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Single-cell RNA sequencing (scRNA-seq) is a high-throughput sequencing technology
performed at the level of an individual cell, which can have a potential to understand
cellular heterogeneity. However, scRNA-seq data are high-dimensional, noisy, and
sparse data. Dimension reduction is an important step in downstream analysis of
scRNA-seq. Therefore, several dimension reduction methods have been developed.
We developed a strategy to evaluate the stability, accuracy, and computing cost of 10
dimensionality reduction methods using 30 simulation datasets and five real datasets.
Additionally, we investigated the sensitivity of all the methods to hyperparameter
tuning and gave users appropriate suggestions. We found that t-distributed stochastic
neighbor embedding (t-SNE) yielded the best overall performance with the highest
accuracy and computing cost. Meanwhile, uniform manifold approximation and
projection (UMAP) exhibited the highest stability, as well as moderate accuracy and
the second highest computing cost. UMAP well preserves the original cohesion and
separation of cell populations. In addition, it is worth noting that users need to set
the hyperparameters according to the specific situation before using the dimensionality
reduction methods based on non-linear model and neural network.

Keywords: single-cell RNA-seq, dimension reduction, benchmark, sequences analysis, deep learning

INTRODUCTION

The technological advances in single-cell RNA sequencing (scRNA-seq) have allowed to measure
the DNA and/or RNA molecules in single cells, enabling us to identify novel cell types, cell states,
trace development lineages, and reconstruct the spatial organization of cells (Hedlund and Deng,
2018). Single-cell technology has become a research hotspot. However, such analysis heavily relies
on the accurate similarity assessment of a pair of cells, which poses unique challenges such as
outlier cell populations, transcript amplification noise, and dropout events. Additionally, single-cell
datasets are typically high dimensional in large numbers of measured cells. For example, scRNA-
seq can theoretically measure the expression of all the genes in tens of thousands of cells in a single
experiment (Wagner et al., 2016). Although whole-transcriptome analyses avoid the bias of using a
predefined gene set (Jiang et al., 2015), the dimensionality of such datasets is typically too high for
most modeling algorithms to process directly. Moreover, biological systems own the lower intrinsic
dimensionality. For example, a differentiating hematopoietic cell can be represented by two or more
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dimensions: one denotes how far it has progressed in its
differentiation toward a particular cell type, and at least
another dimension denotes its current cell-cycle stage.
Therefore, dimensionality reduction is necessary to project
high-dimensional data into low-dimensional space to visualize
the cluster structures and development trajectory inference.

Research on data dimension reduction has a long history,
and principal component analysis (PCA), which is still widely
used, can be traced back to 1901. Since the advent of RNA-seq
technology, this linear dimension-reduction method has been
favored by researchers. In addition, there are non-linear methods
such as uniform manifold approximation and projection
(UMAP) and t-distributed stochastic neighbor embedding (t-
SNE) to reduce dimension. After the rise of neural network,
there are many methods of dimensionality reduction based
on neural network such as variational autoencoder (VAE). In
addition, there are some new theoretical frameworks such as the
multikernel learning [single-cell interpretation via multikernel
learning (SIMLR)] based on the above methods that have been
or are being developed to handle increasingly diverse scRNA-
seq data.

In this study, we performed a comprehensive evaluation
of 10 different dimensionality reduction algorithms comprising
the linear method, the non-linear method, the neural network,
model-based method, and ensemble method. These algorithms
were run and compared on simulated and real datasets. The
performance of the algorithms was evaluated based on accuracy,
stability, computing cost, and sensitivity to hyperparameters.
This work will be helpful in developing new algorithms in the
field. The workflow of the benchmark framework is shown in
Figure 1.

MATERIALS AND METHODS

Methods for Dimensionality Reduction
To our knowledge, about 10 methods are now available to obtain
a low-dimensional representation for scRNA-seq data. In this
section, we gave an overview of these 10 methods (Table 1).

