higher long-term
gains. An alternative framework for the maximization of long-
term response to selection is proposed by Goddard (2009) based
on the use of selection indexes that account for allele frequency
aiming to account for the value of rare loci and in short- and long-
term gains. Under limited resources, our simulations indicate
that a lower selection pressure generally contributes to long-
term gains at the cost of compromising short-term gains. Across
breeding strategies, WPSF appears to provide reasonable gains
in both the short and the long term while having the range
of gains being less influenced by selection pressure. WPSF is
an intermediate between AF and WF, and the results are, in
fact, intermediary between the short-term gains provided by AF
selections and the long-term gains provided by WF selection.

The real-life trend of genetic gains in soybeans is positive,
but variable across geographies. In North America, the rates of
genetic gain have been estimated to be 23.4 kg ha−1 year−1

(Fox et al., 2013), 26.5 kg ha−1 year−1 (Koester et al., 2014),
and 16.8 kg ha−1 year−1 (Rogers et al., 2015). In the southern
regions of Brazil, the rates of genetic gains were estimated to be
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FIGURE 5 | Genetic drift per cycle under random selection across family (AF), within pre-selected families (WPSF), or within family (WF) in different selection
intensities (SI).

71.5 kg ha−1 year−1 (Lange and Federizzi, 2009) and 40.0 kg
ha−1 year−1 (Todeschini et al., 2019); in Argentina, the rate has
been reported to be 44.3 kg ha−1 year−1 (de Felipe et al., 2016).
These reports provide insight from the perspective of traditional
breeding progress before the deployment of GS and, in most
cases, with lengthy breeding cycles with the choice of parents
taking place in advanced generations and commercial products.
Our simulations provided higher annual gains than what has
been reported; however, with the advent of earlier evaluations
and increasing trust in genomic prediction, it is likely that annual
genetic gains will be progressively and iteratively optimized for
multiple factors, including those evaluated in the present study
(model, selection intensity, family size, and breeding strategy).

The selection of unproven parents from earlier generations
is often interpreted as gambling with high risk and high
rewards, even though much of the risk is mitigated with
the use of genomic information with robust statistical models
calibrated with phenotypic data from multiple years. In addition
to advancements, more opportunities arise with the use of
genomics to predict and select the best combinations for
crossing that further increase the probability of generating
elite offspring. Previous studies have evaluated population-level
selection strategies in further detail (Bernardo, 2010; Jannink,
2010; Kemper et al., 2012; Daetwyler et al., 2015; Ma et al.,
2016; Goiffon et al., 2017; Matei et al., 2018) with the goal of
preserving the segregation of low-frequency haplotypes for long-
term gains (Beukelaer et al., 2017). Balancing the number of
families and the family size can be a fundamental part of the
strategy to continue the steady gains overtime (Figure 2), and,
whereas the difference is not perceived in the short term, the
magnitude of grain increases significantly overtime. Yet, multiple

factors should be taken into account when allocating resources in
terms of the number of families and family size (Lindgren et al.,
1997; Fu, 2015).

Scenarios simulated as provided herein were based on the
parental selection at the F4 stage, which is commonly perceived
as an early generation for recycling as the quality and the quantity
of phenotypic data are still scarce, of doubtful quality, and in
many cases, without replication. Nevertheless, early recycling
is a promising framework for speeding up the rate of genetic
gain by shortening the length of the breeding cycles. In fact,
shortening the breeding cycles while inducing multiple cycles
a year reproduces a framework referred to as “speed breeding”
(Hickey et al., 2019; Nagatoshi and Fujita, 2019; Jähne et al.,
2020). Recent studies often support recombination in the early
stages of inbred development (Gaynor et al., 2017), more so
as the accuracy of selection in the early stages benefits greatly
from the GS. Another important aspect of parental selection
regards the management of genetic diversity in modern plant
breeding, which is largely ignored and not always adequately
measured (Fu, 2015). Our results indicate that the multiple
factors in the breeding design can affect the rate of diversity loss,
mainly selection pressure and selection strategy (Supplementary
Table 2), and that one must consider to balance these factors to
attain the desired gain in the short term without compromising
long-term gains. That is particularly the case for soybeans,
whose germplasm-wise genetic diversity is considered low when
compared to that of other species (Martin, 1982). Some Canadian
soybean breeding programs have maintained diversity through
decades of breeding while fixing maturity genes (Bruce et al.,
2019). In the United States, soybean population structures and
diversity varied by maturity group (Vaughn and Li, 2016), which
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suggests that new sources of variation could be obtained through
the introgression of material from different regions.

