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Deep learning methodologies have revolutionized prediction in many fields and show
the potential to do the same in microbial metagenomics. However, deep learning is still
unexplored in the field of microbiology, with only a few software designed to work with
microbiome data. Within the meta-community theory, we foresee new perspectives for
the development and application of deep learning algorithms in the field of the human
microbiome. In this context, we developed G2S, a bioinformatic tool for taxonomic
prediction of the human fecal microbiome directly from the oral microbiome data of the
same individual. The tool uses a deep convolutional neural network trained on paired
oral and fecal samples from populations across the globe, which allows inferring the
stool microbiome at the family level more accurately than other available approaches.
The tool can be used in retrospective studies, where fecal sampling was not performed,
and especially in the field of paleomicrobiology, as a unique opportunity to recover
data related to ancient gut microbiome configurations. G2S was validated on already
characterized oral and fecal sample pairs, and then applied to ancient microbiome data
from dental calculi, to derive putative intestinal components in medieval subjects.

Keywords: gut microbiome, oral microbiome, deep learning, microbiome, paleomicrobiology

INTRODUCTION

Deep learning is increasingly being used to make inference on large and complex data. Unlike
traditional algorithms, in which the expertise and rules are already coded, deep learning algorithms
are built to automatically detect patterns in data (Murphy, 2012; Bishop, 2016), also embedding
the computation of variables into the models themselves to yield end-to-end models (Goodfellow
et al., 2016). In particular, the construction and training of deep learning algorithms have been
enabled by the increasing availability of big data and the rapid growth in the number and size
of public available databases. So far, deep neural networks have been key to advances in modern
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artificial intelligence, with applications such as facial recognition,
speech recognition and self-driving vehicles. More recently, new
applications have been pioneered in the fields of molecular
biology and metagenomics. Indeed, the same deep learning
approaches are beginning to be applied to genetics, agriculture
and medicine (Alipanahi et al., 2015; Leung et al., 2016; Ching
et al., 2018; Demirci et al., 2018; Wainberg et al., 2018; Webb,
2018; Le, 2019; Le and Huynh, 2019; Le et al., 2019; Quang
and Xie, 2019). However, deep learning is still unexplored
in the field of microbial metagenomics, with only a few
approaches suitable for microbiome data (Geman et al., 2016;
Reiman et al., 2017; Galkin et al., 2020), and a huge untapped
potential yet unexplored.

The human microbiome, i.e., the sum of the different
microbial ecosystems that colonize the niches of the human
body, plays an important role in human physiology and its
dysbiotic variations can severely impact our health (Kau et al.,
2011). For example, shifts in the composition of microbial
communities inhabiting the oral cavity and gastrointestinal tract
have been associated with the onset and/or progression of
various conditions, such as periodontitis (Griffen et al., 2012)
and other modern chronic disorders, including inflammatory
bowel disease (Glassner et al., 2020), obesity (Rampelli et al.,
2018), cardiovascular disease (Pietiäinen et al., 2018) and some
forms of cancer (Helmink et al., 2019; Karpiński, 2019; Wong
and Yu, 2019). The importance of the human microbiome in
health and disease makes it imperative to understand the drivers
of its variation. In this context, a new frontier is represented
by the meta-community theory, according to which human
symbiont microbial ecosystems are in intimate connection,
showing reciprocal influences and exchanges (Koskella et al.,
2017; Miller et al., 2018). Supporting a meta-community view
of human microbial ecology, a close link between oral and
intestinal microbiomes has recently been hypothesized, with the
former reflecting changes in the latter, in both healthy and
diseased individuals (Bajaj et al., 2015; Iwauchi et al., 2019;
Prodan et al., 2019; Schmidt et al., 2019). Another scale of human
microbiome variation is represented by its change across the
evolutionary timeline. In particular, a large body of literature
indicates that the current human gut microbiome has evolved
toward at least two different configurations, rural and urban,
both associated with the corresponding subsistence strategy.
Compared to the first, generally considered as the pristine human
gut microbiome, the urban configuration is characterized by an
overall compression of microbial biodiversity, a wholescale loss
of commensal microbial groups, and an increased presence of
genes related to antibiotic resistance and xenobiotics metabolism
(Yatsunenko et al., 2012; Schnorr et al., 2014; Obregon-Tito
et al., 2015; Rampelli et al., 2015; Ayeni et al., 2018; Jha et al.,
2018). These changes, collectively referred to as “microbiota
insufficiency syndrome” (Sonnenburg and Sonnenburg, 2019),
have been identified as contributing factors to the rise in
chronic inflammatory non-communicable diseases. However,
mainly due to the paucity of ancient stool samples, the truly
ancestral human gut microbiome is still unknown and the
evolutionary trajectories and drivers leading to its contemporary
configurations have yet to be described, leaving important

