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Background: Components of liver microenvironment is complex, which makes it
difficult to clarify pathogenesis of chronic liver diseases (CLD). Genome-wide association
studies (GWASs) have greatly revealed the role of host genetic background in CLD
pathogenesis and prognosis, while single-cell RNA sequencing (scRNA-seq) enables
interrogation of the cellular diversity and function of liver tissue at unprecedented
resolution. Here, we made integrative analysis on the GWAS and scRNA-seq data
of CLD to uncover CLD-related cell types and provide clues for understanding on
the pathogenesis.

Methods: We downloaded three GWAS summary data and three scRNA-seq
data on CLD. After defining the cell types for each scRNA-seq data, we used
RolyPoly and LDSC-cts to integrate the GWAS and scRNA-seq. In addition, we
analyzed one scRNA-seq data without association to CLD to validate the specificity
of our findings.

Results: After processing the scRNA-seq data, we obtain about 19,002–32,200 cells
and identified 10–17 cell types. For the HCC analysis, we identified the association
between B cell and HCC in two datasets. RolyPoly also identified the association, when
we integrated the two scRNA-seq datasets. In addition, we also identified natural killer
(NK) cell as HCC-associated cell type in one dataset. In specificity analysis, we identified
no significant cell type associated with HCC. As for the cirrhosis analysis, we obtained
no significant related cell type.

Conclusion: In this integrative analysis, we identified B cell and NK cell as HCC-related
cell type. More attention and verification should be paid to them in future research.
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INTRODUCTION

Chronic liver disease (CLD) is a public health topic of global
concern. As estimated, about 844 million people worldwide are
suffering from CLD and 2 million deaths each year (Asrani
et al., 2019). Starting with diverse etiology-related chronic
hepatitis, CLD might develop into cirrhosis and hepatocellular
carcinoma after repetitive liver damage (Gadd et al., 2020).
Environment risk factors associated with CLD are virus, diet,
drug, and autoimmune (Marcellin and Kutala, 2018). With the
development of molecular biology, the role of host genetic
background in CLD has also gained wide attention (Anstee
et al., 2020). Genome-wide association studies (GWASs) have
contributed greatly to our understanding of the genetic roles
in CLD pathogenesis and prognosis (Matsuura et al., 2017).
A number of associated polymorphisms, including variants on
CDK14, SH2B3, CARD10, TLL1, PNPLA3, and HLA, have been
reported (De Boer et al., 2014; Sudlow et al., 2015; Matsuura
et al., 2017; Nicoletti et al., 2017; Li et al., 2018; Ishigaki et al.,
2020; Schwantes-An et al., 2020). Nevertheless, the current
understanding of CLD is far from enough, and it is still of
great significance to further clarify the pathological process
of CLD and explore new treatment strategy for CLD patients
(Marcellin and Kutala, 2018).

As the largest internal organ of the body, the liver consists
of many cell types, including not only epithelial cells and
some non-parenchymal cells (e.g., endothelial and mesenchymal
cells) but also a variety of immune cells (MacParland et al.,
2018; Aizarani et al., 2019; Ramachandran et al., 2019; Sharma
et al., 2020). Different cell types vary greatly in abundance
and function, leading to their completely distinct roles in the
physiological and pathophysiological processes of liver diseases
(Ramachandran et al., 2020). Single-cell genomics technologies
are transforming our understanding on diseases like CLD,
enabling interrogation of cellular diversity and function at
unprecedented resolution, and adding a new dimension to
traditional bulk transcriptomic techniques (Giladi and Amit,
2018). Single-cell RNA sequencing (scRNA-seq) has been used
to feature the fundamental liver biology and the cellular
mechanisms underpinning liver regeneration (Aizarani et al.,
2019). It also has been used to uncover the pathophysiological
changes of hepatic fibrosis and hepatocellular carcinoma, where
the heterogeneity and changes of T cells (Zheng C. et al., 2017),
macrophages (Ramachandran et al., 2019), and endothelial cells
(Sharma et al., 2020) residing within the liver tissue may be
critical in driving disease states.

Both GWAS and scRNA-seq have thrown light on the way
to indepthly understand the pathogenesis of CLD and further
laid a foundation for the development of precision treatment
strategy (Saviano et al., 2020). Integrating GWAS summary data
and scRNA-seq data to identify the cell types associated to CLD
might provide new clues for understanding the pathogenesis
of CLD (Calderon et al., 2017; Finucane et al., 2018; Hao
et al., 2020). Here, we used RolyPoly and LDSC-cts to ensure
the robustness and confidence of the result. Especially, we first
processed the scRNA-seq data to derive averaged expression
vector and differential expression gene (DEG) list of each cell

type for RolyPoly and LDSC-cts, respectively. Then, we used the
Ensembl database to obtain the position relationship between
SNPs and gene (Yates et al., 2019). Finally, with GWAS data,
scRNA-seq data and block annotation in place, as well as
accounting for linkage disequilibrium (LD) of related population,
we applied RolyPoly and LDSC-cts to identify and prioritize
CLD-relevant cell types.

MATERIALS AND METHODS

Genome-Wide Association Studies Data
The first category of summary statistics is Asian ancestry GWAS.
The datasets are from the Biobank of Japan (BBJ)1 (Ishigaki et al.,
2020). We focus on the CLD-related phenotype that contain allele
information and variant ID and that contain effect size and its
standard error. With the two criteria, we obtained two GWAS
summary statistics: cirrhosis (n = 212,453, prevalence = 1.03%)
and HCC (n = 197,611, prevalence = 0.94%). Here, cirrhosis and
HCC in BBJ were adjusted for age, sex, and top five genotype
PCs (Ishigaki et al., 2020). The details of the two GWAS data
are provided in Supplementary Table 1. Based on Asian ancestry
from the 1000 Genome Project (1000 GP), we filtered out variants
with minor allele frequency (MAF) < 0.01 and Hardy–Weinberg
equilibrium (HWE) < 10−6 (Auton et al., 2015). After these
quality control (QC) steps, we finally obtained 7,246,475 and
7,246,543 SNPs from the two datasets.

