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Objective: This study aimed to explore the genetic causes of probands who were
diagnosed with Waardenburg syndrome (WS) or congenital sensorineural hearing loss.

Methods: A detailed physical and audiological examinations were carried out to make
an accurate diagnosis of 14 patients from seven unrelated families. We performed
whole-exome sequencing in probands to detect the potential genetic causes and further
validated them by Sanger sequencing in the probands and their family members.

Results: The genetic causes for all 14 patients with WS or congenital sensorineural
hearing loss were identified. A total of seven heterozygous variants including
€.1459C > T, ¢.123del, and ¢.959-409_1173+3402del of PAX3 gene (NM_181459.4),
c.198_262del and ¢.529_556del of SOX70 gene (NM_006941.4), and c.731G > A
and ¢.970dup of MITF gene (NM_000248.3) were found for the first time. Of these
mutations, we had confirmed two (c.1459C > T and ¢.970dup) are de novo by Sanger
sequencing of variants in the probands and their parents.

Conclusion: We revealed a total of seven novel mutations in PAX3, SOX70, and MITF,
which underlie the pathogenesis of WS. The clinical and genetic characterization of
these families with WS elucidated high heterogeneity in Chinese patients with WS. This
study expands the database of PAX3, SOX70, and MITF mutations and improves our
understanding of the causes of WS.

Keywords: PAX3, SOX10, MITF, Waardenburg syndrome, next-generation sequencing, genetic heterogeneity

INTRODUCTION

Waardenburg syndrome (WS) is a congenital developmental disorder, which is mainly
characterized by congenital sensorineural hearing loss (SNHL) and abnormal pigmentation of the
iris, hair, and skin (manifests as heterochromia iridis and brilliant blue eyes, a white forelock, and
premature graying, and hypopigmented skin) (Read and Newton, 1997). WS has an incidence
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rate of approximately 1/42,000 births and is responsible for 2-
5% of cases of total congenital deafness (Read and Newton, 1997;
Nayak and Isaacson, 2003). Four different types of Waardenburg
syndrome (WS I~IV) have been described based on genotypic
and phenotypic variations (Read and Newton, 1997; Pingault
et al.,, 2010). WS I is distinguished from WS II by the presence
of dystopia canthorum, which is lateral displacement of the inner
canthus in each eye; WS III (Klein-Waardenburg syndrome) is
similar to WS I except with additional upper limb abnormalities;
WS IV (Waardenburg-Shah syndrome) is characterized by
general WS features as well as Hirschsprung’s disease, a disorder
that causes severe blockage of the large intestine. Current research
suggests that WS T and WS II are more common than WS III and
WS IV (Read and Newton, 1997; Pingault et al., 2010).

Waardenburg syndrome shows a high degree of genetic
heterogeneity (Hageman and Delleman, 1977; Read and Newton,
1997; Pingault et al, 2010; Song et al., 2016). Six genes have
been linked to this syndrome: paired box 3 (PAX3) (Baldwin
et al., 1992; Tassabehji et al., 1992; Hoth et al., 1993), melanocyte
inducing transcription factor (MITF) (Tassabehji et al., 1994),
SRY-box transcription factor 10 (SOX10) (Pingault et al., 1998;
Bondurand et al., 2007), endothelin 3 (EDN3) (Edery et al., 1996),
endothelin receptor type B (EDNRB) (Puffenberger et al., 1994),
and snail family transcriptional repressor 2 (SNAI2) (Sanchez-
Martin et al., 2002). PAX3 is responsible for WS I and WS III
(Baldwin et al., 1992; Tassabehji et al., 1992; Hoth et al., 1993).
SOX10, MITF, and SNAI2 are associated with WS IV (Tassabehji
et al., 1994; Pingault et al., 1998; Sanchez-Martin et al., 2002;
Bondurand et al., 2007). SOX10, EDNRB, and EDN3 are found
to be involved in WS IV (Puffenberger et al., 1994; Edery et al.,
1996; Pingault et al., 1998; Bondurand et al., 2007). Although
not currently fully understood, all these genes are involved in
a complex network in neural crest cells and other derivatives
(Read and Newton, 1997; Bondurand et al., 2000; Pingault et al.,
2010). The interaction of these genes during the formation and
development of melanocytes could be the pathogenesis of WS and
other related diseases (Read and Newton, 1997; Bondurand et al.,
2000; Pingault et al., 2010).

