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Feed-forward loops (FFLs) are among the most ubiquitously found motifs of reaction

networks in nature. However, little is known about their stochastic behavior and the variety

of network phenotypes they can exhibit. In this study, we provide full characterizations

of the properties of stochastic multimodality of FFLs, and how switching between

different network phenotypes are controlled. We have computed the exact steady-state

probability landscapes of all eight types of coherent and incoherent FFLs using the

finite-butter Accurate Chemical Master Equation (ACME) algorithm, and quantified

the exact topological features of their high-dimensional probability landscapes using

persistent homology. Through analysis of the degree of multimodality for each of a set of

10,812 probability landscapes, where each landscape resides over 105–106 microstates,

we have constructed comprehensive phase diagrams of all relevant behavior of FFL

multimodality over broad ranges of input and regulation intensities, as well as different

regimes of promoter binding dynamics. In addition, we have quantified the topological

sensitivity of the multimodality of the landscapes to regulation intensities. Our results

show that with slow binding and unbinding dynamics of transcription factor to promoter,

FFLs exhibit strong stochastic behavior that is very different from what would be

inferred from deterministic models. In addition, input intensity play major roles in the

phenotypes of FFLs: At weak input intensity, FFL exhibit monomodality, but strong

input intensity may result in up to 6 stable phenotypes. Furthermore, we found that

gene duplication can enlarge stable regions of specific multimodalities and enrich the

phenotypic diversity of FFL networks, providing means for cells toward better adaptation

to changing environment. Our results are directly applicable to analysis of behavior of

FFLs in biological processes such as stem cell differentiation and for design of synthetic

networks when certain phenotypic behavior is desired.
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1. INTRODUCTION

Cells with the same genetic make-ups can exhibit a variety of
different behavior. They can also switch between these different
phenotypes stochastically. This phenomenon has been observed
in bacteria, yeast, and mammals such as neural cells (Acar
et al., 2005; Choi et al., 2008; Guo and Li, 2009; Gupta et al.,
2011). The ability to exhibit multiple phenotypes and switching
between them is the foundation of cellular fate decision (Schultz
et al., 2007; Cao et al., 2010; Ye et al., 2019), stem cell
differentiation (Feng and Wang, 2012; Papatsenko et al., 2015;
Zhang et al., 2019), and tumor formation (Huang et al., 2009;
Shiraishi et al., 2010).

Cells exhibiting different phenotypes have different patterns
of gene expression. Single-cell studies demonstrated that isogenic
cells can exhibit different modes of gene expression (Shalek et al.,
2013), indicating that distinct phenotypes are encoded in the
wiring of the genetic regulatory networks (Liang andQian, 2010).
This phenomenon of epigenetic control of bimodality in gene
expression by network architecture is well-known and has been
extensively studied in earlier works of phage-lambda (Arkin et al.,
1998; Ptashne, 2004; Zhu et al., 2004a,b; Cao et al., 2010).

Understanding multimodality in gene regulatory networks
and its control mechanism can provide valuable insight into
how different cellular phenotypes arises and how cellular
programming and reprogramming proceed (Lu et al., 2007).
Much of current knowledge of multimodality is derived
from analysis of networks with feedback loops or cooperative
interactions (Siegal-Gaskins et al., 2009). However, recent studies
suggest that multimodality and phenotype switching can also
arise from slow promoter binding, which may result in distinct
protein expression levels of long durations (Feng and Wang,
2012; Thomas et al., 2014; Chen et al., 2015; Duncan et al., 2015;
Terebus et al., 2019). Nevertheless, the nature and extent of this
type of bimodality is not well-understood.

In this work, we study the network modules of feed-

forward loops (FFLs) and characterize the stochastic nature
of their multimodalities. FFLs are one of the most prevalent

three-node network motifs in nature (Alon, 2006) and play
important regulatory roles (Lee et al., 2002; Shen-Orr et al.,
2002; Boyer et al., 2005; Mangan et al., 2006; Tsang et al., 2007;
Ma et al., 2009; Sorrells and Johnson, 2015). They appear in
stem cell pluripotency networks (Boyer et al., 2005; Papatsenko

et al., 2015; Sorrells and Johnson, 2015), microRNA regulation
networks (Tsang et al., 2007; Re et al., 2009; Ivey and Srivastava,
2010), and cancer networks (Re et al., 2009). The behavior of FFLs
has been studied extensively using deterministic ODE models.
These studies revealed important functions of FFLs in signal
processing, including sign-sensitive acceleration and delay pulse
generation functions, and increased cooperativity (Mangan and
Alon, 2003; Ma et al., 2009). FFLs are also found to be capable
of maintaining robust adaptation (François and Siggia, 2008; Ma
et al., 2009) and detecting “fold-changes” (Goentoro et al., 2009).

However, analysis based on ODEs is limited in its ability
to characterize probabilistic events, as they do not capture
bimodality in gene expression that arises from slow promoter
binding (Vellela and Qian, 2009). The stochastic behavior of

FFLs is not well-characterized: Basic properties such as the
number of different phenotypes FFLs are capable of exhibiting,
the conditions required for their emergency, their relative
prominence, and the sensitivity of different phenotypes to
perturbations are not known.

Our stochastic FFL models are based on processes of
Stochastic Chemical Kinetics (SCK), which provides a general
framework for understanding the stochastic behavior of reaction
networks. Quantitative SCK modeling can uncover different
network phenotypes, the conditions for their occurrence, and
the nature of the prominence of the stability peaks. However,
analysis of stochastic networks is challenging. First, models
based on stochastic differential equations such as Fokker–
Planck and Lagenvin models may be inadequate due to their
Gaussian approximations. This is further compounded by the
limited number of simulation trajectories that can be generated.
These difficulties are reflected in the reported failure of a
Fokker–Planck model in accounting for multimodality in the
simple network model of single self-regulating gene at certain
reaction rates (Duncan et al., 2015). Second, the widely used
Stochastic Simulation Algorithm (Gillespie simulations) can
generate SCK trajectories (Gillespie, 1977), but are challenged
in capturing rare events and in computing efficiency. There
are also difficulties in assessing convergency and in estimating
computational errors (Cao and Liang, 2013). Third, even if
the probabilistic landscape can be accurately reconstructed
with acceptable accuracy, detecting topological features such as
peaks in high-dimensional probability landscapes and assessing
their objectively prominence at large-scale remains an unsolved
problem.

To characterize the stochastic behavior of FFLs using models
based on SCK processes, our approach is to solve the underlying
discrete Chemical Master Equation (dCME) using the ACME
(Accurate Chemical Master Equation) algorithm (Cao et al.,
2016a,b), and to obtain the exact probability landscapes of all 8
varieties of FFLs.