The second category of GWAS summary statistics is from
European ancestry. The dataset is from GeneATLAS website2

(Canela-Xandri et al., 2018). We focus on the CLD-related
phenotype that contain allele information and variant ID and
that contain effect size and standard error. With the two criteria,
we obtain one GWAS summary statistics: cirrhosis (n = 452,264,
prevalence = 1.99%). This cirrhosis GWAS data was adjusted
for sex, array batch, UK Biobank Assessment Center, age, age2
(Sudlow et al., 2015), and the top 20 genotype PCs as computed
by UK Biobank. The details of these data are also provided in
Supplementary Table 1. Based on European ancestry from the
1000 Genome Project, we filtered out variants with MAF < 0.01
and HWE < 10−6 (Auton et al., 2015). After these QC steps, we
finally obtained 7,636,847 SNPs from this dataset.

We treated the phase 3 of the 1000 Genome Project as
the reference panel (Auton et al., 2015). Here, we collected
503 European individuals and 504 East Asian individuals with
81,271,745 SNPs. We used PLINK to calculate Pearson’s r2 values
of pairwise SNPs for RolyPoly with the default 1 MB window size
(Chang et al., 2015). In LDSC-cts, we set the window size to 1
centiMorgan to estimate LD scores (Finucane et al., 2018).

Four Single-Cell Data
Considering the cirrhosis and HCC data acquired from GWAS,
we searched the GEO database for related scRNA-seq data
and obtained one data for liver cirrhosis and two for HCC,
whose raw counts data are available (Barrett et al., 2012;

1http://jenger.riken.jp/en/
2http://geneatlas.roslin.ed.ac.uk/
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Ramachandran et al., 2019; Losic et al., 2020). In addition, to
verify the specificity of the outcomes, we also downloaded
an idiopathic Parkinson’s disease (IPD) data. The details are
provided in Supplementary Table 2. Following the original
study, we performed QC and clustering for each scRNA-seq
data. Note that scRNA-seq data usually have the potential to
have its clusters continuously subdivided, but we just controlled
the cell type number of each data within 10–20 depending on
the features and quality of each data. The specific processing
details of each data are as follows: After demultiplexing, aligning,
and estimating cell-containing partitions and associated UMIs, a
cirrhosis dataset (GSE136103) consisting of CD45 + and CD45-,
blood and liver, healthy and cirrhosis, and human and mice
samples were downloaded (Ramachandran et al., 2019). Here,
we only chose nine human cirrhotic samples, including five
CD45+ and four CD45- samples, for downstream analysis.

For scRNA-seq data analysis, we first removed potential
doublets, and then excluded the cells that expressed fewer than
300 genes or mitochondrial gene content >30% of the total
UMI count (Ramachandran et al., 2019). We also excluded genes
expressed in fewer than three cells. We followed the analysis
flow in Seurat (Stuart et al., 2019): (1) used SCTransform, a
new strategy to remove the influence of technical characteristics
while preserving biological heterogeneity via regularized negative

binomial regression, to normalize and scale scRNA-seq data
(Hafemeister and Satija, 2019); (2) used default setting of
IntegrateData to remove the batch effect (Butler et al., 2018);
(3) performed unsupervised clustering and differential gene
expression analyses on the integrated data; (4) used principal
component analysis (PCA) for linear dimension reduction,
and then used shared nearest neighbor (SNN) graph-based
clustering, in which the graph was constructed using the top 30
principal components; and (5) used UMAP to visualize by the
same number of principal components (PCs) as the associated
clustering, with perplexity ranging from 30 to 300 according to
the number of cells in the dataset or lineage. The details of data
processing are shown in Figure 1.

In cell type definition, we referred to marker genes that are
widely recognized and those from the original research. We used
BuildClusterTree to assess cluster similarity by constructing the
phylogenetic tree (Stuart et al., 2019). Totally, we identified 20
clusters on 23,184 cells (Supplementary Table 2 and Figure 2).
Marker genes used for cell type definition are shown in
Supplementary Table 3.

The first HCC dataset (GSE149614) contains 21 primary
tumor, portal vein tumor thrombus (PVTT), metastatic lymph
node, and non-tumor liver samples from 10 HCC patients.
We downloaded the raw count data, which have been

FIGURE 1 | General procedure for scRNA-data processing.
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FIGURE 2 | Cell types inferred from expression of marker gene signatures in GSE136103. NKT, natural killer T cells; Pdc, plasmacytoid dendritic cell; Treg, regulatory
T cell; LEC, lymphatic endothelial cell; MDM, monocyte-derived macrophage; NK, natural killer cell; LSEC, liver sinusoids endothelial cell; DC, dendritic cell.

processed and aligned by Cell Ranger, and chose only 10
primary tumor samples for downstream analysis (Zheng
G.X.Y. et al., 2017). After processing and clustering, we
totally identified 14 cell types on 30,983 cells in this dataset
(Supplementary Table 2).

Another HCC dataset (GSE112271) contains three and
four tumor samples coming from different regions of two
different individuals, and we included all seven samples for
downstream analysis. After data processing, we totally identified
13 clusters on 32,200 cells in this dataset (Losic et al., 2020;
Supplementary Table 2).

We downloaded the processed and aligned IPD dataset
(GSE157783), which contains samples from six control and
five idiopathic Parkinson’s disease cases. We chose only
five disease samples for downstream analysis and totally
identified 12 clusters on 19,002 cells following our procedure
(Supplementary Table 2).