Diagnosis of WS can be difficult because all features are not
present in every patient (Hageman and Delleman, 1977; Newton,
1990; Tamayo et al., 2008; Pingault et al., 2010; Yang et al., 2013).
Even within a single family, patients can display different clinical
manifestations due to variations in the expressivity of causative
genes (Hageman and Delleman, 1977; Newton, 1990; Tamayo
et al., 2008; Pingault et al., 2010; Yang et al., 2013). Therefore,
genetic testing is an important method for diagnosing this disease
and its subtypes (Hageman and Delleman, 1977; Read and
Newton, 1997; Pingault et al., 2010; Tang et al., 2015; Song et al.,
2016; Wu et al.,, 2016; Li et al., 2019). To date, ~400 mutations
including missense/nonsense mutations, frameshift mutations,
insertions/deletions, and copy number variants (CNVs) have
been identified in genes associated with WS (The Human Gene
Mutation Database'), with most variants in genes PAX3, SOX10,
and MITF (Chen et al,, 2010; Pingault et al., 2010; Song et al,,
2016). Of these variants, ~100 mutations were identified in

'www.hgmd.cf.ac.uk/

Chinese people. Nevertheless, there are still a number of cases
unexplained at the molecular level (Pingault et al., 2010; Song
et al., 2016). Discovering novel mutations will lead to a better
understanding of the genetic causes of WS pathogenesis.

Recently, next-generation sequencing (NGS) has proven to
be a potent tool for the identification of pathogenic mutations
related to deafness, which can improve the diagnosis of genetic
diseases and the detection of mutations in genes associated with
different clinical manifestations (Brownstein et al., 2012; Lin
et al., 2012; Tang et al, 2012; Li et al,, 2019). In this study,
WES was used to identify the possible pathogenic mutations of
patients with SNHL or WS. A total of seven novel variants in
PAX3, SOX10, and MITF were found, and two of them are de
novo confirmed by Sanger sequencing of variants in the probands
and their parents. Our results show that WS in China has a
high degree of genetic heterogeneity and extend the mutational
spectrum of WS-related genes.

MATERIALS AND METHODS

Patients

From seven Han Chinese families in the Henan province, 14
patients (Table 1) and nine unaffected family members were
recruited for our study and asked to perform audiological
and general physical examinations (Figure 1). Furthermore,
in family WS04, only WS04-II:1 was recruited because he
was adopted and had lost contact with his biological family.
Among the seven families, WS01 and WS06 were isolated cases,
while the remaining families had multiple affected individuals
(Figure 1). Photos and blood were collected after informed
consent (Figure 2). This study was conducted according to the
Declaration of Helsinki and approved by the institutional review
board of the Medical Ethics Committee of The Second Affiliated
Hospital of Zhengzhou University (Approval No. 2018008).

Clinical Investigation

All patients (medical history described by parents) received
elaborate physical examinations in their hair color and
skin pigmentation, joints, skeletomuscular system, digestion,
ophthalmology and otology, and intelligence assessment. Patients
also underwent audiological examinations, which included
auditory steady-state response (ASSR), auditory brainstem
response (ABR), and distortion product otoacoustic emission
(DPOAE). Additionally, imageological examinations such as
computerized tomography (CT) of the temporal bone and
magnetic resonance imaging (MRI) were conducted. The
characteristics of the patients are summarized in Table 1.