PCA
As the most widely used dimensionality reduction algorithm,
PCA (Jolliffe, 2002) identifies dominant patterns and the linear
combinations of the original variables with maximum variance.
The basic idea of PCA is to find the first principal component
with the largest variance in the data and then seek the second
component in the same way, which is uncorrelated with the
first component and accounts for the next largest variance. This
process repeats until the new component is almost ineffective or
reaches the threshold set by users.

ICA
Independent component analysis (ICA) (Liebermeister, 2002),
also known as blind source separation (BSS), is a statistical
calculation technique used to reveal the factors behind random
variables, measured values, and signals. ICA linearly transforms
the variables (corresponding to the cells) into independent

components with minimal statistical dependencies between
them. Unlike PCA, ICA requires the source signal to meet the
following two conditions: (1) source signals are independent of
each other and (2) the values in each source signal have a non-
Gaussian distribution. It assumes that the observed stochastic
signal x obeys the model x = As, where s is the unknown
source signal, its components are independent of each other, and
A is an unknown mixing matrix. The purpose of the ICA is to
estimate the mixing matrix A and the source signal s by and only
by observing x.

ZIFA
The dropout events in scRNA-seq data may make the classic
dimensionality reduction algorithm unsuitable. Pierson and
Yau (2015) modified the factor analysis framework to solve
the dropout problem and provided a method zero-inflated
factor analysis (ZIFA) based on an additional zero-inflation
modulation layer for reducing the dimension of single-cell gene
expression data. Compared with the above two linear methods,
employing the zero-inflation model can give ZIFA more powerful
projection capabilities but will pay a corresponding cost in
computational complexity.

In the statistical model, the expression level of the jth gene in
the ith sample yij (i = 1,. . ., N and j = 1,. . .,D) is described:

zi ∼ Normal (0, I) ,

xi|zi ∼ Normal (Azi + µ, W) ,

hij|xij ∼ Bernoulli
(
p0
)
,

yij =

{
xij, if hij = 0
0, if hij = 1

where zi is a K × 1 data point in a latent low-dimensional space.
A denotes a D× K factor loadings matrix, H is a D× N masking
matrix, W = diag(σ2

1, · · · , σ
2
D) a D × D diagonal matrix, and

µ is a D × 1 mean vector. Dropout probability p0 is a function
of the latent expression level, p0 = exp?(−λx2

ij), where λ is the
exponential decay parameter in the zero-inflation model.

Zero-inflated factor analysis adopted the expectation–
maximization (EM) algorithm to infer model parameters
2 = (A, σ2, µ, λ) that maximize the likelihood p (Y | θ ).

GrandPrix
GrandPrix (Ahmed et al., 2019) is based on the variational
sparse approximation of the Bayesian Gaussian process latent
variable model (Titsias and Lawrence, 2010) to project data
to lower dimensional spaces. It requires only a small number
of inducing points to efficiently generate a full posterior
distribution. GrandPrix optimizes the coordinate position in the
latent space by maximizing the joint density of the observation
data, and then establishes a mapping from low-dimensional space
to high-dimensional space.

The expression profile of each gene y is modeled as yg
is considered a non-linear function of pseudotime which
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FIGURE 1 | An overview for benchmarking dimensionality reduction methods. The 10 dimensionality reduction methods were evaluated on real scRNA-seq
expression datasets and simulation data. k-means was used to cluster low-dimensional latent space. The accuracy, stability, computing cost, and sensitivity to
hyperparameters were used to systematically evaluate these methods.

TABLE 1 | Summary of dimensionality reduction methods.