The diversity available in breeding programs affects the
accuracy of breeding values by dictating the amount of existing
genetic signals to select upon an effective population size
(Meuwissen, 2009). With restricted diversity, the genotyping
density and marker distribution can be optimized to capture
the existing variation in the target population with the goal of
increasing genomic prediction accuracy (Ma et al., 2016). Of
course, the long-term impacts of selection on genetic variance
also vary depending on the genetic variance of interest, as the
prominence of additive and non-additive variances is not the
same over multiple cycles of selection (Paixão and Barton, 2016).

In soybeans, the management of diversity is necessary to
ensure useful variability for future breeding objectives, such as
yield performance under drought or waterlogging (Valliyodan
et al., 2017), the seed oil and protein content profiles (Stewart-
Brown et al., 2019), and disease resistance (de Azevedo Peixoto
et al., 2017). Monitoring genetic diversity in the genomic era
can be performed through tracking overtime changes in allele
frequencies (Allier et al., 2019b; de Castro Lara et al., 2020;
Meuwissen et al., 2020). We showed that selection could quickly
exhaust genetic diversity under closed breeding systems, and
breeding systems can benefit from balancing short gains to
preserve diversity and assure long-term gains. Such balance had
been the focal point of recent studies (Cowling et al., 2017;
Gorjanc et al., 2018; Ru and Bernardo, 2019, 2020; Santantonio
and Robbins, 2020) seeking for avenues to extend genetic
resources with genomic tools, including the selection of material
from germplasm collection to expend the genetic basis of elite
programs. In addition to germplasm introgression, increases in
genetic diversity in soybeans have been done in the past through
mutagenic agents (Curtin et al., 2011; Khan, 2013; Haun et al.,
2014; Demorest et al., 2016) and more recently, through genome
editing techniques based on CRISPR-Cas9 (Cai et al., 2015,
2018a,b; Jacobs et al., 2015; Sun et al., 2015; Zheng et al., 2020)
and target recombination for directional backcrossing (Ru and
Bernardo, 2019, 2020).

The simulations performed in our study indicate that GS
enables higher rates of genetic gain in the short and medium
term compared with phenotype selection, but also led to faster
extinction of the genetic variance. Thus, genomic prediction
and selection must be applied mindfully with the purpose of
maximizing gains while maintaining genetic variance. We found
that a breeding strategy that balances selection at the family level,
and within and across family at the individual level, can mitigate
losses in genetic variance while providing satisfying genetic gains
in the short term. Simulation is a powerful and inexpensive tool
to test hypotheses, and for future studies, we envision addressing
the importance of other important breeding parameters. Namely,
future studies should focus on investigating (1) the optimal
generation to select the parents and its trade-off with the
accuracy of selection; (2) the influence of non-additive and
non-infinitesimal genetic architecture and how machine learning
would perform in such conditions; (3) the long-term effect of
different models designed to select parental combinations; (4) the
impact of different island models where new sources of variation

are constantly infused into the main breeding panel; and (5)
what would be the potential benefit of breeding hybrid soybeans
assuming there are variable levels of dominance.

CONCLUSION

Long-term gains were influenced by the interaction among GS
models, breeding strategy, and selection intensity. Adequate
handling of these factors will aid breeding programs to ensure
genetic gains in short, medium, and long term. Therefore, the
breeding strategy is the most influential factor and, therefore,
is a key criterion to conserve genetic variance and obtain the
highest population mean overtime. The absolute impact of the
selection intensity is lower than that of the breeding strategy and
GS model. The benefits of balancing family size and the number
of families were not perceived on short-term gains. Additive
GS models (BayesA, BayesB, FLM, and GBLUP) have similar
behaviors in selecting the best individuals, whereas RF has poor
predictive performance when implemented with default settings.
In summary, a combination of strategies may be necessary for
balancing the short-, medium-, and long-term genetic gains in
breeding programs while preserving genetic variance.
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