Next-Generation Sequencing-Based

Genetic Testing

In this study, WES was applied to identify the potential
genetic causes for probands. A standard NGS-based genetic
testing, including sample preparation and quantification, library
construction, sequencing, and data analyses, was performed as
previously described (Pan et al, 2020). Briefly, after library
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TABLE 1 | Summary of clinical data for patients.

Individual Gender Hearing loss Blue iris White forelock Dystopia canthorum Brown freckles
WSO01-11:1 Female + - - - _
WS02-1:1 Male - + - + _
WS02-11:2 Female - - - + _
WS02-111:1 Male - +(Unilateral) - + -
WS02-111:2 Male + + - + _
WS083-1:2 Female + + - - _
WSO03-I1:1 Female + + - - -
WS08-11:2 Female + +(Unilateral) = - -
WS04-11:1 Male + + + - _
WS05-111:1 Male - + - _ +
WS05-1V:1 Female + + - - _
WS06-11:1 Female + + - _
WSQ07-1:1 Male - - - _
WSO07-11:1 Female + +(Unilateral) - -
A B Cc D
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FIGURE 1 | Pedigrees of the Waardenburg syndrome families. Pedigrees of families Individuals with a number assigned participated in the current study. Phenotypes
of the rest of the family members were based on the relative’s description. The probands were pointed by arrows. (A) WS01, (B) WS02, (C) WS03, (D) WS04, (E)

II:
G
I:
1I:

1 2
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construction, the resulting libraries were hybridized to the
Agilent SureSelect Human All Exon V7. Then, sequencing was
carried out on an Illumina HiSeq 4000 sequencer (Illumina
Inc.,, San Diego, CA, United States) to generate paired-end
reads of 150 bp.

Data analyses were divided into bioinformatics analysis
and variant interpretation. Under the framework of bcbio-
nextgen’, we used the Burrows—-Wheeler Aligner (BWA) (version
0.7.17-r1188) (Li, 2013) to align the sequencing reads to
the human reference genome (GRCh37); GATK Haplotype
Caller software (version 4.1.2) (McKenna et al, 2010) to

Zhttps://github.com/bcbio/bebio-nextgen

identify the single nucleotide variants (SN'Vs) and short indels;
DECoN (Fowler et al, 2016) to identify the CNVs; and
Vcfanno software (version 0.3.1) (Pedersen et al., 2016) to
annotate the VCF files with external database, including Clinvar
(Landrum et al, 2018), ExAC (Lek et al., 2016), dbNSFP
(Liu et al., 2016), 1,000 Genomes (Auton et al., 2015), and
gnomAD (Karczewski et al.,, 2019). The filtered variants were
interpreted following the guidelines of the American College
of Medical Genetics and Genomics and the Association for
Molecular Pathology (ACMG-AMP) (Richards et al., 2015)
and the ClinGen hearing loss expert group’s recommendation
on variant interpretation (Oza et al., 2018). Copy number
analysis was performed from NGS data using DECoN with
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canthorum.

FIGURE 2 | Photographs of affected individuals. (A) WS01-II:1 presented normal pigmentation of the iris, hair, and skin, and without dystopia canthorum. (B) B1,
WS02-11:2; B2, WS02-1I:1; B3, WS02-11:2; and B4, WS02-I:1. They all presented dystopia canthorum, while WS02-I11:2 has bilateral blue iris and WS02-1II:1 has
unilateral. (C) C1, WS03-II:1; C2, WS03-11:2; and C3, WS03-I:2. They presented bilateral or unilateral blue iris. (D) WS04-II:1 presented complete bilateral blue iris.
(E) E1, WS05-IV:1 presented complete bilateral blue iris. E2, WS05-1II:1 presented complete bilateral blue iris and special brown freckles on the face. (F) F1, F2,
WSO06-1I:1 presented yellow hair and normal iridis color. (G) G1, WSO07-II:1 presented unilateral blue iris and dystopia canthorum. G2, WS07-11:1 presented dystopia

the bam files from the same enrichment panel and sequencing
run. Paternity tests were performed on families WS01 and
WS06 since the gene tests had shown mutations occurred
de novo.