Defining the Specific Cell Types
Associated With Cirrhosis and HCC
We used RolyPoly and LDSC-cts to define the specific cell
types associated with cirrhosis and HCC (Calderon et al., 2017;
Finucane et al., 2018). Based on polygenic model, RolyPoly treats
the variance of each gene as the linear combination of each
cell type and estimates the coefficients by method-of-moment.
Then, RolyPoly uses block bootstrap to estimate the variance
for the cell type effects, then construct t-statistics to test them
(Efron and Tibshirani, 1986). By utilizing GWAS summary
statistics for all SNPs near protein-coding genes, the model
performed joint analysis with gene expression of a variety of
cell types simultaneously, to define prioritized trait-relevant cell
types (Calderon et al., 2017). We extracted the log-normalized
matrix from each processed data and averaged the expression
across each identified cell-type classes. We also scaled the

Frontiers in Genetics | www.frontiersin.org 4 March 2021 | Volume 12 | Article 637322

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-637322 March 3, 2021 Time: 13:16 # 5

Ye et al. Integrative Analysis on CLD

expression data, and then took the absolute expression values,
so as to form the input of RolyPoly (Calderon et al., 2017). We
referred to the Ensembl database (GRCh37) and defined a 10-
kb window center around the transcription start site (TSS) of a
gene as its transcribed region, to construct a block annotation
as recommended that could link the location of GWAS variants
with related genes. Of note, we only retained genes on autosomes
(Calderon et al., 2017). We used the default parameters and set
1,000 times bootstrap to obtain robust standard errors.

Based on partition heritability, LDSC-cts needs the top
upregulated genes list of each cell type rather than the expression
data (Finucane et al., 2018). Here, we used Wilcoxon rank sum
test embedded in Seurat to find the DEGs for each cell type
with all remaining clusters as control. Following Finucane et al.
(2018), we extracted the top 10% upregulated genes ranked by
P value from each cell type. DEGs were identified as genes
expressed in at least 0.1% total cells and with log-transformed
fold change above 0 in the target cluster under comparison, so
as to ensure a sufficient number of genes could be obtained
from each cluster. DEGs lists of each scRNA-seq data used for
LDSC-cts analysis are summarized in Supplementary Tables 4,8.
We referred to the Ensembl database (GRCh37) and defined
the region from the TSS to the transcription end sites (TES)
of a gene as its transcribed region (Yates et al., 2019). We also
added 100-kb windows on either side of the transcribed region
of each gene. Finally, we applied LDSC-cts by jointly modeling
the annotation that corresponded to each cell type, a common
annotation that included all of the genes, and the 52 annotations
in the default “baseline model,” to identify CLD-specific cell types
(Finucane et al., 2018).

We also made a sensitivity analysis. Specifically, we changed
the resolution used in clustering to obtain a coarser cell type list
for analysis. In particular, since LDSC-cts is sensitive to the gene
list used for analysis, we simultaneously changed the number of
genes included in LDSC-cts to the top 5% upregulated ones.

Bonferroni correction was used for multiple tests (P < 0.1/n,
where n = 4 or three is the number of cell type groups, including
epithelial cell, non-parenchymal cell, lymphatic immune cell,
myeloid immune cell for liver tissue, or gliocyte, neuron, and
vascular cell for the brain tissue, Supplementary Table 9)
(Hao et al., 2020).

Statistical Software
We used scDblFinder package (version 1.4.0), Seurat package
(version 1.4.0), biomaRt package (version 2.45.6), and
RolyPoly package (version 0.1.0) in R software (version
3.6.3) (R Core Team, 2020). We used PLINK (version 2.0)
(Chang et al., 2015) to analyze GWAS data. We also used
LDSC-cts (version 1.0.1) in python software (version 2.7.18)
(Van Rossum and De Boer, 1991).

RESULTS

HCC Datasets Analysis
For the HCC GWAS data from BBJ, we totally retained 7,246,543
variants with HWE < 10−6 and MAF > 0.01, as well as their

annotation. For the scRNA-seq data (GSE149614), we identified
14 cell types on 30,983 cells (Supplementary Table 2 and
Supplementary Figures 1,2). We further excluded cluster with
less than 100 cells (63 mast cells) to avoid the interference of their
unstable signal on the results. We also excluded the circulating
cluster (2,510 cells), since it usually contains various immune
cells from the circulation and may represent a mixed signal.
Finally, we retained a total of 28,410 cells from 12 cell types.
After integrative analysis, we identified B cell (β = 2.956 × 10−4,
se = 1.442× 10−4, P = 0.0228) as cell type associated with HCC in
RolyPoly (Figure 3), whereas natural killer cell (NK), monocyte,
CD4 + T cell, plasma, macrophage, hepatocyte, regulatory T
cell (Treg), endotheliocyte, mesenchymal cell, CD8 + T cell,
and dendritic cell (DC) showed no significance (P > 0.05). In
LDSC-cts analysis, we also obtained B cell (β = 2.475 × 10−9,
se = 1.116× 10−9, P = 0.0133) as the significant cell type.

We used another HCC scRNA-seq data from GEO for
verification. Totally, we recognized 12 cell types on 30,931
cells from the GSE112271 data with one circulating (1,192
cells) and one small cluster (77 liver sinusoids endothelial
cells) excluded (Supplementary Table 2 and Supplementary
Figures 3,4). We identified monocyte-derived macrophage
(MDM, β = 1.665 × 10−4, se = 6.098 × 10−5, P = 0.0031), T
cell (β = 1.732 × 10−4, se = 7.170 × 10−5, P = 0.0076), and
natural killer cell (NK, β = 1.458 × 10−4, se = 6.976 × 10−5,
P = 0.0191) as cell types significantly associated with HCC in
RolyPoly (Figure 3), whereas the obtained NK (β = 2.331× 10−9,
se = 1.118 × 10−9, P = 0.0186) and B cell (β = 2.255 × 10−9,
se = 1.134 × 10−9, P = 0.0234) as the significant cell types in
LDSC-cts analysis.

We also integrated the two HCC scRNA-seq data and obtained
a combined data consisting of 60,120 cells and 13 cell types
for further analysis (Supplementary Figures 5,6). The RolyPoly
analysis showed that B cell (β = 2.451× 10−4, se = 9.240× 10−5,
P = 0.0040) was significantly associated with HCC (Figure 3),
whereas the LDSC-cts identified no significant cell type.