Aided by the computational efficiency of ACME, we are
able to explore the behavior FFLs under broad conditions
of synthesis, degradation, binding, and unbinding rates of
transcription factors genes binding. Furthermore, we analyze the
topological features of the exactly constructed high-dimensional
probability landscapes using persistent homology, so the number
of probability peaks and the prominence measured by their
persistence are quantified objectively. These techniques allow
us to examine details of the number of possible phenotypic
states at different conditions, as well as the ranges of conditions
enabling phenotypic switching. With broad exploration of the
model parameter space, we are able to construct detailed phase
diagrams of multimodalities under different conditions.

Our results reveal how FFL network behaves differently under
varying strengths of regulations intensities and the input. In
addition, we characterize quantitatively the effects of duplication
of genes in the FFL network modules. We show gene duplication
can significantly affect the diversity of multimodality, and can
enlarge monomodal regions so FFLs can have robust phenotypes.
The results we obtained can be useful for analysis of phenotypic
switching in biological networks containing the FFL modules.
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FIGURE 1 | Representation and the types of feed-forward loop (FFL) network: (A) General wiring and corresponding 3-node schematic representation of an FFL

module containing three genes a, b, and c expressing three proteins A, B, and C. Protein A regulates the expressions of genes b and c through binding to their

promoters. Protein B regulates the expression of gene c through promoter binding. (B) The FFL modules can be classified into eight different types.

Coherent/incoherent FFLs are on the left/right, respectively.

They can also be used for construction of synthetic networks with
the goal of generating certain desired phenotypic behavior.

2. MODELS AND METHODS

2.1. Architecture and Types of
Feed-Forward Loop Network Modules
2.1.1. Overview
FFLs consists of three nodes representing three genes, each
expresses a different protein product (Figure 1A). An FFL
regulates the network output from the left input node toward
the right output node via two paths; the direct path from the
left node to the right node, and the indirect path from the left
to the right node via an intermediate buffer node. As each of the
three regulations can be either up- or downregulation, there are
altogether 23 = 8 types of FFL.

2.1.2. Network Architecture
Specifically, we denote the three genes of an FFL module as a, b,
and c, which expresses protein products A, B, and C at constant
synthesis rate of sA, sB, and sC, respectively (Figure 1A). Proteins
A, B, and C are degraded at rate dA, dB, and dC, respectively.
Both proteins A and B function as transcription factors and can
bind competitively to the promoter of gene c and regulates its
expression. As the promoter of gene c can bind to either protein
A or B, but not both, this type of regulation is known as the “OR”
gate. In addition, protein A can bind to the promoter of gene b
and regulate its expression. Specifically, protein A can bind to
the promoter of gene c at rate rAc to form complex cA, which
dissociates at rate f Ac . cA expresses protein C at a rate k3-fold over
the basal rate of sC. Similarly, protein B can bind to the promoter
of gene c at rate rBc to form complex cB, which dissociates at rate
f Bc . cB expresses protein C at a rate k2-fold over the basal rate of
sC. Furthermore, proteinA binds to the promoter of gene b at rate
rA
b
to form gene–protein complex bA, which dissociate at rate f A

b
.

Upon binding protein A, bA expresses protein B at a rate k1-fold
over the basal rate of sB.

The biochemical reactions of our FFL model are summarized
below:

b+ A
rA
b
→ bA; bA

f A
b
→ b+ A;

c+ A
rAc
→ cA; cA

f Ac
→ c+ A;

c+ B
rBc
→ cB; cB

f Bc
→ c+ B;

a
sA
→ a+ A; A

dA
→ ∅;

b
sB
→ b+ B; bA

sB∗k1
→ bA+ B; B

dB=1
→ ∅;

c
sC
→ c+ C; cB

sC∗k2
→ cB+ C; cA

sC∗k3
→ cA+ C; C

dC
→ ∅.

Here, we set rA
b
= rAc = rBc = 0.005 s−1, f A

b
= f Ac = f Bc = 0.1 s−1,

dA = dB = dC = 1 s−1, and sA = sB = sC = 10 s−1. All reaction
rate constants are of the unit s−1, while coefficients k1, k2, and
k3 are ratio of reaction rates and therefore unitless. The ratios
k1, k2, and k3 can take different values so the network represents
different types of FFLs.

2.1.3. Types of FFL Modules
Depending on the nature of the regulations, namely, whether
each of regulation intensities k1, k2, and k3 is ≥ 1 (activating)
or < 1 (inhibiting), there are 23 = 8 types of FFLs. These
FFLs are classified into two classes, the coherent FFLs and the
incoherent FFLs (Figure 1B) (Alon, 2006). A FFL is termed
coherent (C1, C2, C3, C4 in Figure 1B), if the direct effect of
protein A on the gene c has the same sign (positive or negative)
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TABLE 1 | Parameter ranges for eight types of feed-forward loop (FFL) model.

FFL type k1 range k2 range k3 range

C1 (1.0 3.0] (1.0 5.0] (1.0 5.0]

C2 [0.025 1.0) (1.0 5.0] (0.025 1.0]

C3 (1.0 3.0] [0.025 1.0) [0.025 1.0)

C4 [0.025 1.0) [0.025 1.0) (1.0 5.0]

I1 (1.0 3.0] [0.025 1.0) (1.0 5.0]

I2 [0.025 1.0) [0.025 1.0) [0.025 1.0)

I3 (1.0 3.0] (1.0 5.0] [0.025 1.0)

I4 [0.025 1.0) (1.0 5.0] (1.0 5.0]

as its net indirect effect through protein B. Taking the FFL model
C1 (Figure 1B) as an example, protein A activates gene b, and
protein B activates gene c, with an overall effect of “activation.”
At the same time, the direct effect of product of gene a protein
A is also activation of gene c. Therefore, C1 is a coherent FFL.
When the sign of the indirect path of the regulation is opposite
to that of the direct path, we have incoherent FFLs (I1, I2, I3, I4
in Figure 1B). Taking the FFL model I1 as an example, the effect
of the direct path is positive, but the overall effect of the indirect
path is negative. As can be seen from Figure 1B, all incoherent
FFLs have an odd number of edges of inhibition.