gaps in knowledge of the gut microbiome-human host co-
evolutionary trajectories. Contrary to ancient fecal samples,
dental ones are more common and well preserved, allowing
for the extraction of the ancient oral microbiome from
ancient DNA preserved in dental tartar. Consistent with the
meta-community vision, the ancient configuration of the oral
microbiome can somehow mirror the structural features of
the intestinal one due to the intrinsic connections between
the two ecosystems. In this scenario, here we developed a
new deep learning-based tool, G2S, which infers the gut
microbiome configuration from the oral microbiome data of
a given individual. G2S is based on a model trained and
tested on a total of 305 and 79 paired samples of oral and
stool microbiome, respectively, retrieved from multiple studies
with individuals of various geographical origins, including
United States, Fiji, United Kingdom, and European countries
(The Human Microbiome Project Consortium, 2012; Zaura et al.,
2015; Brito et al., 2016; Russo et al., 2018). Our approach may
be relevant for predicting the gut microbiome configuration
when fecal data are not available, and particularly suitable
for human archeological records, where coprolites and fecal
sediments are indeed rare compared to dental calculi and
other human remains.

MATERIALS AND METHODS

G2S software is built in an R environment, using the R packages
“base,” “stats,” and “keras,” containing “tensorflow.” The G2S
source code is available on the website https://github.com/
simonerampelli/g2s and it can be run using a command line
interface on computer with Windows, Linux and OS X as the
operating system.

The G2S tool was trained and tested on a total of 768
paired samples (i.e., oral and stool samples from the same
384 individuals), including samples from 171 healthy adults
from United States, 7 from Italy, 29 from Sweden, 37 from
United Kingdom, and 140 from Fiji (The Human Microbiome
Project Consortium, 2012; Zaura et al., 2015; Brito et al., 2016;
Russo et al., 2018). Eighty% of the subjects were used for the
training dataset and 20% for the test dataset, without overlapping
to avoid overfitting. Both 16S rRNA gene reads and shotgun
metagenomics sequences were used, analyzed by the QIIME
2 pipeline (Bolyen et al., 2019) or the MetaPhlAn2 software
(Truong et al., 2015), respectively.

The performance of G2S in predicting fecal microbiome
configuration from the same individual’s oral microbiome sample
was compared with that of other available approaches, including
Random Forest (Breiman, 2001) and a stochastic algorithm, i.e.,
a customized method that generates mock profiles of the stool
microbiome by randomly imputing the abundances of bacterial
families in the range of the training dataset (see Supplementary
File 1 for script source).

Microbiome data from dental calculi of 4 adult human
skeletons (G12, B17, B61, and B78), characterized by sequencing
the V5 and V6 regions of the 16S rRNA gene (8 samples in total)
(Warinner et al., 2014), were used to illustrate the potential and
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results of G2S. No ethics committee approval was required to
perform the analysis included in this study.

RESULTS

Implementation of the G2S Software
G2S adapted a deep convolutional neural network (ConvNet)
to predict gut microbiome configurations from oral microbiome
data. Several model architectures were tested in order to find
the best performing algorithm, either by testing hidden layers
with different number of units, and/or by adding a weight
regularization step or a dropout procedure (data not shown).
The final ConvNet was structured with two hidden layers, each
with 50 units, and a final linear layer with 13 units and no
activation function. We selected mean square error as the loss
function, and mean absolute error as the metric to evaluate
the differences between predictions and targets during training.
In order to minimize overfitting problems due to the small
number of samples within the dataset, we also included a
weight regularization step, by adding to the loss function a cost
associated with having high weights. The cost was proportional
to the square of the weight coefficient value (L2 regularization or
weight decay). Finally, to further prevent overfitting, dropout was
applied to the first two layers, obtaining a better prediction and a
significant reduction in losses and minimum absolute errors with
a rate value of 0.5.