HCC Dataset Specificity and Sensitivity
Analysis
We used scRNA-seq data from other disease to verify the
specificity of our findings. To be specific, we downloaded one
IPD (GSE157783) scRNA-seq data, and identified 12 cell types
on 19,002 cells (Supplementary Table 2 and Supplementary
Figures 7,8). After excluding clusters with too few cells
(47 fibroblasts and 26 T cells), we identified no cell type
significantly associated with HCC in either RolyPoly or LDSC-cts
analysis (Figure 4).

We also made a sensitivity analysis by changing the resolution
used in clustering and got nine, eight, and nine cell types for
GSE149614, GSE112271, and their integrated data, respectively.
Sensitivity analysis showed that B cell was still significantly
associated with HCC in RolyPoly analysis on GSE149614 and the
integrated data, as well as in LDSC-cts analysis on the integrated
data. It also showed nominal significance (P < 0.1) in LDSC-cts
analysis on GSE112271, and was the top cell type (P = 0.119) in
the analysis on GSE149614 (Supplementary Figure 9).
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FIGURE 3 | Association between HCC scRNA-seq data and HCC GWAS data from RolyPoly and LDSC-cts. Using RolyPoly and LDSC-cts to detect the association
of cell types in GSE149614, GSE112271, and their combined HCC scRNA-seq data with EAS HCC GWAS data. Dashed lines in each panel represent a threshold of
P = 0.1/4. NK, natural killer cell; Treg, regulatory T cell; DC, dendritic cell; MDM, monocyte-derived macrophage; LEC, lymphatic endothelial cell.

Cirrhosis Data Analysis
For the cirrhosis GWAS data from BBJ of East Asian population,
we totally retained 7,246,475 variants with their annotation. For
the scRNA-seq data (GSE136103), we identified 20 cell types on
23,184 cells (Supplementary Table 2; Figure 2; Supplementary
Figure 10), but further excluded circulating cluster (309 cells) and
clusters with less than 100 cells (56 CLEC9A+ dendritic cells and
31 mast cells). Finally, we retained a gene expression data of 17
cell types. RolyPoly showed that CD4+ T cell (β = 2.278× 10−4,
se = 1.149 × 10−4, P = 0.0259) was significantly associated
with cirrhosis, whereas LDSC-cts identified no significant cell
type (Figure 5).

We also used a cirrhosis GWAS summary data of European
population from GeneATLAS website to verify the stability of our
outcomes, in which a total of 7,636,847 variants was retained after
QC. We identified natural killer T cell (NKT, β = 6.535 × 10−10,
se = 2.423 × 10−10–1.110 × 10−9, P = 0.0038) and hepatocyte
(β = 2.891 × 10−10, se = 1.364 × 10−10, P = 0.0149) as
cell types significantly associated with cirrhosis in RolyPoly,
while we obtained no significant cell type in the LDSC-cts
analysis (Figure 5).

DISCUSSION

Identifying disease-specific cell types has important implications
to understand the mechanisms of disease, to guide research, and
to develop more precise therapies (Calderon et al., 2017). In this

study, using two separate methods and based on available data,
we explored the CLD-related cell types through an integrative
analysis on GWAS and scRNA-seq data.

In the analysis of HCC, both RolyPoly and LDSC-cts identified
B cell as significant associated with HCC (P = 0.0228 and
P = 0.0133, respectively). B cell mainly exerts its humoral
immunity function through the antibody production and antigen
presentation, and can also regulate T cells and innate immune
responses (Tsou et al., 2016). Recently, the regulation role of
resident B cell in tumor has been investigated (Garaud et al.,
2018; Lechner et al., 2019; Wang et al., 2019). The balance
between B cells in different states and their activities may have
the potential to affect pro- or anti-tumor functions (Largeot et al.,
2019; Liu et al., 2019). A similar phenomenon has also been
observed in liver disease. In a Hras12V HCC mouse models,
B cells were found to have a potential role in suppressing
hepatic tumorigenesis (Wang et al., 2017), whereas in another
mouse model with inflammation-associated HCC, infiltrating
B cells was correlated with increased tumor aggressiveness
and mortality (Faggioli et al., 2018). In addition, activated
FcγRIIlow/− B cells from HCC tumor may also suppress host
anti-tumor immune response via IL-10 signals (Ouyang et al.,
2016; Jin et al., 2017). Nevertheless, the depth of research
on tumor-associated B cells and their subsets is far less than
that of T cells. As for the liver diseases, existing several
unbiased scRNAseq research on CLD have not revealed major
alterations in the composition or transcriptional profile of liver
B cells in disease state (MacParland et al., 2018; Ramachandran
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FIGURE 4 | Association of IPD scRNA-seq data with HCC GWAS data form RolyPoly and LDSC-cts. Using RolyPoly and LDSC-cts to detect the association of cell
types in GSE157783 IPD scRNA-seq data with EAS HCC GWAS data. Dashed lines in each panel represent a threshold of P = 0.1/3. OPC, Oligodendrocyte
precursor cell; GABA, GABAergic neurons.

et al., 2019; Losic et al., 2020; Sharma et al., 2020). Separate
single-cell research has not been conducted specifically on the
relationship between B cells and liver disease. However, with
the development of single-cell technology, the combination of
single-cell transcriptomics and immunomics (B cell receptor)
is expected to further reveal the exact role of B cells in
HCC and other CLD, and explore B cell-based immunotherapy
(Setliff et al., 2019).

We also used another HCC-related scRNA-seq data to
verify our findings. RolyPoly identified MDM, T cell, and NK
cell, rather than B cell, as significant cell types, whereas B
cell remained significant together with NK cell in LDSC-cts
analysis. This might have resulted from LDSC-cts using DEGs,
which may be conserved but more robust among different
studies for a specific disease. Although we have averaged the
expression for each identified cell type and taken a scale on
the averaged data, differences in data structure arising from
the different angles of the two original studies may also be
a probable interpretation (Losic et al., 2020). Therefore, we
further integrated the two data and repeated these analyses,
and found that B cell regained its significance in the integrated
data under RolyPoly method. In addition, we used the IPD

scRNA-seq data (GSE157783) from brain tissue to make
specificity analysis, and found that neither RolyPoly nor LDSC-
cts method identified significant cell types. The above results
jointly indicated that B cells may be a significant cell type
for HCC, and more attention should be paid to them in
future research.