Sanger Sequencing

Sanger sequencing was used to confirm the candidate variants
detected by NGS and to conduct co-segregation analyses in
family members. The specific primers (Table 2) were designed
by NCBI Primer-BLAST and synthesized by Sunya Biotech Co.,
Ltd. (Zhengzhou, China). Conventional PCR was performed for
SNVs and short indels detected in families WS01 to WS06. While
long-range PCR (LR-PCR) based on nested-PCR and fragments
gel-purified were performed for the CNV of patients WS07-
I:1 and WSO07-II:1. LR-PCR s a traditional approach to obtain
CNV breakpoint junction (Woodward et al., 2005; Zhang et al,,
2017), for which several primers were designed from both the
proximal and the distal breakpoint regions identified, and used
in different combinations until an appropriate size product was
generated (Supplementary Figure 1). After PCR amplification,
purification, and quality control, Sanger sequencing was run in
a SeqStudio Genetic Analyzer (Thermo Scientific, United States)
with a mixture of PCR products and BigDyeTM Terminator
v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA,
United States). The sequencing results were analyzed by the
SnapGene viewer (Figure 3).

RESULTS

Clinical Findings

A total of 14 patients from seven unrelated families were
involved in this study. Before genetic testing, patients WSO01-
II:1 and WS06-II:1 were primarily diagnosed with SNHL,
while the other 12 patients were diagnosed with WS. These
diagnoses were made by otorhinolaryngologists based on the
manifestation of the typical symptom of WS, such as SNHL,
abnormal pigmentation, and the presence or absence of
dystopia canthorum, musculoskeletal anomalies, and intestinal
aganglionosis. After a genetic diagnosis, further examinations
were performed on the patients WS01-II:1 and WS06-11:1. We
found that the hair color of WS06-II:1 is gray, which was
previously ignored, but nothing new with WS01-1I:1.

Among all the patients, heterochromia iridum and deafness
were the most frequent features. Ten affected individuals (10/14,
71.4%) had blue iris, of which three were heterochromia iridum;
nine patients (9/14, 64.3%) had a profound sensorineural hearing
impairment; six (6/14, 42.9%) had dystopia canthorum; one
(1/14, 7.1%) had facial freckles; two (2/14, 14.3%) had abnormal
pigmentation of hair (Figures 1, 2). Table 1 lists the clinical data
of these WS patients.

Members in the same family can have different symptoms.
WS03-11:1 and WS03-II:2 are identical twins; one has bilateral
blue iris and the other has unilateral. According to his adoptive
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TABLE 2 | Primer pairs of the novel mutations of paired box 3 (PAX3), SRY-box transcription factor 10 (SOX10), and melanocyte inducing transcription factor (MITF).

Mutations Affected family Forward primer sequence (5'-3') Reverse primer sequence (5-3') Product length
PAX3:c.1459C > T WS01 GCCCAAACCAGTCTGGGTAAAT GCATGACCTAAAAAGCTGCGT 471 bp
PAX3:c.123del WS02 AGGACGTATGGAGCCAGTCT GAGTCCGATGTCGAGCAGTT 351 bp
SOX10:¢.198_262del WS03 TGGTCTTCCAGCCCTATCCA CAGGCGAGCTGGGCAAG 419 bp
SOX10:¢.529_556del WS04 CAGGGTCTCATTGCCATCCA CAGGGCCTCACATCTTCCAA 459 bp
MITF:c.731G > A WS05 GCAAACACTCGTGAATGGCA CTGAGCAACAAATGCCGGTT 510 bp
MITF:c.970dup WS06 TTCCCTTATTCCATCCACGGG TCAGTCCCAGTTCCGAGGTT 186 bp
PAX3:¢.959-409_1173+3402del WS07 GAGCGCGTAATCAGTCTGGG GGCCACATTTAGGACATGCG 19,658/15,633 bp*
WS07 AAAATGCACAGACCCTTTCAGCA TCTGGTTTAGCAACCGCCG 4,998/973 bp*