For ConvNet training and testing, we downloaded all
available paired samples (i.e., gingival and stool samples from
the same individual) from the HMP project (The Human
Microbiome Project Consortium, 2012). In order to increase the
generalization capability of our ConvNets, while minimizing
geography-related bias (He et al., 2018), we integrated our
dataset with all available paired samples (i.e., oral and fecal
samples) from healthy adults from other literature studies (Zaura
et al., 2015; Brito et al., 2016; Russo et al., 2018), selecting both
16S rRNA gene and shotgun metagenomic datasets (see also
Supplementary Table 1). Our final dataset included paired
samples of 171 individuals from United States, 7 from Italy,
29 from Sweden, 37 from United Kingdom, and 140 from Fiji,
for a total of 384 oral and 384 stool samples, divided into 528
16S rRNA gene and 240 shotgun fastq files. Specifically, 16S
rRNA gene sequences were analyzed using the QIIME 2 pipeline
(Bolyen et al., 2019) and the Greengenes database (DeSantis
et al., 2006) in order to obtain the microbiome classification
at different taxonomic levels. On the other hand, the shotgun
metagenomic samples were analyzed by MetaPhlAn2 (Truong
et al., 2015) using the default parameters. The genus-level
abundance table of 384 oral microbiome samples was normalized
feature-wise prior to its usage for deep learning. In particular, the
data were centered on the mean of each specific genus and scaled
according to their standard deviation. Only 50 genera present
in more than 4 samples with relative abundance greater than
0.1% were retained for the analysis. The 12 bacterial families of
the stool microbiome dataset with the highest contribution in
terms of median relative abundance, including Bacteroidaceae,
Porphyromonadaceae, Lachnospiraceae, Ruminococcaceae,

Veillonellaceae, Rikenellaceae, Alcaligenaceae, Streptococcaceae,
Bifidobacteriaceae, Clostridiaceae, Prevotellaceae, and
Erysipelotrichaceae, were selected as features to be predicted by
ConvNet analysis. An additional variable, called “Other” (i.e.,
the percentage remaining to reach 100%), was also considered
a feature to be inferred. The training and test datasets were
separated to contain 80 and 20% of all profiles, i.e., 305 and 79
paired oral and fecal samples, respectively. In order to better
evaluate the model, we used a k-fold cross-validation approach
with 4 partitions and 500 epochs. We got the best performance
after the 151st epoch, with a mean absolute error of 4.1%. To
increase the predictive performance of ConvNet, the results were
then transformed as follows: (i) negative predictions were set
to 0, and (ii) the sum of the value for each sample was rescaled
to 100%. Finally, based on the results of the training dataset,
we also built a confusion matrix to adjust the predictions of
those families with recurring over- or underestimation. G2S
includes all of these steps in a single R script, and requires only
a relative abundance table of the oral microbiome (between
0 and 1) at the genus level with samples in the columns and

FIGURE 1 | G2S workflow. The input file is a genus-level relative abundance
table (.tsv format), obtained from the characterization of human oral
microbiome samples. The stool microbiome is inferred using a deep
convolutional neural network (ConvNet) adjusted by a confusion matrix and
rescaled to 100%. The results are tabulated as relative abundance.
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FIGURE 2 | Comparison between G2S predictions and real data from the test dataset. The family level bar plots of the 79 stool samples of the test dataset are
visualized next to their inferred configurations obtained by G2S. Spearman correlation coefficients (r) are provided below each pair of bar plots. Samples are derived
from the following studies: The Human Microbiome Project Consortium (2012), Zaura et al. (2015); Brito et al. (2016), Russo et al. (2018).

FIGURE 3 | G2S predictions are more accurate when the configurations to be
inferred fall within the plane of variation of the training dataset. Box plots of the
mean absolute error scaled to one standard deviation (maes) between the real
stool microbiome configuration of the samples in the test dataset and the
median configuration of the training dataset. Samples were divided into four
groups based on the quality of the G2S predictions (i.e., the Spearman
correlation coefficients between the real values and the inferred
configurations).

the full taxonomy following the Greengenes_05_2013 style in
the rows as input file. For each sample analyzed, the predicted
microbiome is summarized in a table as the relative abundance of
the most abundant bacterial families. Additionally, histograms of
the same families are provided, using the “graphics” and “base”
R packages. The schematic overview of the G2S framework is
provided in Figure 1.