Of note, outcomes from the second HCC data also suggested
that NK cells might be HCC-related cells, which was significant
in both RolyPoly and LDSC-cts analysis. Although this result has
not been verified in our analysis, a previous study has identified
the contribution of NK cell in liver injury (Luci et al., 2019),
NK cell composition alteration and an interaction with other
clusters was also observed in HCC (Zhang et al., 2019). Thus,
it is also of meaning to further explore the relationship between
NK cell and HCC.

As for the analysis on cirrhosis, we have not obtained an
overlap cell type in the two methods, with CD4 + T cell
significant in RolyPoly analysis using the GWAS data on East
Asian population, while NKT and hepatocyte are significant in
RolyPoly analysis on European population. That might be caused
by the different linkage disequilibrium and minor allele frequency
(MAF) for different ancestry, cross-population correlations of
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FIGURE 5 | Association between cirrhosis scRNA-seq data and cirrhosis GWAS data from RolyPoly and LDSC-cts. Using RolyPoly and LDSC-cts to detect the
association of cell types in GSE136103 cirrhosis scRNA-seq data with EAS and EUR cirrhosis GWAS data. Dashed lines in each panel represent a threshold of
P = 0.1/4. NKT, natural killer T cell; pDC, plasmacytoid dendritic cell; Treg, regulatory T cell; LEC, lymphatic endothelial cell; MDM, monocyte-derived macrophage;
NK, natural killer cell; LSEC, liver sinusoids endothelial cell; DC, dendritic cell.

causal SNP effects, and heritability (Mather and Thalamuthu,
2020; Wang et al., 2020; Yang and Zhou, 2020). For example, there
are 1,558 SNPs and 76 SNPs with P < 10−6 in EAS and EUR
datasets, respectively (Supplementary Table 10).

Certainly, several limitations remain in our study. First,
all data used came from public databases, and external
experiments were not conducted to verify our findings; but
alternatively, we used other available GWAS and scRNA-
seq data to make verification as well as specificity analysis,
which would also ensure the reliability of our results to
some extent. Second, SCTransform is a relative powerful
normalization method, which may weaken the heterogeneity
among samples when used for integration (Butler et al., 2018;
Tran et al., 2020). Since we were aimed to apply similar
cell type definition strategy in different samples and focused
mainly on the similarity rather than heterogeneity, it may
offer more help than interference to our analysis. In addition,

since current research advances have limited ability in cell type
definition and explanation, we applied a relative conservation
cell subdivided strategy in the current study. With the in-
depth research on various cell subtypes and the development
of single-cell technology, similar research is expected be
carried out in a larger sample with a higher resolution and
precision, and more novel findings with biological explanation
would be obtained.

In summary, we performed integrative analysis on
GWAS summary data and single scRNA-seq data of CLD,
and identified B cell as a potential HCC-related cell type.
Since we have made verification from multiple angles,
our outcomes are of relative reliability. In addition, as
the single-cell atlas of different tissues and diseases has
been completed, more targeted researches are expected,
and our study would provide valuable clues for further
research on CLD.

Frontiers in Genetics | www.frontiersin.org 8 March 2021 | Volume 12 | Article 637322

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-637322 March 3, 2021 Time: 13:16 # 9

Ye et al. Integrative Analysis on CLD

CODE AVAILABILITY

Code used for data processing, integrated analysis, and plotting
could be found at (https://github.com/XiangyuYe/CLD-specific-
celltype-identification).

DATA AVAILABILITY STATEMENT

Asian ancestry CLD GWAS summary data was downloaded
from BBJ (http://jenger.riken.jp/en/). European ancestry CLD
GWAS summary data was downloaded from GeneATLAS
website (http://geneatlas.roslin.ed.ac.uk/). ScRNA-seq datasets
used (GSE136103, GSE149614, GSE112271, and GSE157783)
were downloaded from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/).

AUTHOR CONTRIBUTIONS

RBY and PH designed the study. JLW, YFW, and MLZ performed
the datasets quality control. XYY and YW performed the data
analysis. PH, HBC, and YFZ interpreted the analysis results. XYY
and JLW wrote the draft manuscript. RBY, PH, and MY revised
the article. All authors accepted the final manuscript.

FUNDING

This work was supported by the Natural Science Foundation
of Jiangsu Province (Nos. BK20171054 and BK20190106),
National Natural Science Foundation of China (No.
81703273), Key Research and Development Program of
Zhenjiang, China (Nos. SH2019035 and SH2018058), and
People’s Livelihood, Science and Technology Program
of Jurong, China (Nos. SF2018453282, SF2019758956,
and 2020SA00107).

ACKNOWLEDGMENTS

We acknowledge the participants and investigators of Biobank
Japan Project and GeneATLAS for making the summary data
publicly available for us.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.637322/full#supplementary-material

REFERENCES
Aizarani, N., Saviano, A., Sagar, Mailly, L., Durand, S., Herman, J. S., et al. (2019).