2.1.4. Model Parameters
In order to explore broadly the behavior of all types of FFLs, we
construct FFL models over the parameter space of a wide range
of possible combinations of k1, k2, and k3, representing all 8 types
of FFLs. The regulation intensity is set to values based on values
reported in (Bu et al., 2016; Tej et al., 2019). We then altered
the regulation intensities by about 10-fold to study the general
behavior of different types of FFLs at the steady state. We take
parameter values of k1 ∈ {0.025, 0.1, 0.4, 0.8, 1.5, 2.1, 2.4, 3.0},
k2 ∈ [0.025, 5.0] with step size of 0.25, k3 ∈ [0.025, 5.0] with
step size of 0.25. In addition, for the input intensity, the values
are selected based on the analysis of abundance pattern reported
in (Momin and Biswas, 2020). We take sA ∈ {3.0, 10.0}s−1, rAc
and rBc ∈ {0.5, 2, 8, 16}s−1 for one and two copies of genes b
and c. Details of the relationship of FFL types with k1, k2, and
k3 are listed in Table 1. Over this parameter space, we study
the behavior of all 8 types of FFLs. Overall, we constructed a
total of 10,812 examples of FFLs and computed the steady-state
probability landscape for each of them.

2.2. Computing Probability Landscape
Using ACME
2.2.1. Exact Computation of Probability Landscape of

FFLs
Consider a well mixed system of reaction with constant volume
and temperature. This system has n species Xi, i = 1, 2, · · · , n,
in which each particle can participate in m reactions Rk, k =

1, 2, · · · ,m. A microstate of the system at time t, x(t) is a
column vector representing the copy number of species: x(t) =

(x1(t), x2(t), · · · , xn(t))
T , where the values of copy numbers are

non-negative integers. The state space � of the system includes
all the possible microstate of the system from t = 0 to infinity,

� = {x(t)|t ∈ [0,∞)}. In this study, the size of the state space
is |�| = 657, 900 when genes b and c are single-copy, and
|�| = 686, 052 and 1, 289, 656 when there are two copies of gene
b and c, respectively.

The reaction Rk of the system takes the form of

Rk : c1kX1 + c2kX2 + · · · + cnkxn
rk
−→ c′1kX1 + c′2kX2 + · · · + c′nkxn

which brings the system from a microstate x to a new microstate
x+ sk, where sk is the stoichiometry vector and is defined as

sk = (c′1k − c1k , c
′
2k
− c2k , · · · , c

′
2k
− c2k ).

In a well mixed system, the propensity function of reaction
k, Ak(x) is given by the product of the intrinsic reaction rate
constant rk and possible combinations of the relevant reactants
in the current state x.

Ak(x) = rk

n
∏

l=1

(

xl

clk

)

With the above definitions, the dCME of a network model of
the SCK processes consists of a set of linear ordinary differential
equations defining the changes in the probability landscape over
time at each microstate x. Denote the probability of the system at
a specific microstate x at time t as p(x, t) ∈ R[0,1], the probability
landscape of the system over the whole state space � as p(t) =

{p(x(t))|x(t) ∈ �}, the dCME of the system can be written as the
general form of

dp(x, t)

dt
=

m
∑

k=1

[Ak(x− sk)p(x− sk, t)− Ak(x)p(x, t)],

where x and x− sk ∈ �.
The steady-state probability landscapes is obtained by solving

the dCME directly. The exact solution is made possible by using
the the ACME algorithm (Cao et al., 2016a,b). The ACME
algorithm eliminates potential problems due to inadequate
sampling, where rare events of very low probability is difficult
to estimate using techniques such as the stochastic simulation
algorithm (SSA) (Gillespie, 1977; Kuwahara and Mura, 2008;
Daigle et al., 2011; Cao and Liang, 2013).

2.3. Identification of Multimodality by
Persistent Homology
Despite its simple architecture, FFLs have a 9-dimensional
probability landscape: There are three genes (a, b, and c), three
proteins (A, B, and C), and three bound genes bA, cA, and
cB (i.e., gene b bound to protein A, gene c bound to either
protein A or protein B). Because of the high dimensionality, it
is challenging to characterize the topological structures of their
probability landscapes; restricting networks to only “on” and “of”
state separately makes it difficult to gain insight into the overall
behavior of the network.

There have been studies that analyze d-dimensional
probability landscape by examining its projection onto 1-d
or 2-d subspaces (e.g., 2-d heatmaps or contour plots) (Bu et al.,
2016; Dey and Barik, 2021). However, projected probability
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surface on lower dimensional space often no longer reflects the
topology of the original space, with results and interpretations
likely erroneous or misleading (Manuchehrfar et al., 2021).
Finding peak states by examining distinct local maxima is
equivalent to locating hypercubes that are critical points of
Morse index of d in the d-dimension state space. While, local
maxima may be identified by comparing its probability value
with those of all of its neighbors, all peaks regardless their
prominence will be identified. As numerical calculation may
introduce small errors, peaks of tiny magnitude will be included.
It is non-trivial to decide on a proper threshold to filter them out.

Persistent homology provides a powerful method that can
characterize topological features of high-dimensional probability
landscapes (Edelsbrunner et al., 2002; Carlsson, 2009). Here,
we use newly developed cubic complex algorithm to compute
homology groups1 and quantitatively assess the exact topology
of the 9-dimensional probability landscape.

2.3.1. Homology Groups
We use homology groups from algebraic topology to characterize
the probability landscape. Homology group provides an
unambiguous and quantitative description on how a space
is connected. It returns a set of algebraic groups describing
topological features of holes of various dimensions in the
space. The rank of each i-th groups counts the number of
linearly independent holes in the corresponding ith dimension.
For example, Rank(H0) counts the number of connected
components (0th dimensional holes).

2.3.2. Persistent Homology
Persistent homology measures the importance of these
topological features (Edelsbrunner et al., 2002), and has been
applied in studies of chemical compounds and biomolecules (Xia
and Wei, 2014, 2015; Xia et al., 2015). Here, we focus on
the topological features of probability peaks, including their
appearance and disappearance. They are measured by persistent
homology of the 0-th homology group. Specifically, we take the
probability p(x) as a height function, and construct a sequence of
topological spaces using thresholds {ri} for p(x):

1 = r0 > r1 > r2 > · · · > rin−1 > rin = 0, (1)

The superlevel sets {Xi} has Xi = {x ∈ X|p(x) ≥ ri},
which corresponds to the threshold ri. The sequence {Xi} gives
a sequence of subspaces, which is called filtration:

∅ ≡ Xi0 ⊂ Xi1 ⊂ Xi2 ⊂ · · · ⊂ Xin−1 ⊂ Xin ≡ �, (2)

As the threshold changes, the peak of a probability landscape
emerges from the sea-level at a specific threshold, which is
the birth time of the corresponding 0-homology group in the
filtration. It disappears as an independent component when
merged with a prior peak at a particular threshold, which is called
the death time. When the sea-level recedes to the ground level at
p(x) = 0, only the first peak remains.