Methods Year Method strategy Platform Input Available URL Version References

PCA 1987 Linear R Counts R Package Seurat 3.1.0 Jolliffe, 2002

ICA 2001 Linear R Counts R Package Seurat 3.1.0 Liebermeister, 2002

ZIFA 2015 Model-based Python Counts https://github.com/epierson9/ZIFA 0.1 Pierson and Yau, 2015

GrandPrix 2017 Non-linear Python 1,000 highly
genes

https://github.com/ManchesterBioinference/
GrandPrix

0.1 Ahmed et al., 2019

t-SNE 2008 Non-linear R Counts R Package Rtsne 0.15 Maaten and Hinton, 2008

UMAP 2018 Non-linear R/Python Counts https://github.com/lmcinnes/umap 0.3.1 McInnes et al., 2018

DCA 2019 Neural network Python 1,000 Highly
genes

https://github.com/theislab/dca 0.2.2 Eraslan et al., 2019

scvis 2018 Neural network Python PCA-100 https://bitbucket.org/jerry00/scvis-dev 0.1.0 Ding et al., 2018

VAE 2019 Neural network Python Counts https://github.com/greenelab/CZI-Latent-
Assessment/tree/master/single_cell_analysis

NA Hu and Greene, 2019

SIMLR 2017 Ensemble method R Counts https://github.com/BatzoglouLabSU/SIMLR 1.6.0 Wang et al., 2017

accompanies with some noise ∈:

yg = fg (t, x)+ ∈

where
fg (t, x)∼GP(0, σ2k((t, x) , (t, x)∗))

∈∼ N(0,σ2
noise) is a Gaussian distribution with variance σ2

noise, x is
the extra latent dimension, σ2 is the process variance, and k(t, t∗)

is the covariance function between two distinct pseudotime
points t and t∗. GrandPrix employed the variational free energy
(VFE) approximation for inference.

t-SNE
t-Distributed stochastic neighbor embedding is a state-of-the-
art dimensionality reduction algorithm for non-linear data
representation that produces a low-dimensional distribution
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of high-dimensional data (Maaten and Hinton, 2008; Van
Der Maaten, 2014). It excels at revealing local structure in
high-dimensional data. t-SNE is based on the SNE (Hinton
and Roweis, 2002), which starts from converting the high-
dimensional Euclidean distances between data points into
conditional probabilities that represent similarities. The main
idea and the modifications of t-SNE are (1) the symmetric version
of SNE and (2) using a Student’s t distribution to compute the
similarity between two points in the low-dimensional space.

UMAP
Uniform manifold approximation and projection is a dimension
reduction technique that can be used not only for visualization
similarly to t-SNE but also for general non-linear dimension
reduction. Compared with t-SNE, UMAP retains more global
structure with superior run-time performance (McInnes et al.,
2018; Becht et al., 2019).

The algorithm is based on three assumptions about the
data: (a) the data are uniformly distributed on the Riemannian
manifold; (b) the Riemannian metric is locally constant
(or can be approximated); and (c) the manifold is locally
connected. According to these assumptions, the manifold
with fuzzy topology can be modeled. The embedding is
found by searching the low-dimensional projection of the
data with the closest equivalent fuzzy topology. In terms of
model construction, UMAP includes two steps: (1) building a
particular weighted k-neighbor graph using the nearest-neighbor
descent algorithm (Dong et al., 2011) and (2) computing
a low-dimensional representation which can preserve desired
characteristics of this graph.

DCA
Deep count autoencoder (DCA) can denoise scRNA-seq data
by deep learning (Eraslan et al., 2019). It extends the typical
autoencoder approach to solve denoising and imputation tasks
in in one step. The autoencoder framework of DCA is composed
by default of three hidden layers with neurons of 64, 32, and
64, respectively, with zero-inflated negative binomial (ZINB) loss
functions (Salehi and Roudbari, 2015), learning three parameters
of the negative binomial distribution: mean, dispersion, and
dropout. The inferred mean parameter of the distribution
represents the denoised reconstruction and the main output of
DCA. The deep leaning framework enables DCA to capture the
complexity and non-linearity in scRNA-seq data. Additionally,
DCA can be applied to datasets with more than millions of cells.
DCA is parallelizable through a graphics processing unit (GPU)
to increase the speed.