A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature
572, 199–204. doi: 10.1038/s41586-019-1373-2

Anstee, Q. M., Darlay, R., Cockell, S., Meroni, M., Govaere, O., Tiniakos, D.,
et al. (2020). Genome-wide association study of non-alcoholic fatty liver and
steatohepatitis in a histologically characterised cohort(I). J. Hepatol. 73, 505–
515. doi: 10.1016/j.jhep.2020.04.003

Asrani, S. K., Devarbhavi, H., Eaton, J., and Kamath, P. S. (2019). Burden of
liver diseases in the world. J. Hepatol. 70, 151–171. doi: 10.1016/j.jhep.2018.
09.014

Auton, A., Abecasis, G. R., Altshuler, D. M., Durbin, R. M., Abecasis, G. R., Bentley,
D. R., et al. (2015). A global reference for human genetic variation. Nature 526,
68–74. doi: 10.1038/nature15393

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M.,
et al. (2012). NCBI GEO: archive for functional genomics data sets—update.
Nucleic Acids Res. 41, D991–D995. doi: 10.1093/nar/gks1193

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating
single-cell transcriptomic data across different conditions, technologies, and
species. Nature Biotechnol. 36, 411–420. doi: 10.1038/nbt.4096

Calderon, D., Bhaskar, A., Knowles, D. A., Golan, D., Raj, T., Fu, A. Q., et al.
(2017). Inferring relevant cell types for complex traits by using single-cell
gene expression. Am. J. Hum. Genet. 101, 686–699. doi: 10.1016/j.ajhg.2017.
09.009

Canela-Xandri, O., Rawlik, K., and Tenesa, A. (2018). An atlas of genetic
associations in UK Biobank. Nat. Genet. 50, 1593–1599. doi: 10.1038/s41588-
018-0248-z

Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., and Lee, J. J.
(2015). Second-generation PLINK: rising to the challenge of larger and richer
datasets. GigaScience 4:7. doi: 10.1186/s13742-015-0047-8

De Boer, Y. S., Van Gerven, N. M. F., Zwiers, A., Verwer, B. J., Van Hoek, B., Van
Erpecum, K. J., et al. (2014). Genome-Wide association study identifies variants
associated with autoimmune hepatitis type 1.Gastroenterology 147, 443.e–452.e.
doi: 10.1053/j.gastro.2014.04.022

Efron, B., and Tibshirani, R. (1986). Bootstrap methods for standard errors,
confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1,
54–75. doi: 10.1214/ss/1177013815

Faggioli, F., Palagano, E., Di Tommaso, L., Donadon, M., Marrella, V., Recordati,
C., et al. (2018). B lymphocytes limit senescence-driven fibrosis resolution and
favor hepatocarcinogenesis in mouse liver injury. Hepatology 67, 1970–1985.
doi: 10.1002/hep.29636

Finucane, H. K., Reshef, Y. A., Anttila, V., Slowikowski, K., Gusev, A., Byrnes, A.,
et al. (2018). Heritability enrichment of specifically expressed genes identifies
disease-relevant tissues and cell types. Nat. Genet. 50, 621–629. doi: 10.1038/
s41588-018-0081-4

Gadd, V. L., Aleksieva, N., and Forbes, S. J. (2020). Epithelial plasticity during liver
injury and regeneration. Cell Stem Cell 27, 557–573. doi: 10.1016/j.stem.2020.
08.016

Garaud, S., Zayakin, P., Buisseret, L., Rulle, U., Silina, K., De Wind, A., et al. (2018).
Antigen specificity and clinical significance of IgG and IgA autoantibodies
produced in situ by tumor-infiltrating B cells in breast cancer. Front. Immunol.
9:2660. doi: 10.3389/fimmu.2018.02660

Giladi, A., and Amit, I. (2018). Single-Cell genomics: a stepping stone for future
immunology discoveries. Cell 172, 14–21. doi: 10.1016/j.cell.2017.11.011

Hafemeister, C., and Satija, R. (2019). Normalization and variance stabilization
of single-cell RNA-seq data using regularized negative binomial regression.
Genome Biol. 20:296. doi: 10.1186/s13059-019-1874-1

Hao, X., Wang, K., Dai, C., Ding, Z., Yang, W., Wang, C., et al. (2020). Integrative
analysis of scRNA-seq and GWAS data pinpoints periportal hepatocytes as
the relevant liver cell types for blood lipids. Hum. Mol. Genet. 29, 3145–3153.
doi: 10.1093/hmg/ddaa188

Ishigaki, K., Akiyama, M., Kanai, M., Takahashi, A., Kawakami, E., Sugishita,
H., et al. (2020). Large-scale genome-wide association study in a Japanese
population identifies novel susceptibility loci across different diseases. Nat.
Genet. 52, 669–679. doi: 10.1038/s41588-020-0640-3

Jin, Y., Lang, C., Tang, J., Geng, J., Song, H. K., Sun, Z., et al. (2017). CXCR5+CD8+
T cells could induce the death of tumor cells in HBV-related hepatocellular
carcinoma. Int. Immunopharmacol. 53, 42–48. doi: 10.1016/j.intimp.2017.10.
009

Frontiers in Genetics | www.frontiersin.org 9 March 2021 | Volume 12 | Article 637322

https://github.com/XiangyuYe/CLD-specific-celltype-identification
https://github.com/XiangyuYe/CLD-specific-celltype-identification
http://jenger.riken.jp/en/
http://geneatlas.roslin.ed.ac.uk/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/articles/10.3389/fgene.2021.637322/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.637322/full#supplementary-material
https://doi.org/10.1038/s41586-019-1373-2
https://doi.org/10.1016/j.jhep.2020.04.003
https://doi.org/10.1016/j.jhep.2018.09.014
https://doi.org/10.1016/j.jhep.2018.09.014
https://doi.org/10.1038/nature15393
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1016/j.ajhg.2017.09.009
https://doi.org/10.1016/j.ajhg.2017.09.009
https://doi.org/10.1038/s41588-018-0248-z
https://doi.org/10.1038/s41588-018-0248-z
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1053/j.gastro.2014.04.022
https://doi.org/10.1214/ss/1177013815
https://doi.org/10.1002/hep.29636
https://doi.org/10.1038/s41588-018-0081-4
https://doi.org/10.1038/s41588-018-0081-4
https://doi.org/10.1016/j.stem.2020.08.016
https://doi.org/10.1016/j.stem.2020.08.016
https://doi.org/10.3389/fimmu.2018.02660
https://doi.org/10.1016/j.cell.2017.11.011
https://doi.org/10.1186/s13059-019-1874-1
https://doi.org/10.1093/hmg/ddaa188
https://doi.org/10.1038/s41588-020-0640-3
https://doi.org/10.1016/j.intimp.2017.10.009
https://doi.org/10.1016/j.intimp.2017.10.009
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-637322 March 3, 2021 Time: 13:16 # 10