Ascertaining the Performance of G2S on
the Test Dataset
We first applied G2S to the test dataset to evaluate its cross-
validated predictions. In particular, mean absolute errors for each
family scaled to one standard deviation of real data (maes) < 1
were considered as reference parameters for a good quality of
the prediction. As expected, G2S predicts relative abundances
with an average maes of 0.59, ranging from the best score for
Bacteroidaceae and Erysipelotrichaceae (maes = 0.46) to the worst

FIGURE 4 | G2S predicts the stool microbiome configuration with better
performance than other methods. The mean absolute errors scaled to one
standard deviation (maes) between the real data of the samples from the test
dataset and the configurations inferred by G2S, Random Forest and a
stochastic permutational method (100 predictions), are reported in the dot
plot.

case for Ruminococcaceae (maes = 0.77). To gain more insights
into the predictive performance of G2S, we globally compared,
sample by sample, the inferred microbiome configurations with
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FIGURE 5 | Reconstructing the ancient stool microbiome of adult medieval individuals. (A) Bar plots of stool microbiome configurations inferred from 16S rRNA gene
(V5 and V6 regions) sequencing data of ancient microbiomes (i.e., dental calculi from the medieval monastic site of Dalheim, Germany [ca. 950–1,200 CE]) (Warinner
et al., 2014). (B) Comparison between the predicted ancient microbiome configurations and the modern stool microbiome of subjects from the dataset used to
implement G2S (The Human Microbiome Project Consortium, 2012; Zaura et al., 2015; Brito et al., 2016; Russo et al., 2018). P-values were determined by
Wilcoxon test.

real data by means of bar plots (Figure 2). Spearman correlations
between predicted and actual microbiome profiles were used to
evaluate predictions for each subject. In particular, we considered
as excellent those predictions with r > 0.8 (52% of predictions),
good those with r between 0.71 and 0.8 (29% of predictions),
discrete with r between 0.41 and 0.7 (18% of predictions), and
incorrect with r ≤ 0.4 (1% of predictions). When we analyzed
the single case in which G2S inferred an incorrect prediction, we
found that the stool microbiome configuration was very peculiar,
with the relative abundances of the two keystone bacterial
families Bacteroidaceae and Lachnospiraceae not reaching 5% of
relative abundance together (while generally dominant in the
ecosystem). It is important to note that G2S worked correctly
even when the stool microbiome configurations to be predicted
were not so close to the median configuration of the training
dataset (maes < 1 even when r < 0.7) (Figure 3). This was likely
due to the large variation captured by the pool of microbiome
configurations of the samples in the training dataset.

G2S showed a better mimicry of the relative abundance of
microbiomes in the test dataset than other methods, including
Random Forest and a stochastic method developed specifically
for this comparison, which generates mock profiles of the stool
microbiome in the range of the training dataset (Figure 4).
Random Forest under- or overestimated bacterial families with a
global maes of 0.99, ranging from 0.77 for Bacteroidaceae to 1.74
for Streptococcaceae. The performance of our custom predictor
was even more inaccurate, with a total of 100 permutational
predictions showing maes between 0.98 and 1.11 (mean = 1.05).
The best performance of G2S in predicting the stool microbiome

structure is probably due to the predictive power of deep learning
that automatically detects patterns in the data, by also embedding
the computation of variables into the models themselves to yield
end-to-end models.