Scvis
Scvis is a statistical model to capture the low-dimensional
structures in scRNA-seq (Ding et al., 2018). The assumption
of scvis is a high-dimensional gene expression vector xn of
cell n which can be generated by drawing a sample from the
distribution p(x|z, θ). Here, z is a low-dimensional latent vector
which follows a simple distribution, e.g., a two-dimensional
standard normal distribution. The data-point-specific parameters
θ are the output of a feedforward neural network. To better

visualize the manifold structure of an scRNA-seq dataset, scvis
applies t-SNE objective function on the latent z distribution as
a constraint to make cells with similar expression profiles to
be close in the latent space. In addition, scvis also provides log
likelihood ratio to measure the quality of embedding, which can
potentially be used for outlier detection.

VAE
Variational autoencoder is a data-driven, unsupervised model for
dimension reduction using an autoencoding framework, built
in Keras with a TensorFlow backend (Hu and Greene, 2019).
Comparing with a traditional autoencoder, VAE determined non-
linear explanatory features over samples through learning two
different latent representations: a mean and standard deviation
vector encoding.

The model is mainly composed of two connected neural
networks, encoder and decoder. The scRNA-seq data are
compressed by the encoder and reconstructed by the decoder.
The variable probability Q(z|X) is used to approximate the
posterior distribution P(z|X), and it is optimized to minimize
the Kullback–Leibler divergence between Q(z|X) and P(z|X) and
reconstruction loss. Here, the encoder network is designed as a
zero- to two-layer fully connected neural network to generate the
mean and variance of a Gaussian distribution qθ(z|X), and then
the representative latent space z is sampled from this distribution.
The decoder is also a zero- to two-layer fully connected neural
network to reconstruct the count matrix.

SIMLR
Single-cell interpretation via multikernel learning performs
dimension reduction through learning a symmetric matrix
SN × N that captures the cell-to-cell similarity from the input
scRNA-seq data (Wang et al., 2017). The assumption of SIMLR is
that SN = N should have an approximate block-diagonal structure
with C blocks if the input cells have C cell types. SIMLR
learns proper weights for multiple kernels, which are different
measures of cell-to-cell distances, and constructs a symmetric
similarity matrix.

Specifically, developers first define the distance between cell i
and cell j asD

(
ci, cj

)
:

D
(
ci, cj

)
= 2− 2

∑
l

wlKl
(
ci, cj

)
,
∑

l

wl = 1, wl ≥ 0,

where each linear weight w represents the importance of each
kernel K, which is an expression function for cell i and cell j. In
addition, SIMLR applies the following optimization framework
to compute cell-to-cell similarity S:

minimize
S, L, W

−

∑
i,j,l

wlKl
(
ci, cj

)
Sij + β||S||2F + γ · tr

(
LT (IN − S) L

)
+ρ

∑
l

wllogwl

subject to

LTL = IC
∑

j

wl = 1, wl ≥ 0,
∑

j

Sij = 1 andSij = 0
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where IN and IC are N × N and C × C identification matrices,
respectively, and β and γ are non-negative tuning parameters; L
denotes an auxiliary low-dimensional matrix enforcing the low
rank constraint on S, tr(.) denotes the matrix trace, and |S|F
represents the Frobenius norm of S. The optimization problem
has three variables: the similarity matrix S, the weight vector
w, and an N × C rank-enforcing matrix L. SIMLR solves the
optimization problem through updating each variable and fixing
the other two variables.

Single-cell interpretation via multikernel learning used the
stochastic neighbor embedding (SNE) method (Maaten and
Hinton, 2008) to dimension reduction based on the cell-
to-cell similarity S learned from the above optimization
model. However, the objective function of SIMLR involves
large-scale matrix multiplication, which leads to a large
amount of calculation; thus, it is difficult to extend to high-
dimensional datasets.