1Tian, W., Manuchehrfar, F., Wagner, H., Edelsbrunner, H., and Liang, J. (2021).

Persistent homology and moment of probability landscapes of stochastic reaction

networks and their changes.

2.3.3. Persistent Diagram of Multimodality in

Probability Landscape
We keep track of the probability peaks by recording the birth
and death times of their corresponding 0-homology groups
throughout the filtration. This relationship is depicted by the
two-dimensional persistent diagram.

For the ith probability peak, when the threshold r reaches the
value rb(i), the probability peak appears. We call this value the
birth probability pb(i) = rb(i) of peak i. When the threshold r is
lowered to a value rd(i), this peak is merged to an existing peak.
We call this value the death probability pd(i) = rd(i) of peak i.
The persistence of peak i is defined as:

pers(i) ≡ pb(i)− pd(i). (3)

The persistent diagram plots peak i using the birth probability
pb(i) as the y-coordinate and the death probability pd(i) as the
x-coordinate. The number of dots on the persistent diagram
corresponds to the number of probability peaks. Those that are
further off the diagonals are the more prominent probability
peaks as their persistences are larger.

3. RESULTS

3.1. Multimodality and Persistent
Homology of FFLs
For each FFL network, we first compute its probability landscapes
p = p(xA, xB, xC, xa, xb, xc, xbA, xcA, xcB) at the steady-state under
various conditions of model parameters. Here, xA, xB, and xC are
copy numbers of proteins A, B, and C, respectively; xa, xb, and xc
are copy numbers of genes a, b, and c, respectively; xbA and xcA
are copy numbers of genes b and c bound by protein A; xcB is the
copy number of gene c bound by protein B.

Our results show that the 8 types of FFLs can exhibit up
to six different phenotypes of mono- and multimodality at
different conditions in the parameter spaces we investigated. An
illustration of these six different types of multimodality is shown
in Figure 2.

We further computed their 0-th homology groups at varying
sea level of probability. The number of peaks, the birth, and death
probability associated with each peak in Figure 2 are shown in
the persistent diagrams of Figure 3.

3.1.1. Behavior of FFLs From Stochastic Models

Differ From Deterministic ODE Models
The behavior of FFL network modules revealed from our
stochastic models are fundamentally different from that of
deterministic models of ordinary differential equations (ODEs).
ODE models are based on kinetics of law of mass action and
are used to calculate the mean concentrations of A, B, and C
at equilibrium state. However, they do not provide accurate
pictures on the degree of multimodality. For example, the steady-
state ODE solutions with respect to different gene occupancy for
mass action kinetics show that there are at most six phenotypic
states (see Supplementary Material for more details). However,
as there are no probabilistic considerations, conclusions drawn
from ODE models can be problematic.
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FIGURE 2 | Examples of multimodality exhibited by feed-forward loop (FFL) network motifs. The steady-state probability landscape can exhibit up to 6 different

multimodes. The illustrative examples are as follows: 1 peak (red), coherent FFL of type C1 when k1 = 1.2, k2 = 1.2, and k3 = 1.2; 2 peaks (yellow), either in protein B

with coherent FFL of type C1, where k1 = 3.0, k2 = 1.2, and k3 = 1.2, or in protein C with coherent FFL of type C1, where k1 = 1.2, k2 = 6.0, and k3 = 6.0; 3 peaks

(green), coherent FFL of type C1, where k1 = 1.2, k2 = 6.0, and k3 = 3.6; 4 peaks (light-blue), coherent FFL of type C1 exhibits two peaks for protein B and two

peaks for protein C, where k1 = 3.0, k2 = 6.0, and k3 = 6.0; and 6 peaks (purple), coherent FFL of type C1 exhibit two peaks for B and three peaks for C, where

k1 = 3.0, k2 = 6.0, and k3 = 3.6.

FIGURE 3 | Persistent diagrams (PDs) of feed-forward loop (FFL) network modules of Figure 2 exhibiting different multimodalities. Red: The probability landscape

with monomodality. Yellow: These two PDs depict the two steady-state landscapes exhibiting bimodality. Green, light blue, and purple: These three PDs depict the

landscape exhibiting tri-modality, 4-modality, and 6-modality, respectively.

An example of the diverging results between ODE and
stochastic models is shown in Figure 4A for an FFL of C1
type. The mean values of C obtained from the ODE model
(vertical blue line) and the expectation computed from the
probability landscape (vertical purple line) diverge from each
other (Figure 4A). There are three different phenotypic states
by the ODE model (green lines, Figure 4A), which are different
from the bimodal probability distribution obtained from the SCK
model (Figure 4A).

A further example is provided by the FFL of type I1. Here,
the ODE model predicts the existence of three phenotypes
at k1 = 2.7, k2 = 0.4, and k3 = 1.8 (Figure 4B, green
vertical lines). However, the stochastic model shows that
there is only one stability peak. Although the mean value
of C obtained from the ODE model and the expected C
value computed from the probability landscape largely
overlap, the ODE model provides no information on
phenotypical variability. Overall, stochastic models provide
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FIGURE 4 | Comparing feed-forward loop (FFL) behavior by Accurate Chemical Master Equation (ACME) and by deterministic ordinary differential equation (ODE)

models. (A) shows the results of FFL of C1 type for (k1, k2, k3) = (2.4, 4.5, 1.8). The exact results obtained using ACME exhibit bimodality in protein C (red curve), while

trimodality is predicted by the deterministic ODE model (green vertical lines). The mean copy number from ACME (purple vertical line) is also different from the that

from ODE (blue vertical line). (B) shows the results of FFL of I1 type for (k1, k2, k3) = (2.4, 0.4, 1.8). The exact results obtained using ACME exhibit monomodality in

protein C (red curve), while deterministic ODE model predicts trimodality (green vertical lines), even though the mean copy number of protein C are the same between

ACME and ODE models (purple and blue vertical lines, respectively).

accurate and rich information that are not possible with ODE
models.

3.1.2. Behavior of FFLs From Exact Solution to dCME

by ACME Can Be Differ From That by Stochastic

Simulation Algorithm
Results from simulations using SSA may differ from the exact
solution to dCME obtained using ACME.We illustrate this using
two incoherent FFLs, one at (k1, k2, k3) = (3.0, 0.5, 5.0) of I1-
FFL (Figures 5A–C) and another at (k1, k2, k3) = (0.1, 2.75, 5.0)
(Figures 5D–F) of the I4-type FFL. The exact steady-state
probability landscape of the I1-FFL network computed using
ACME is multimodal, exhibiting two peaks in protein B and
two peaks in protein C (Figure 5A). However, these peaks are
not definitive when 30,000 reaction trajectories up to 2,500 s are
simulated using SSA (upper plots, Figures 5B,C). Bimodality in
proteins B and C becomes only definitive when simulation time
is extended to 5,000 s (lower plots, Figures 5B,C).