Ye et al. Integrative Analysis on CLD

Largeot, A., Pagano, G., Gonder, S., Moussay, E., and Paggetti, J. (2019). The B-side
of cancer immunity: the underrated tune. Cells 8:449. doi: 10.3390/cells8050449

Lechner, A., Schlößer, H. A., Thelen, M., Wennhold, K., Rothschild, S. I., Gilles, R.,
et al. (2019). Tumor-associated B cells and humoral immune response in head
and neck squamous cell carcinoma. Oncoimmunology 8, 1535293–1535293.
doi: 10.1080/2162402X.2018.1535293

Li, Y., Zhai, Y., Song, Q., Zhang, H., Cao, P., Ping, J., et al. (2018). Genome-Wide
association study identifies a new locus at 7q21.13 associated with hepatitis B
virus–related hepatocellular carcinoma. Clin. Cancer Res. 24, 906–915. doi:
10.1158/1078-0432.CCR-17-2537

Liu, M., Sun, Q., Wang, J., Wei, F., Yang, L., and Ren, X. (2019). A new perspective:
exploring future therapeutic strategies for cancer by understanding the dual
role of B lymphocytes in tumor immunity. Int. J. Cancer 144, 2909–2917.
doi: 10.1002/ijc.31850

Losic, B., Craig, A. J., Villacorta-Martin, C., Martins-Filho, S. N., Akers, N., Chen,
X., et al. (2020). Intratumoral heterogeneity and clonal evolution in liver cancer.
Nat. Commun. 11:291. doi: 10.1038/s41467-019-14050-z

Luci, C., Vieira, E., Perchet, T., Gual, P., and Golub, R. (2019). Natural killer
cells and type 1 innate lymphoid cells are new actors in non-alcoholic
fatty liver disease. Front. Immunol. 10:1192. doi: 10.3389/fimmu.2019.0
1192

MacParland, S. A., Liu, J. C., Ma, X.-Z., Innes, B. T., Bartczak, A. M., Gage,
B. K., et al. (2018). Single cell RNA sequencing of human liver reveals distinct
intrahepatic macrophage populations. Nat. Commun. 9:4383. doi: 10.1038/
s41467-018-06318-7

Marcellin, P., and Kutala, B. K. (2018). Liver diseases: a major, neglected global
public health problem requiring urgent actions and large-scale screening. Liver
Int. 38(Suppl. 1), 2–6. doi: 10.1111/liv.13682

Mather, K. A., and Thalamuthu, A. (2020). Unraveling the genetic contributions
to complex traits across different ethnic groups. Nat. Med. 26, 467–469. doi:
10.1038/s41591-020-0834-3

Matsuura, K., Sawai, H., Ikeo, K., Ogawa, S., Iio, E., Isogawa, M., et al.
(2017). Genome-wide association study identifies TLL1 variant associated
with development of hepatocellular carcinoma after eradication of hepatitis C
virus infection. Gastroenterology 152, 1383–1394. doi: 10.1053/j.gastro.2017.
01.041

Nicoletti, P., Aithal, G. P., Bjornsson, E. S., Andrade, R. J., Sawle, A., Arrese,
M., et al. (2017). Association of liver injury from specific drugs, or groups
of drugs, with polymorphisms in HLA and other genes in a genome-wide
association study. Gastroenterology 152, 1078–1089. doi: 10.1053/j.gastro.2016.
12.016

Ouyang, F. Z., Wu, R. Q., Wei, Y., Liu, R. X., Yang, D., Xiao, X., et al. (2016).
Dendritic cell-elicited B-cell activation fosters immune privilege via IL-10
signals in hepatocellular carcinoma. Nat. Commun. 7:13453. doi: 10.1038/
ncomms13453

R Core Team (2020). R: A Language and Environment for Statistical Computing.
Vienna: R Core Team.

Ramachandran, P., Dobie, R., Wilson-Kanamori, J. R., Dora, E. F., Henderson,
B. E. P., Luu, N. T., et al. (2019). Resolving the fibrotic niche of human liver
cirrhosis at single-cell level. Nature 575, 512–518. doi: 10.1038/s41586-019-
1631-3

Ramachandran, P., Matchett, K. P., Dobie, R., Wilson-Kanamori, J. R., and
Henderson, N. C. (2020). Single-cell technologies in hepatology: new insights
into liver biology and disease pathogenesis. Nat. Rev. Gastroenterol. Hepatol.
17, 457–472. doi: 10.1038/s41575-020-0304-x

Saviano, A., Henderson, N. C., and Baumert, T. F. (2020). Single-cell genomics and
spatial transcriptomics: discovery of novel cell states and cellular interactions in
liver physiology and disease biology. J. Hepatol. 73, 1219–1230. doi: 10.1016/j.
jhep.2020.06.004

Schwantes-An, T.-H., Darlay, R., Mathurin, P., Masson, S., Liangpunsakul, S.,
Mueller, S., et al. (2020). Genome-wide association study and meta-analysis on

alcohol-related liver cirrhosis identifies novel genetic risk factors. Hepatology
[Online ahead of print] doi: 10.1002/hep.31535

Setliff, I., Shiakolas, A. R., Pilewski, K. A., Murji, A. A., Mapengo, R. E., Janowska,
K., et al. (2019). High-throughput mapping of b cell receptor sequences to
antigen specificity. Cell 179, 1636.e–1646.e. doi: 10.1016/j.cell.2019.11.003

Sharma, A., Seow, J. J. W., Dutertre, C.-A., Pai, R., Blériot, C., Mishra,
A., et al. (2020). Onco-fetal reprogramming of endothelial cells drives
immunosuppressive macrophages in hepatocellular carcinoma. Cell 183, 377.e–
394.e. doi: 10.1016/j.cell.2020.08.040

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., and Mauck, W. M.
(2019). Comprehensive integration of single-cell data. Cell 177, 1888.e–1902.e.
doi: 10.1016/j.cell.2019.05.031

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., et al. (2015).
UK biobank: an open access resource for identifying the causes of a wide
range of complex diseases of middle and old age. PLoS Med. 12:e1001779.
doi: 10.1371/journal.pmed.1001779

Tran, H. T. N., Ang, K. S., Chevrier, M., Zhang, X., Lee, N. Y. S., Goh, M., et al.
(2020). A benchmark of batch-effect correction methods for single-cell RNA
sequencing data. Genome biol. 21, 12–12. doi: 10.1186/s13059-019-1850-9

Tsou, P., Katayama, H., Ostrin, E. J., and Hanash, S. M. (2016). The emerging role
of B cells in tumor immunity. Cancer Res. 76, 5597–5601. doi: 10.1158/0008-
5472.CAN-16-0431

Van Rossum, G., and De Boer, J. (1991). Interactively testing remote servers using
the Python programming language. CWI Q. 4, 283–304.