*The product length of the normal allele and mutated allele is separated by the slash. Reference sequence transcript: PAX3: NM_181459.4; SOX10: NM_006941.4, and

MITF: NM_000248.3.
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FIGURE 3 | Mutation analyses of Chinese Waardenburg syndrome families WS01 to WS07 by sanger sequencing. (A) Heterozygous mutation ¢.1459C > T of PAX3
in WS01-II:1. (B) Heterozygous mutation c.123del of PAX3 in WS02-1:1, II:3, lll: 1, and Ill:2. (C) Heterozygous mutation ¢.198_262del of SOX70 in WS03-I:2, II:1, and
lIIl:2. (D) Heterozygous mutation ¢.529_556del of SOX70 in WS04-I1:1. (E) Heterozygous mutation ¢.731G > A of MITF in WS05-III:3, IV:4. (F) Heterozygous
mutation ¢.970dup of MITF in WS06-II:1. (G) Heterozygous mutation ¢.959-409_1173+3402del of PAX3 in WSO7-1:1, II:1.
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father, WS04-I1:1 was born with a white forelock that returned
to being black (we were unable to collect pictures of the patient
with a white forelock). Across four generations, seven members
of the family WS05 had unexpectedly brilliant blue eyes without
other WS-related symptoms. However, it is impossible to confirm
whether they were affected by the same mutation of the proband
(WS05-1V:1) since they refused to provide blood samples.

Molecular Etiology

Whole-exome sequencing was performed in probands of these
seven families. For each sample, at least 10 Gbp raw data was
generated, with more than 82% of bases having a Phred quality
score Q > 30 (Q30), 99% of the clean reads can map to the human
reference genome (GRCh37/hgl9), and the average sequencing
depth of target regions was 100x, with 95% of target regions
having coverage greater than 20x (Supplementary Table 1).

In this study, the genetic causes for all recruited patients had
been confirmed, which contain a total of seven mutations in
PAX3, SOX10, and MITF, respectively (Table 3). To our best
knowledge, these mutations, including a nonsense mutation, a
missense mutation, a CNV, and four frameshift mutations, have
not been reported by previous studies or recorded in any public
database. Further analysis by Sanger sequencing of patients and
their family members shows that all the variants were present
in the affected members and absent in the unaffected ones
(Figure 3), and variants of probands WS01-II:1 and WS06-1I:1
are de novo. Pathogenicity analysis of variants was according
to the standards and guidelines for interpreting genetic variants
proposed by the ACMG-AMP. The mutations and pathogenicity
analysis were summarized in Table 3.

Genotype-Phenotype Correlation

The phenotypes of WS patients with PAX3 (n=7), SOX10 (n=4),
and MITF (n = 3) mutations are compared in Supplementary
Table 2. Among the WS patients who participated in this study,
all patients with SOX10 mutations have hearing loss, while some
patients with PAX3 (3/7) or MITF (2/3) have. Similarly, the
symptom of the blue iris could be found in all patients with
SOX10 mutations, while it was found in some patients with
PAX3 (4/7) or MITF (2/3) variants. Abnormal hair pigmentation
is rare in patients with PAX3 (0/7), SOX10 (1/4), and MITF
(1/3) mutations. Previous reports suggested that freckles could
be observed only in Chinese WS II patients with MITF mutations
(Chenetal., 2010; Sun et al., 2016). Indeed, in this study, we found
one WS II patient with MITF mutation has freckles. Synophridia
is only present in WS I patients with PAX3 mutations.