The exact steady-state probability landscape of the I4-FFL
network computed using ACME exhibits tri-modality in protein
C and bimodality in protein B (Figure 5D). However, tri-
modality is not clearly captured when the reaction trajectories
are < 2, 500 s (upper plot, Figure 5E), and becomes definitive
only after 5,000 s (lower plot, Figure 5E). In addition, bimodality
in protein B is not captured, even when the reaction trajectories
are at 5, 000 s (upper and lower plot, Figure 5F).

3.2. Phase Diagrams of Multimodality in
FFLs
Current studies of stochastic networks are limited to their
behavior under a few selected conditions. Here, we explore the
multimodality of all eight types of FFLs under broad conditions
of synthesis, degradation, binding, and unbinding as outlined in
Table 1. This is made possible by the efficiency of the multi-finite

buffer ACME algorithm. The analysis using persistent homology
further allows us to quantitatively characterize the exact topology
of the landscape. Together, we are able to obtain the full phase
diagrams on the phenotype of multimodality of FFLs at different
combinations of parameter values (Figure 6).

Altogether, we compute 10,812 probability landscapes of the
8-types of FFL modules. Depending on the values of k1, k2, and
k3, each phase diagram shown depicts the behavior of four types
of FFLs, one for each of the four quadrants formed by the two
straight lines of k2 = 1 and k3 = 1 (Figure 6), with the type
of FFL labeled accordingly. The specific types also depend on
k1, which is listed at the top of each plot (Figure 6). As a result,
we have gained comprehensive and accurate characterization of
the multimodality phenotypes of this type of important network
modules.

3.2.1. Monomodality
As shown in Figure 2, the steady-state probability landscape of
the FFL at k1 = k2 = k3 = 1.2 exhibits one probability peak.
At this condition, it is a coherent FFL of type C1. The projected
distributions of B and C exhibit monomodality and has only one
peak (Figure 2, red) when the values of intensities k1, k2, and k3
are close to 1.0 (Figure 6). Overall, there is only one phenotypic
state when the regulations intensities in FFL are weak.

3.2.2. Bimodality
The steady-state probability landscape of FFLs can exhibit two
types of bimodality (colored yellow in Figure 2). The first type
occurs when k1 < 0.4 or k1 > 2.4, with bimodality in protein
B while monomodality in protein C. This is illustrated as green
regions in Figure 6 shown at the two top-left and the two bottom
right phase diagrams where k1 ∈ {0.025, 0.1, 2.4, 3.0}. That is, if
the regulation intensities of k1 and k2 are about two-fold different
either way, bimodality in B arises.
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FIGURE 5 | Comparing landscapes from Accurate Chemical Master Equation (ACME) and reaction trajectories from the stochastic simulation algorithm (SSA). (A)

Probability surface projected onto the (B,C)-plane for the feed-forward loop (FFL) with (k1, k2, k3) = (3.0, 0.5, 5.0). There is bimodality in both proteins B and C. (B,C)

The reaction trajectories computed from SSA corresponding to condition in (A) for proteins C and B, respectively. The upper plots are for 2,500 s and lower plots are

for 5,000 s. SSA does not capture the bimodality of proteins B and C until 2,500 s. (D) The probability surface projected onto (B−C) plain for FFL with

(k1, k2, k3) = (0.1, 2.75, 5.0). There is tri-modality in protein C and bimodality in protein B. (E,F) Corresponding reaction trajectories in proteins C and B, respectively.

Upper plots are for the results for 2,500 s and lower plots are for 5,000 s. SSA does not capture tri-modality of protein C until 2,500 s. In addition, SSA fails to capture

bimodality in protein B.

The second type of bimodality occurs when 0.4 ≤ k1 <

2.4, where protein C exhibit bimodality while monomodality
is maintained in B. This is illustrated as green regions in
the remaining phase diagrams of Figure 6, where k1 ∈

{0.4, 0.8, 1.5, 2.1}.

3.2.3. Tri-modality
The steady-state probabilistic landscape of FFL can exhibit tri-
modality (green, Figure 2). There are three possible phenotypes
in protein C while monomodality in protein B is maintained.
Trimodal regions are colored red in the phase diagrams of
Figure 6. They arise when the difference in rates k2 and k3 is at
least about two-fold and 0.4 ≤ k1 ≤ 2.1.

3.2.4. Multimodality
The steady-state probability landscape of the FFL can exhibit 4
to 6 probability peaks (orange, purple, and green, respectively,
in Figure 2). Landscapes with 4 modes have bimodality in both
protein B and protein C. Those with 5 modes has bimodality
in B and tri-modality in C. Landscapes with 6 modes exhibit
bimodality in B and tri-modality in C. Inspection on the
conditions indicates that when the regulations are strong; i.e.,
when k1, k2, and k3 ≥ 2.1, FFLs exhibit very well-defined
multimodality peaks. However, when the regulation intensity

k1 is weak, the steady-state probability landscape exhibits
multimodality only when the other two regulation intensities,
namely, k2 and k3 are strong. As shown in Figure 6, there are two
groups of FFLs based on the characteristics of the multimodality
they exhibit: One group consists of FFLs of C2, C4, I1, and
I3 types, where tri-modality of output protein C always exists,
as long as k2 and k3 are at least about two-fold different. The
other group consists of FFLs of C1, C3, I2, and I4 types where
the signs of the regulations that the output node C receives
from B and A are the same (both activation or both inhibition).
Tri-modality occurs when the regulations k2 and k3 have very
distinct values.

Overall, protein B can exhibit either mono- or bimodality,
and protein C can exhibit mono-, bi-, or tri-modality on the
probability landscape.

3.3. Increasing Input Intensity Amplifies
Multimodality in FFL
To understand how input intensity affect the response of FFL
networks, we examine their behavior under different input
conditions. Specifically, we examine how different synthesis
rate sA of protein A affects the number of modes in proteins
B and C.
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FIGURE 6 | Phase diagrams of multimodality of Feed-forward loop (FFL) network modules based on 10,812 steady-state probability landscapes at different condition

of regulation intensities for all 8 types of FFL network modules. Monomodality occurs when 0.4 ≤ k1 ≤ 2.1 and k2, k3 intensities are moderate, i.e., 0.4 ≤ k1 ≤ 3

(blue region when k1 = 0.4, 0.8, 1.5, and 2.1). Bimodality may occur for different combinations of regulation intensities. When k1 intensity is either very high (2.4 ≤ k1)

or very low (k1 ≤ 0.1), bimodality occurs when k2, k3 intensities are moderate, i.e., 0.4 ≤ k1 ≤ 3. When k1 intensity is moderate (0.4 ≤ k1 ≤ 2.1), bimodality occurs

when at least one of the other regulation intensities k2 or k3 is high. Tri-modality occurs when k1 is moderate (0.4 ≤ k1 ≤ 2.1) and either k2 or k3 is moderate.