Simulated scRNA-seq Datasets
To investigate the sensitivity of some characteristics of scRNA-
seq datasets including cell type number, the number of cells
and genes, outliers, and dropout event, we generated simulated
datasets using the Splatter R package (Zappia et al., 2017).
Function splatSimulate() is used to generate simulations, and
setParams() is used to set specific parameters. First, we initialized
the number of cell types as 5, the cell number as 2,000, the
gene numbers as 5,000, and the probability of expression outlier
as 0.05. When generating the simulated scRNA-seq data, we
updated each parameter and fixed other parameters. Specifically,
we generated the simulated data with variable numbers of cell
types (5, 7, 9, 11, 13), cells (100, 500, 1,000, 2,000, 5,000, 10,000,
20,000, 30,000, 40,000, 50,000), genes (10,000, 20,000, 30,000,
40,000, 50,000), and probabilities of expression outliers (0.1, 0.2,
0.3, 0.4, 0.5). In addition, considering the impact of dropout,
we also simulated datasets with five different levels of dropout
(dropout.mid = −1, 0, 1, 2, 3, the larger the parameter, the
more the points will be marked as 0); other parameters are set
as default. Here, the probability of zero value in the data is
41, 53, 62, 71, and 80%, respectively. The detailed parameters
are provided in Supplementary Table 1. In total, we created
30 simulated scRNA-seq datasets. The raw expression count
matrices of these datasets are generated and normalized to suit
for each investigated method.

Real scRNA-seq Datasets
This study analyzed five real scRNA-seq datasets, all of which
were downloaded from the publicly available EMBL or GEO
databases (Supplementary Table 2). They are derived from
different species and organs, covering a variety of cell types
and data dimensions. Cell types of every dataset provided in
original experiments were used as a gold standard to evaluate
dimension reduction methods. The descriptions of all the scRNA-
seq datasets are as follows:

1. Deng dataset: isolated cells from F1 embryos from oocyte to
blastocyst stages of mouse preimplantation development with

six cell types were collected and sequenced by Smart-Seq2
(Deng et al., 2014).

2. Chu dataset: single undifferentiated H1 cells and definitive
endoderm cells (DECs) from human embryonic stem cells
sequenced by SMARTer (Chu et al., 2016).

3. Kolodziejczyk dataset: mouse embryonic stem cells
from different culture conditions with three cell
types (Kolodziejczyk et al., 2015). Each library was
sequenced by SMARTer.

4. Segerstolpe dataset: human pancreatic islet cells with 15 cell
types obtained by Smart-Seq2 (Segerstolpe et al., 2016).

Additionally, we use PBMCs from a healthy human
(PBMC68k dataset) (Zheng et al., 2017) generated by the
10X Genomics platform to assess the scalability of methods.

Evaluation Metrics
To compare different dimension reduction methods, we
performed the iterative k-means clustering on the low-
dimensional representation of scRNA-seq data. Taking into
account the randomness of k-means clustering when setting the
initial cluster centroids, we performed k-means clustering 50
times to obtain a stable metric, and then set the cluster number
k to the true cell type number. The evaluation metrics comparing
the results to the true cell types are adjusted rand index (ARI),
normalized mutual information (NMI), and Silhouette score.

Adjusted rand index (Santos and Embrechts, 2009) is a widely
used metric which calculates the similarity between the two
clustering results, which ranges from 0 to 1. A larger score means
that two clusters are more consistent with each other. Conversely,
when the clustering results are randomly generated, the score
should be close to zero. Given two clustering X and Y,

ARI =

(
n
2

) (
a+ d

)
− [
(
a+ b

)
(a+ c)+ (c+ d)(b+ d)](

n
2

)
− [
(
a+ b

)
(a+ c)+

(
c+ d

)
(b+ d)]

where a is the number of objects in a pair placed in the same
group in X and in the same group in Y; b is the number of objects
in a pair placed in the same group in X and in different groups
in Y; c is the number of objects in a pair placed in the same
group in Y and in different groups in X; and d is the number
of objects in a pair placed in the different groups in Y and in
different groups in X.