Case Study: Using G2S in
Paleomicrobiology to Predict the Stool
Microbiome Profile From Ancient Dental
Calculi
In the second part of our analysis, we used G2S to infer the
stool microbiome from oral microbiome data of four adult
human skeletons with evidence of mild to severe periodontal
disease, from the medieval monastic site of Dalheim, Germany
(ca. 950–1,200 CE) (Warinner et al., 2014). G2S inferred the
stool microbiome structure at the family level, estimating the
abundance of the 13 features, i.e., the 12 bacterial families and
the category “Other” including all other families (Figure 5A).
Interestingly, Bacteroidaceae, Lachnospiraceae, Ruminococcaceae,
and Prevotellaceae were the predicted dominant components
in the feces of the four subjects, using both V5 and V6
regions as targets of the 16S rRNA gene (together their relative
abundance ranged from 52 to 80%). On the other hand, the family
Clostridiaceae showed the lowest relative abundance (<1%)
in all eight samples. Significant differences in taxon relative
abundance were found with respect to the stool microbiome
of modern subjects from the dataset used to implement
G2S, including higher relative abundance of Ruminococcaceae,
Lachnospiraceae, Streptococcaceae, Alcaligenaceae, Clostridiaceae,
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and Bifidobacteriaceae in the predicted ancient microbiome
configurations (p-value < 0.05, Wilcoxon test) (Figure 5B). This
is not unexpected given the profoundly different lifestyles of
ancient individuals of the Middle Ages and modern people, in
terms of diet, contact with the environment and sanitization
practices (The Human Microbiome Project Consortium, 2012;
Warinner et al., 2014; Zaura et al., 2015; Brito et al., 2016; Russo
et al., 2018). Future studies in larger worldwide cohorts, including
paired samples of oral and intestinal microbiome, are needed
to refine the accuracy of the G2S software and predict a higher
number of bacterial families as well as possibly taxa at different
phylogenetic levels, possibly including genera and species.

DISCUSSION

G2S is specifically designed to predict the structure of the human
stool microbiome from oral microbiome data. In particular, it
uses relative abundance tables of the oral microbiome generated
by next-generation sequencing, and a deep learning approach
that allows high-speed prediction of the stool microbiome
without any downstream process. It could be used with both
modern and ancient samples, providing a good prediction of the
fecal microbiome with a net saving of time and costs. This is
particularly relevant in the context of paleomicrobiology, where
human coprolites and fecal sediments are very rare compared
to dental calculi. However, as G2S appears to work best when
the input oral microbial composition is close to the average
used during training, caution must still be taken in interpreting
the prediction data. Furthermore, G2S was implemented using
both 16S rRNA gene and shotgun metagenomics data from
different populations across the globe (from United States, Italy,
Sweden, United Kingdom, and Fiji), with a good generalization
of the results as evidenced by the findings on the test dataset.
This provides an opportunity for users who can apply the
tool on data obtained through different sequencing techniques
simply by formatting their abundance tables with a taxonomy
congruent with the Greengenes database. It should also be noted
that G2S was built and validated using the 768 paired samples
currently available in the literature. This stresses the importance
of collecting paired samples (i.e., oral and fecal) in future
studies from cohorts from different geographic locations, in order
to further extend the range of the training dataset and thus
the applicability of G2S. Finally, other future implementations
could include predictions at different taxonomic levels, as well

as functional predictions thanks to the recent expansion of
shotgun metagenomics.

In summary, G2S opens up new possibilities in bioinformatics
approaches related to metagenomics, extending in silico
procedures to predict the human stool microbiome from oral
microbiome data. Starting from either modern or ancient oral
microbiome samples, the tool infers the stool microbiome with
family level resolution. Its main field of application is probably
paleomicrobiology, as a tool that can help understand how the gut
microbiome of the past was structured, and its implications for
human evolution. An update of the G2S tool will be periodically
performed to incorporate newly released microbiome studies.

DATA AVAILABILITY STATEMENT

The datasets used for setting up G2S are available at the
Human Microbiome Project website https://www.hmpdacc.org/
HMQCP/ and NCBI SRA as SRP057504 (Zaura et al., 2015),
PRJNA217052 (Brito et al., 2016) and PRJNA356414 (Russo
et al., 2018). Microbiome data from ancient samples were
taken from the study conducted by Warinner and colleagues
(Warinner et al., 2014).

AUTHOR CONTRIBUTIONS

SR: conceptualization and software. SR and MF: formal analysis.
SR, MC, and ST: writing—original draft preparation. MF, EB,
and PB: writing—review and editing. All authors have read and
agreed to the published version of the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.644516/full#supplementary-material

Supplementary File 1 | R script containing the stochastic method that generates
mock profiles of the stool microbiome in the range of the training dataset.
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