Multimodality occurs when k1 is low or high (k1 ≤ 0.4 or k1 ≥ 2.1), and at least either k2 or k3 is high. Color scheme (vertical bar): Blue, green, red, orange, purple,

and brow represent regions with one, two three, four, five, and six peaks, respectively.

We first carry out computations and broadly survey the
behavior of FFLs at strong input intensity, where sA is set to 10.0.
The values of k2 and k3 are sampled broadly, and k1 is tested for
three different values of k1 = 0.8, 2.1, and 2.4. The results are
summarized in Figure 7 (top row). We then similarly survey the
behavior of FFLs at decreased synthesis intensity of protein A,
with sA = 3.0 (Figure 7, bottom row).

There are clear changes in the mode of multimodality of FFLs.
At k1 = 0.8 and k1 = 2.1 (Figure 7, left and center columns),
when protein A synthesis rate sA is reduced from 10.0 (top) to
3.0 (bottom), regions with one (blue) and three (red) peaks are
reduced. In addition, certain areas of the tri-stable (red) regions
become bimodal (green).

At larger k1 = 2.4 (Figure 7, right column), the FFLs

exhibits dramatic changes in the modes of multimodality when
synthesis rate sA of protein A is reduced from 10.0 (top) to 3.0

(bottom). Inmany regions, one ormore stability peaks disappear.

There are regions with two peaks at sA = 10.0 that become

monomodal. There are also regions of six peaks that become
those of four peaks. This is due to the loss of one stability

peak from three in protein C. In addition, large regions with

four peaks (orange) disappear and become either regions with
two peaks (green) or with three peaks (red). Overall, we can
conclude that high-input intensity represented by high sA rate
for protein A induces changed phenotypes of multimodality
in FFLs.

3.4. Binding and Unbinding Dynamics Are
Critical for Multiple Phenotypic Behavior
Results obtained so far are based on the assumption of slow
binding (rA

b
= rAc = rBc = 0.005) and unbinding (f A

b
=

f Ac = f Bc = 0.1) reactions, which we call the generic case. When
the FFL network slowly switches between phenotypic states, the
process of synthesis degradation of protein C has sufficient time
to converge to equilibrium at each phenotypic state of gene c. An
important questions is how slow the promoter dynamics need
to be for FFLs to exhibit multiple phenotypes, without feedback
loops or cooperatively.

To answer this question, we explore the behavior of FFLs
under different binding and unbinding dynamics of gene c for
an FFL of type I1. In this case, protein A activates protein B and
protein C, while protein B inhibits protein C (see Figure 1B).
With slow binding kinetics as described above, the output C of
this FFL exhibits three stability peaks. These are at the expression
level of protein C of (1) C = 0, corresponding to the condition
when gene c is inhibited by B, (2) C = 9, corresponding to the
basal level of C expression, and (3) C = 49, when C expression is
activated by A. We then fix the regulation intensities at k1 = 3.0,
k2 = 0.025, and k3 = 5.1, and examine how the number
of phenotypic states is affected by gene c binding dynamics
(Figure 8).

We first set the binding affinities between gene c and
protein A and between gene c and protein B to the same
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FIGURE 7 | Effects of input intensity on multimodality of Feed-forward loops (FFLs). The phase diagrams of the number of stability peaks in the steady-state

probability landscapes at strong input intensity sA = 10.0 (top row) and weak input intensity sA = 3.0 (bottom row) for different k2 and k3 at three different conditions

of k1 = 0.8, 2.1, and 2.4. Color scheme (vertical bar): Blue, green, red, orange, purple, and brown represent regions with one, two, three, four, five, and six peaks,

respectively.

values, and change them together to n-fold of the generic case,
where n ∈ {0.5, 2, 8, 16}. For slower binding and unbinding
dynamics (yellow line for n = 0.5, Figure 8A), the modes
of the distribution of the output of protein C are even better
distinguished. However, when both binding and unbinding rates

are increased to n = 8 fold (green line), the probability peak at
C = 9, which corresponds to basal level of C expression, merges

with the probability peak at C = 0. At n = 16, the distribution of
C is bimodal.

We then keep the biding affinity between gene c and protein

A unchanged and alter only the binding affinity between gene

c and protein B by n-fold, where n ∈ {0.5, 2, 8, 16}. When
the binding affinity increases (e.g., n = 8), the probability

peak at C = 9 disappears, while the probability peak at high

copy number of C = 49 robustly remains, although with less
magnitude (Figure 8B).

When only the biding affinity between gene c and protein

A is altered while that between gene c and protein B is held

constant (Figure 8C), the probability peak at the basal level of
C expression (C = 9) diminishes when the binding affinity
increases (e.g., n = 8). However, the probability peak at C = 49
becomes more prominent. At n = 8, the distribution of C is
tri-modal. At n = 16, it becomes bimodal. This indicates that
multiple phenotypes arise in FFLs when the unbinding rate is
about an order of magnitude smaller than the expression rate of
the protein.

3.5. Gene Duplication Can Enrich
Phenotypic Diversity and Enlarge Stable
Regions of Specific Multimodality of FFLs
Gene duplication provides a basic route of evolution (Lynch
and Conery, 2000) and is an important driver of phenotypical
diversity in organisms (Conrad and Antonarakis, 2007). Here, we
study how gene duplication affects the phenotypes of FFLs.

We examine how duplication of gene c and separately
duplication of gene b affect the behavior of the FFL network
modules. With two copies of gene c, there can be six possible
states of gene c activation. Depending on whether the promoter
sites of both copies of gene c are free or occupied by either protein
A or protein B, we have for both c genes to have unoccupied,
protein A bound, or protein B bound promoter site. This can be
denoted as a triplet (c, cA, cB), which can take any of the possible
values of (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), and (0, 1, 1).
For the case when there are two copy number of gene B, there are
three possible states of gene b activation, depending on whether
the promoter site of both copies of gene b are free or occupied by
protein A. This can be denoted as a duplicate (b, bA), which can
take any of the possible values of (2, 0), (1, 1), or (0, 2).