DISCUSSION

In this study, we had confirmed seven novel heterozygous
variants which are the genetic causes of 14 WS patients from
seven unrelated families, including ¢.1459C > T (nonsense),
c.123del (frameshift), and ¢.959-409_1173+3402del (deletion)
of PAX3 (NM_181459.4), c.198_262del (frameshift) and
c.529_556del (frameshift) of SOX10 (NM_006941.4), and
¢.731G > A (missense) and c.970dup (frameshift) of MITF

(NM_000248.3) (Table 3). Among 14 patients, seven each
were classified as WS I and WS II, respectively, based on their
phenotypes and genotypes, showing that WS I and WS 1II were
two major WS subtypes (Read and Newton, 1997; Pingault
et al.,, 2010). While mutations in PAX3 were the major causes
for WS I (7/7), SOX10 (4/7), and MITF (3/7) were two major
causative genes attributable to WS II. Our findings had extended
the mutational spectrum of WS-related genes and revealed high
genetic heterogeneity in Chinese WS patients (Yang et al., 2013;
Sun et al., 2016; Liu et al., 2020).

To explore the genotype—phenotype correlation, we compared
the phenotypes between WS patients with PAX3, SOX10, and
MITF mutations (Supplementary Table 2). Several reports had
shown that the clinical features of WS II caused by SOX10 and
MITF mutations were indistinguishable, except that freckle was
frequent in WS II probands with MITF mutation (Chen et al,,
20105 Toriello, 2011; Sun et al, 2016). Indeed, in this study,
freckle seems to be unique for patients with MITF mutations
(1/3) but was absent in those with PAX3 (0/7) or SOX10 (0/4)
mutations. Dystopia canthorum is a rebarbative but crucial
clinical feature, because of its value in distinguishing WS I and
WS 1II, but it is not completely applicable for Chinese WS I
patients (Sun et al., 2016; Morimoto et al., 2018; Suzuki et al.,
2018; Minami et al., 2019). Herein, we had an interesting finding
that the synophridia, even though a minor symptom, was only
present in WS patients (5/7) but absent in WS II patients (0/7).
Our results may have shown the clinical differences between
WS II patients with SOX10 and MITF mutations, and between
WS II and WS I. However, gene test is as necessary as clinical
investigation for the accurate diagnosis and subtype confirmation
(Hageman and Delleman, 1977; Read and Newton, 1997; Pingault
etal., 2010; Song et al., 2016; Li et al., 2019).

Mutations in PAX3, SOX10, and MITF were the most common
genetic causes for WS and responsible for almost all Chinese WS
patients (Chen et al., 2010; Wu et al., 2016; Liu et al., 2020).
Beyond that, to date, several WS cases associated with mutations
in ENDRB, EDN3, and SNAI2 had been reported (Sédnchez-
Martin et al., 2002; Pingault et al., 2010; Xiong et al.,, 2015;
Somashekar et al., 2019), but the situation is a bit different in
Chinese. There were two reported cases of WS type I caused
by mutations in the EDNRB gene (Cheng et al,, 2019; Li et al,,
2019), which is different from the cases in other races (WS II or
IV) (Pingault et al., 2010; Issa et al., 2017). Of the few reports
about WS type II being caused by mutations in the EDN3 gene,
there was no Chinese case reported. Only one research group
reported SNAI2 mutations caused WS within two unrelated
WS II patients (Sanchez-Martin et al., 2002), which had been
questioned recently (Song et al., 2016; Mirhadi et al., 2020). To
understand the differences of WS among different races, we need
further research on the pathogenesis of WS and more accurate
diagnostic means.

The deficiency of melanocytes, the neural crest (NC)
derivatives, is common to various WS types (Bondurand et al,,
2000; Pingault et al., 2010; Song et al., 2016), which is responsible
for the phenotypes of pigmentation defects and hearing loss (Steel
and Barkway, 1989). PAX3 encodes a DNA-binding transcription
factor, consisting of a paired box (PD) encoded by exons 2, 3,
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TABLE 3 | Gene variants and pathogenicity analysis of patients.