Normalized mutual information (Emmons et al., 2016) is used
to estimate the concordance between the obtained clustering and
the true labels of cells. NMI value is from 0 to 1. A higher NMI
refers to higher consistency with the golden standard.

Specifically, given two clustering results X and Y on a dataset,
NMI = I(X, Y/max{H (U) , H(V)}, where

I (X, Y) =
∑
x,y

p(x, y)log
p(x, y)

p(x)p(y)

U (X, Y) =
2 · I (X, Y)

H (X) , H(Y)
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H (X) =

n∑
i = 1

p (xi) I (xi) =

n∑
i = 1

p (xi) logb
1

p (xi)

= −

n∑
i = 1

p (xi) logbp (xi)

Silhouette coefficient (Aranganayagi and Thangavel, 2007)
measures how well each cell lies with its own cluster, which
indicates the separability of each individual cluster. The value of
Silhouette coefficient s (i) is between −1 and 1; 1 means that the
cell is far away from its neighboring clusters, whereas −1 means
that the cell is far away from points of the same cluster.

s (i) =
b (i)− a(i)

max{a (i) , b(i)}

where a(i) is the average distance from cell i to other cells in the
same cluster and b(i) is the average distance from cell i to all
cells in other clusters. Average s(i) over all the cells indicates how
separable each cell type in the low-dimensional representation,
which we call the Silhouette score.

Computing Cost
Computing cost of each method is estimated by monitoring
the running time and peak memory usage. We analyzed the
PBMC68k datasets from 10X Genomics. The raw count matrix
was downsampled to 100, 500, 1,000, 2,000, 5,000, 10,000, 20,000,
30,000, 50,000, and 68,579 cells with 1,000 highly variable genes.
All methods were run on the 10 downsampled datasets. We use
the command pidstat from the sysstat tool to return the peak
memory usage of the process in operation. When calculating the
running time, we used the function system.time() in R. In this
step, only the running time of the model is considered, and other
processes such as data loading are excluded.

Overall Performance Score
To rank methods, the overall scores of the methods were
calculated through aggregating accuracy, stability, and
computing cost (Zhang et al., 2020). After k-means clustering,
we used the known cell populations to calculate the ARI,
NMI, and Silhouette scores for simulated data and real data,
respectively. For accuracy, scaled mean ARI, scaled NMI, and
scaled Silhouette scores obtained from real data were aggregated
to the accuracy score. For stability, aggregated scaled scores
across different simulation datasets were denoted as the stability
score of each method. For the computing cost, we first scale the
running time and memory usage to get a value ranging from 0 to
1. Then, we averaged scaled running time and memory usage to
obtain the computing cost. Finally, we integrated the accuracy,
stability, and computing cost with a ratio of 40:40:20 into the
overall performance score of each method.

RESULTS

We benchmarked a total of 10 methods on 30 simulated and
five real datasets. We normalized scRNA-seq data based on

the corresponding method, and then performed dimensionality
reduction to obtain 2D latent space. k-Means clustering method
was used to perform cluster analysis. Finally, the methods
were compared using accuracy, stability, computing cost, and
sensitivity to hyperparameters (Figure 1).

Evaluation of Stability
We used 30 simulated datasets to assess the stability of the 10
dimensionality reduction methods with respect to the number of
cell type, cells and genes, outliers, and dropout event.

First, we investigated the effect of cell type numbers to
the approaches. We fixed the cell number (n = 2,000), gene
number (n = 5,000), and probability of outliers (p = 0.05),
and then changed the cell type number from 5 to 13
stepped by 2. As the number of cell types increased, the
performance of PCA, ICA, and GrandPrix descended faster
(Figure 2A). While the performance of ZIFA, VAE, SIMLR,
scvis, and DCA decreased slightly, UMAP and t-SNE fluctuated.
Generally, ZIFA, VAE, SIMLR, scvis, DCA, UMAP, and t-SNE
have better stability with respect to cell type number than
PCA, ICA, and GrandPrix, since their standard deviation is
relatively small.