The phase diagrams of the number of modes of stability peaks
are shown in Figure 9, when there is only one copy of both gene
b and gene c (first row), when there are two copies of gene c
but one copy of gene b (second row), and when there are two
copy number of gene b but one copy of gene c (third row). The
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FIGURE 8 | Effect of binding dynamics on the modality of protein C in the feed-forward loop (FFL) network of type I1, with (k1, k2, k3) = (3.0, 0.025, 5.1). (A) Effects

when binding affinity between gene c and both protein A and protein B are altered by n-fold, where n ∈ {0.5, 2, 8, 16}. At slower binding (yellow line), the modes of

distribution of protein C are well-distinguished. However, when the binding and unbinding rates increased to 8 (green line), the peak at C = 9 disappears. At n = 16,

bimodality is observed in protein C. (B) Effects when only the binding affinity of gene c and protein B is altered by n-fold, where n ∈ {0.5, 2, 8, 16}. When the binding

affinity of gen c and protein B increases, the peak at C = 9 disappears, while the peaks at C = 49 robustly remains. However, the peak at C = 49 becomes less

significant. (C) Effects when only the binding affinity of gen c and protein A is altered by n-fold, where n ∈ {0.5, 2, 8, 16}. At high binding affinity, the peak at C = 9

disappears while the peak at C = 49 becomes more prominent.

conditions are k1 = 0.025, 0.8, 1.5, and 2.4, for different values of
k2 ∈ [0.1, 5] and k3 ∈ [0.1, 5], where there are slow binding and
unbinding (rA

b
= rAc = rBc = 0.005, f A

b
= f Ac = f Bc = 0.1). Each

phase diagram in Figure 9 consists of 400 steady-state probability
landscapes with a total 12× 400 = 4, 800 landscapes. This broad
range of parameters allow us to study all 8 different modules of
FFL network and the effects of gene c and gene b duplications.

We examine the behavior of FFL in three different regimes
of k1: (1) When k1 ≪ 1.0 (Figure 9, first column), the bimodal
regions (green) expands when there are two copies of gene c
(second row), but there are no significant changes when there are
two copies of gene b (third row). The overall size of multimodal
regions increases in both cases. (2) When k1 ≈ 1.0 (Figure 9,
second and third columns), the duplication of gene c (second
row) expands the regions with three stability peaks and reduces
regions with two peaks. In contrast, the duplication of gene b
(third row) has no significant effects on multimodality. (3) When
k1 = 2.4 (fourth column), duplication of gene c (second row)
expands regions with two and six stability peaks. Duplication
of gene b (third row) reduces the region with four peaks and
expands the region with five peaks.

These results show that introducing additional copy of gene
b or gene c not only can enrich different phenotypic behavior
but can also increase the stability of specific phenotypic states,
namely, enlarge regions of particular phenotypes by uniting
previously different phenotypic regions together. Overall, gene
duplication can increase phenotypic diversity, and enlarge
stability regions of specific multimodal states.

Bacterial cells have fast binding and unbinding dynamics (Ali
Al-Radhawi et al., 2019), and it is unlikely that the occurrence
of multiple copies of the same gene in FFLs plays significant
roles in stochastic multimodality. In contrast, mammalian cells
have slower promoter dynamics (Forger and Peskin, 2003).
Gene duplication in FFLs may provide a natural mechanism
for enriched multimodality with enhanced stochastic phenotypic

switching. This is reflected in reduced monomodal regions,
and enlarged multimodal regions where there are 4 (orange), 5
(purple), and 6 (brown) phenotypic states of the outputC (second
and third row in Figure 9).

Assuming that initially both copies of the gene were
functioning, but subsequently one gene copy lost its biochemical
function due to mutations, we can expect two opposite types of
scenarios to occur: If regulation intensities are strong (k2 and
k3 are large), one of the phenotypic states becomes lost (e.g.,
green region becomes light blue, and orange region becomes
red, Figure 9). If regulation intensities are weak, the duplication
of gene c or gene b can lead to enlargement of the region of
monomodality. It can also lead to the appearance of new regimes
where there are a larger number of multimodality modes (orange,
purple, and green regions in Figure 9). That is, gene duplication
can create new stable states, leading to an enlarged number
of high probability states. This, however, occurs only in FFL
modules with strong regulations intensities. FFL modules with
low regulation intensities instead lose phenotypical diversity and
become more robust in monomodality with enlarged region in
the parameter space.

4. DISCUSSION

Gene regulatory networks (GRNs) play critical roles in defining
cellular phenotypes but it is challenging to characterize the
behavior of GRNs. Although GRNs may consist of dozens
or more of genes and proteins, their functions often can be
defined by smaller sub-networks called network motifs. How
small network motifs are responsible for complex properties such
as the maintenance of multi-phenotypic behavior or modules
is poorly understood. Current widely practiced approach is
studying network motifs using deterministic models. However,
this approach imposes restrictions on the types of network motifs
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FIGURE 9 | Phase diagram of the effects of gene duplication on multimodality of feed-forward loops (FFLs). First row: Phase diagrams of the modality of stability

peaks when there are one copy of gene c and one copy of gene b. Second row: Phase diagrams when there are one copy of gene b and two copies of gene c. Third

row: Phase diagram, when there are two copy of gene b and one copy of gene c. The first, second, and third columns are for k1 = 0.025, 1.5, and 2.4, respectively.

Color scheme (vertical bar): Blue, green, red, orange, purple, and brown represent regions with one, two, three, four, five, and six peaks, respectively.

capable of exhibiting multimodal phenotype to mostly feedback
networks.

In this study, we examined the FFL network motifs, one of
the most ubiquitous three-node network motifs. Although their
deterministic behavior is well-studied, with great understanding
of their functions such as signal processing and adaptations
gained, their stochastic behavior remains poorly characterized.

Here, we showed the direct regulation path from the input
node to the output node and the indirect path through the
intermediate buffer node provide the necessary architecture
for distinct multiple modalities. Phase diagrams of FFL in
Figure 6 show that FFLs of various types can exhibit different
multimodality. At large copy numbers and large volume, our
model of stochastic reaction kinetics are the same as those
based on mass action kinetics (Kurtz, 1971, 1972; Vellela
and Qian, 2007), where ordinary differential equation (ODE)
models are appropriate. When ODE models are applied to
enzyme–substrate reactions, they can be further approximated

by Michaelis–Menten kinetics, with the additional assumption
that the substrate is in instantaneous chemical equilibrium with
the enzyme–substrate complex. When ODE models are applied
to the reaction of one receptor and n identical simultaneously
binding ligands, we arrive at the Hill equation, with the
coefficient n phenomenologically characterizing cooperativity.
These kinetic models based on ODE approximations, however,
are not applicable to the current study, as we are examining
strong stochasticity arising at low copy number of molecules,
where ODE models are not valid.