Family Affected family Variants Exon Zygote Reference ACMG-AMP ACMG-AMP criteria
members classification

WS01 [1:1 PAX3:c.1459C > T Exon10 Heterozygous This study Pathogenic PVS1, PM2, PP3, and
p.GIn487Ter Nonsense PS2

WS02 15 1125 1115 1122 PAX3:c.123del Exon2 Heterozygous This study Pathogenic PVS1, PM2, PP1, PP3,
p.Gly42AlafsTer68 Frameshift and PP4

WS03 1:2; 1115 11:2 S0OX10:¢c.198_262del Exon2 Heterozygous This study Pathogenic PVS1, PM2, PP1, PP3,
p.Lys67AlafsTer45 Frameshift and PP4

WS04 1:1 SOX10:¢.529_556del Exon3 Heterozygous This study Pathogenic PVS1, PM2, and PP3
p.Arg177AlafsTer100
Frameshift

WS05 l:1; Vi1 MITF:c.731G > A p.Gly244Gilu Exon8 Heterozygous Steingrimsson Likely PS3* PM2, PP1, and
Missense etal.,, 1996 * Pathogenic PP3

WS06 I1:1 MITF:c.970dup Exon9 Heterozygous This study Pathogenic PVS1, PM2, PS2, and
p.Cys324LeufsTer36 Frameshift PP3

WS07 [:1; 111 €.959-409_1173+3402del Exon7 Heterozygous This study Pathogenic PVS1, PM2, and PP4

Deletion

*This mutation was, for the first time, found in humans after being detected and researched by Steingrimsson et al. (1996) in mice, so the criteria “PS3” was given.
ACMG-AMPR, Association for Molecular Pathology. Reference sequence transcript: PAX3: NM_181459.4; SOX10: NM_006941.4; and MITF: NM_000248.3.

and 4, the homeodomain (HD) by exons 5 and 6, C-terminal
transcriptional activation domain by exons 7 and 8 (Read and
Newton, 1997; Wildhardt et al., 2013). It is indispensable in
the development of somites, skeletal muscle, and the neural
crest cells (NCC) and their derivatives like melanocytes. It
can cooperate with SOXI0 to regulate the expression of the
MITF promoter (Pingault et al, 2010). PAX3:c.123del and
€.959-409_1173+3402del mutations are predicted to activate the
nonsense-mediated mRNA decay (NMD) machinery (Khajavi
et al., 2006), thereby resulting in haploinsufficiency, which might
be the disease-causing mechanism for WS 1. PAX3:c.1459C > T
mutation is located in the exon 10 and could only influence
the isoform PAX3e (Wang, 2006), which most likely pathogenic
mechanism is haploinsufficiency (Barber et al., 1999).

SRY-box transcription factor 10 encodes a transcription
factor that contains an HMG (high mobility group) DNA
binding domain and a C-terminal transactivation domain (Chan
et al., 2003). In the early development of NC, SOXI0 plays
an important role in promoting cell survival and maintaining
the multipotency of NC stem cells (Kapur, 1999; Kelsh,
2006; Pingault et al., 2010; Stolt and Wegner, 2010). Besides
synergy with PAX3 to regulate the expression of MITF, it also
can directly regulate the expression of genes important for
melanin synthesis, suggesting the importance for melanocyte
differentiation (Bondurand et al., 2000; Lee et al., 2000; Potterf
et al., 2000; Verastegui et al., 2000; Jiao et al., 2004; Wegner,
2005; Pingault et al., 2010). It is also crucial for the peripheral
nervous system like sensory, sympathetic, and enteric ganglia
and along nerves (Bondurand et al., 2000; Pingault et al., 2010).
SOX10: c.198_262del and c.529 556del are located in the HMG
domain and predicted to activate the NMD machinery, resulting
in haploinsufficiency.