Wang, K., Nie, X., Rong, Z., Fan, T., Li, J., Wang, X., et al. (2017). B lymphocytes
repress hepatic tumorigenesis but not development in Hras12V transgenic
mice. Int. J. Cancer 141, 1201–1214. doi: 10.1002/ijc.30823

Wang, S.-S., Liu, W., Ly, D., Xu, H., Qu, L., and Zhang, L. (2019). Tumor-
infiltrating B cells: their role and application in anti-tumor immunity in lung
cancer. Cell. Mol. Immunol. 16, 6–18. doi: 10.1038/s41423-018-0027-x

Wang, Y., Guo, J., Ni, G., Yang, J., Visscher, P. M., and Yengo, L. (2020).
Theoretical and empirical quantification of the accuracy of polygenic scores in
ancestry divergent populations. Nat. Commun. 11:3865. doi: 10.1038/s41467-
020-17719-y

Yang, S., and Zhou, X. (2020). Accurate and scalable construction of polygenic
scores in large biobank data sets. Am. J. Hum. Genet. 106, 679–693. doi:
10.1016/j.ajhg.2020.03.013

Yates, A. D., Achuthan, P., Akanni, W., Allen, J., Allen, J., Alvarez-Jarreta, J., et al.
(2019). Ensembl 2020. Nucleic Acids Res. 48, D682–D688. doi: 10.1093/nar/
gkz966

Zhang, Q., He, Y., Luo, N., Patel, S. J., Han, Y., Gao, R., et al. (2019). Landscape
and dynamics of single immune cells in hepatocellular carcinoma. Cell 179,
829.e–845.e. doi: 10.1016/j.cell.2019.10.003

Zheng, C., Zheng, L., Yoo, J.-K., Guo, H., Zhang, Y., Guo, X., et al. (2017).
Landscape of infiltrating T cells in liver cancer revealed by single-cell
sequencing. Cell 169, 1342.e–1356.e. doi: 10.1016/j.cell.2017.05.035

Zheng, G. X. Y., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R., et al.
(2017). Massively parallel digital transcriptional profiling of single cells. Nature
Communi. 8, 14049. doi: 10.1038/ncomms14049

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Ye, Wei, Yue, Wang, Chen, Zhang, Wang, Zhang, Huang and Yu.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics | www.frontiersin.org 10 March 2021 | Volume 12 | Article 637322

https://doi.org/10.3390/cells8050449
https://doi.org/10.1080/2162402X.2018.1535293
https://doi.org/10.1158/1078-0432.CCR-17-2537
https://doi.org/10.1158/1078-0432.CCR-17-2537
https://doi.org/10.1002/ijc.31850
https://doi.org/10.1038/s41467-019-14050-z
https://doi.org/10.3389/fimmu.2019.01192
https://doi.org/10.3389/fimmu.2019.01192
https://doi.org/10.1038/s41467-018-06318-7
https://doi.org/10.1038/s41467-018-06318-7
https://doi.org/10.1111/liv.13682
https://doi.org/10.1038/s41591-020-0834-3
https://doi.org/10.1038/s41591-020-0834-3
https://doi.org/10.1053/j.gastro.2017.01.041
https://doi.org/10.1053/j.gastro.2017.01.041
https://doi.org/10.1053/j.gastro.2016.12.016
https://doi.org/10.1053/j.gastro.2016.12.016
https://doi.org/10.1038/ncomms13453
https://doi.org/10.1038/ncomms13453
https://doi.org/10.1038/s41586-019-1631-3
https://doi.org/10.1038/s41586-019-1631-3
https://doi.org/10.1038/s41575-020-0304-x
https://doi.org/10.1016/j.jhep.2020.06.004
https://doi.org/10.1016/j.jhep.2020.06.004
https://doi.org/10.1002/hep.31535
https://doi.org/10.1016/j.cell.2019.11.003
https://doi.org/10.1016/j.cell.2020.08.040
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1186/s13059-019-1850-9
https://doi.org/10.1158/0008-5472.CAN-16-0431
https://doi.org/10.1158/0008-5472.CAN-16-0431
https://doi.org/10.1002/ijc.30823
https://doi.org/10.1038/s41423-018-0027-x
https://doi.org/10.1038/s41467-020-17719-y
https://doi.org/10.1038/s41467-020-17719-y
https://doi.org/10.1016/j.ajhg.2020.03.013
https://doi.org/10.1016/j.ajhg.2020.03.013
https://doi.org/10.1093/nar/gkz966
https://doi.org/10.1093/nar/gkz966
https://doi.org/10.1016/j.cell.2019.10.003
https://doi.org/10.1016/j.cell.2017.05.035
https://doi.org/10.1038/ncomms14049
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Leveraging Single-Cell RNA-seq Data to Uncover the Association Between Cell Type and Chronic Liver Diseases
	Introduction
	Materials and Methods
	Genome-Wide Association Studies Data
	Four Single-Cell Data
	Defining the Specific Cell Types Associated With Cirrhosis and HCC
	Statistical Software

	Results
	HCC Datasets Analysis
	HCC Dataset Specificity and Sensitivity Analysis
	Cirrhosis Data Analysis

	Discussion
	Code Availability
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