FFLs play important roles in gene regulatory networks. For
example, it is shown that several I1-FFL sub-networks control the
process of Bacillus subtilis sporulation (Eichenberger et al., 2004;
Mangan et al., 2006). In addition, C1-FFL network is found to
be present in the L-arabinose (ara) utilization system of E. coli,
where araBAD is the target (gene c) activated by the intermediate
gene araC and the input gene CRP. Gene araC is also activated by
CRP. Therefore, they form a 3-node C1 type FFL (Mangan et al.,
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2003). Results in this work can help to gain understanding of the
behavior of these different types of FFLs found in gene regulatory
networks.

In addition, we have shown that input intensity affects the
multimodal behavior of various types of FFLs. Examples shown
in Figure 7 demonstrate that at high k1 values, input intensity
dramatically changes the multimodality as shown in the phase
diagrams. Our results are consistent with previous findings that
input intensity is an important factor in determining output
intensity of FFLs (Mangan et al., 2003; Goentoro et al., 2009; Lin
et al., 2018). Here, we further demonstrated that input intensity
is also important in determining the modality of the steady-state
behavior of FFLs.

In mammalian cells, slow dynamics of transcription factor
binding to promoter is often observed (Dermitzakis and Clark,
2002; Hager et al., 2009; Lickwar et al., 2012; Tuǧrul et al., 2015;
Hasegawa and Struhl, 2019). This is likely due to the complex
process of chromatin regions opening up so they become
accessible and the slow nature of events such as promoter,
enhancer, and mediator binding. These physical processes result
in highly stochastic behavior of networks. Stochastic models
have demonstrated that complex multimodality phenotypes can
naturally arise from stochastic fluctuations when genes have
distinct expression levels, a phenomenon widely observed in
mammalian cells (Cao et al., 2018). We showed that binding and
unbinding dynamics are critical for multi-phenotypic behavior.
For an I1-FFL with (k1, k2, k3) = (3.0, 0.025, 5.1), Figure 8
highlighted that binding and unbinding rates affect multiple
peaks in protein C.

Results of this study indeed showed that once stochastic
fluctuations between distinct expression levels due to slow
promoter dynamics are considered, FFLs can exhibit complex
multimodal phenotypes. When the expression levels of the
output gene (gene c) at the inhibited, basal, and activated states
are well-separated, three distinct phenotypes arise. Combined
with two additional possible phenotypes of different levels of
gene b expression, we can have up to six modalities for FFLs.
Furthermore, high intensity of input amplifies multimodality
in FFLs, suggesting that the FFL architecture are favored for
maintaining multiple phenotypic states. In addition, we find
that regulation intensities are key determinants of specific
stochastic behavior of FFLs, which could be tuned in order
to obtain any desired phenotypic behavior between 1 and 6
stability modes.

Our study also revealed the roles of gene duplication.
When there are two copies of gene c, while one in principle
could expect 2 × 6 = 12 different phenotypes for the
output protein C. This is, however, not observed, as the
regulation intensities or reaction rates are not well-separated.
In contrast, instead of further increase in multimodality beyond
six, we observe the expansion of the area of monomodality,
resulting from the connectedness of regions of expression
with different rates that are merged together. Our results
showed that duplication of gene b and gene c not only can
enrich different phenotypic behavior but can also increase the
stability of certain phenotypic states, while decreasing others
(Figure 9). We showed that in general, gene duplication can

enrich phenotypic diversity. The presence and functional roles
of gene duplication are well-known (Hurles, 2004). For example,
in human-induced pluripotent stem cells (HiPSCs), chromosome
12 duplication leads to significant enrichment of cell cycle related
genes (Mayshar et al., 2010), in which FFL sub-networks play
important roles. This abnormality results in increase in the
tumorigenicity of HiPSCs. Our findings may also shed light
on how gene duplication affects cellular adaptation to changing
environment (Kondrashov, 2012): As the support regions of
monomodality are enlarged, smaller fluctuations in regulation
intensities will not switch cells with duplicated genes to a different
phenotypic state. Thus, gene duplication may help to stabilize
the behavior of the network, so cells are better adapted to a
changing environment.

Analysis of stochastic behavior of FFLs reported here have
implications in a variety of biological problems. For example,
the stem cell regulation network consisting of pluripotency
transcription factors Oct4 and Nanog maintain pluripotency
against differentiation (Boyer et al., 2005; Chickarmane et al.,
2006; Papatsenko et al., 2015; Lin et al., 2018). A component of
this network can be abstracted as an FFL: Nanog participates as
the intermediate node (gene b, which is activated by Oct4 (gene
a), and both regulate the expression of genes associated with the
onset of differentiation or pluripotency (gene cs). In addition,
regulation networks in hematopoietic stem cells are formed by
two FFL networks involving β globin, GATA-1, EKLF, and FOG-
1. In each network, FOG-1 and EKLF function as the intermediate
genes (gene b) and are activated by GATA-1 (gene a), while all of
them activate β globin (gene c) (Swiers et al., 2006). Moreover,
in other stem cell differentiation networks, there are several sub-
networks that exhibit behaviors of different types of FFLs. For
example,Klf4 (gene a) activates Pou5f1 (gene b) and inhibits Sox2
(gene c), while Pou5f1 activated Sox2 (Onichtchouk et al., 2010;
Okawa et al., 2016), as in the C3-type FFL (Figure 1).

In summary, we have constructed and analyzed the exact high-
dimensional steady-state probability landscapes of FFLs under
broad conditions and have constructed their phase diagrams
in multimodality. These results are based on 10,812 exactly
computed probability landscapes and their topological features
as measured by persistent homology. With slow binding and
unbinding dynamics of transcription factor binding to promoter,
FFLs exhibit strong stochastic behavior that is very different
from deterministic models, and can exhibit from 1 up to 6
stability peaks. In addition, input intensity play major roles in
the phenotypes of FFLs: At weak input intensity, FFLs exhibit
monomodality, but strong input intensity may result in up to 6
stable phenotypes. Furthermore, we found that gene duplication
can enrich the diversity of FFL network phenotypes and enlarge
stable regions of specific multimodalities.

Results reported here can be useful for constructing synthetic
networks, and for selecting model parameters, so a particular
desirable phenotypic behavior can materialize (Jones et al., 2020).
Our results can also be used for analysis of behavior of FFLs
in biological processes such as stem cell differentiation and for
design of synthetic networks with desired phenotype behavior.
We hope results reported here for different types of FFL can be
tested experimentally.
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