Melanocyte inducing transcription factor, a basic helix-loop-
helix leucine zipper (bHLHZip) protein, is the key transcription
factor of melanocyte development. The bHLHZip structure binds
DNA by basic domain, dimerizes through HLH domain, and
is stabilized via the Zip domain (Hodgkinson et al, 1993;

Steingrimsson et al., 1994). The C-terminal of MITF contributes
to defining the target genes by a serine-rich transcriptional
activation domain. Mice with MITF mutations show reduced
or absent pigmentation, deafness, and small or absent eyes, etc.
(Yasumoto et al., 1995; Bertolotto et al., 1998; Steingrimsson
et al., 2004; Pingault et al., 2010). MITF:c.970dup is a frameshift
mutation and predicted to activate the NMD machinery, leading
to haploinsufficiency. MITF:c.731G > A (p.Gly244Glu) is the
genetic cause of III:1 and IV:1 of family WS05 and might be
responsible for the other seven affected individuals (Figure 1).
We had noticed that only one had hearing loss and blue iris while
the other eight only had blue iris in this family, although Song
etal. (2016) had suggested that nearly 90% of patients with MITF
have hearing loss. The Gly244Glu mutation of MITF was found
in humans for the first time, while the mouse model with the
same mutation (MITFM~t) had been found by Steingrimsson
et al. (1996). The phenotype of MITFM~? homozygous animals
is mild compared with loss-of-function mi alleles. Gly244 would
lie at the very beginning of the second helix, close to the protein-
DNA interface. The Gly244Glu alteration is at the junction of
the loop and helix 2 of the protein. The MITFM = protein
largely spares dimerization function, while it is defective in its
ability to bind DNA. However, the DNA binding function can
be partially compensated by a wild-type partner in the dimer,
since MITFM=t s capable of forming TFE3 (Transcription
factor E3) heterodimeric complexes which had a stronger DNA
binding than the MITF~? homodimers. It may explain why the
mutation ¢.731G > A resulting in a less-severe phenotype in the
family WS05.

WS has high genetic heterogeneity and highly variable
phenotype expressivity (Hageman and Delleman, 1977; Newton,
1990; Read and Newton, 1997; Tamayo et al., 2008; Pingault
et al, 2010; Yang et al, 2013; Song et al, 2016), which
makes the diagnosis challenging. NGS of numerous genes is
allowed in a single test with lower turnaround time, cost,
and higher throughput, which makes it ideal for figuring
out the exact genetic mechanism (Brownstein et al., 2012;
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Tang et al., 2012, 2015). Mutations in PAX3 are responsible for
WS I and WS IIT in most cases; however, using WES, we had
detected a heterozygous nonsense mutation of PAX3:¢.1459C > T
in an SNHL patient (WSO01-II:1). To our best knowledge, this
is the first mutation found in exon 10 of PAX3 and results in a
premature stop codon, which is very close to the normal ending
(487/506) (Boudjadi et al., 2018). We suspect that this is why
SNHL is the only symptom of WS01-1I:1, even though previous
studies argued that there was no correlation between genotype
and phenotype of WS caused by PAX3 mutations (Tassabehji
et al., 1995; Boudjadi et al., 2018). Patient WS06-II:1 was also
diagnosed with SNHL initially, before being corrected to WS
type II after the genetic testing in which a heterozygous de novo
mutation MITF: c.970dup was detected. Besides, the other five
families with classic symptoms and clear family histories, these
two cases in particular highlight the superiority of NGS in the
diagnosis of WS.

In conclusion, the clinical and genetic characteristics of
one SNHL patient and six Chinese families of WS had
been investigated in this study. Altogether, seven novel
pathogenic/likely pathogenic variants in the PAX3, SOXIO,
and MITF were identified. Our results support that NGS is
a useful diagnostic procedure for the diagnosis and subtype
differentiation of WS. This report reveals the highly genetic
heterogeneity and variable phenotype in Chinese patients with
WS and will contribute to a better understanding of the WS by
extending the mutational spectrum of WS-related genes.
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