Second, we changed the cell number from 100 to 50,000
and fixed other factors. It was found that too many or
too few cells are not conducive to the construction of low-
dimensional space of single-cell RNA-seq data. All the methods’
performance fluctuated greatly except for PCA and UMAP. PCA
and UMAP have strong adaptability to cell number change
based on standard deviation (Figure 2B). All of the methods
obtained the best performance between 1,000 and 10,000 cells.
It is worth noting that SIMLR has a high computational
complexity as it involves large matrix operations which could
not perform dimensionality reduction on data with a cell count
greater than or equal to 10,000. Additionally, all the methods
except PCA and ZIFA have good stability with respect to gene
number (Figure 2C).

To investigate the effect of the complex cell mixtures to
methods, we simulated expression outliers; it was found that
the performance of all the methods is stable to expression
outliers (Figure 3A). Finally, we randomly dropped expressed
genes in each cell to investigate the ability of methods to
deal with datasets with various library sizes. Generally, ZIFA,
VAE, UMAP, t-SNE, SIMLR, and GrandPrix showed a stable
performance, whereas the performance of scvis, PCA, ICA, and
DCA decreased remarkably with the increase in the dropout
ratio (Figure 3B).

We found that the stability of each method is different with
respect to the number of cell types, cells and genes, outliers,
and dropout rate. To evaluate the overall stability of each
method, we aggregated all the metrics across simulation datasets
to obtain the overall stability score (see section “Materials and
Methods”). In summary, the overall stability scores showed that
the performance of UMAP has shown more stability than the
other methods. Conversely, ICA has poor stability (Figure 4).
It is worth mentioning that the Silhouette score of UMAP is
significantly higher than the other methods in all simulation tests,
indicating that it better separated distinct cell types.
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FIGURE 2 | Evaluation stability of the 10 dimensionality reduction methods on simulated scRNA-seq data with respect to the number of cell type (A), cell number
(B), or gene number (C). The performance is measured by ARI, NMI, and Silhouette score (SIL). Gray indicates that the SIMLR cannot run on data with more than
10,000 cells.

Evaluation of Accuracy
We applied the 10 dimensionality reduction methods to the four
real data and performed k-means cluster analysis based on the
low-dimensional representation and calculated the evaluation
metrics. No single method dominated on all of these datasets,
indicating that there is no “one-size-fits-all” method that works
well on every dataset. Regarding the ARI and NMI measures,

PCA and t-SNE were ranked in the top five performers on all
the four datasets (Figures 5A,B). VAE was ranked in the top five
performers on the three datasets. Consistent with the simulation
dataset, UMAP can separate each individual cluster very well
based on the Silhouette score, compared with other methods
(Figure 5C). In addition, the dataset of Segerstolpe et al. has the
lowest evaluation metrics compared with the other three datasets,
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FIGURE 3 | Evaluation stability of the 10 dimensionality reduction methods on simulated scRNA-seq data with respect to the proportion of outlier (A) or dropout rate
(B). The performance is measured by ARI, NMI, and SIL.

indicating that the dimensionality reduction method should be
improved for the heterogeneous dataset with more cell types. We
also visualized the low-dimensional reductions of all the methods
on the four datasets (Supplementary Figures 1–4). The ability to
separate different cell types of each method is consistent with the
above metrics. Aggregating all the three metrics across datasets,
t-SNE has the best accuracy, followed by VAE (Figure 4).

Sensitivity of Methods to
Hyperparameters
The hyperparameters play a crucial part of the dimension
reduction algorithm, especially the deep machine learning
model. Therefore, we examined the effect of the hyperparameter
settings on the dimensionality reduction in order to guide
the user in making a reasonable choice. Among all the 10
algorithms discussed, there are seven methods whose developers
have added parameter settings. PCA and ICA are based
on linear transformations, so do not require hyperparameter
adjustment. In addition, DCA implements an automatic search
that could identify a set of hyperparameters in minimizing
errors. To decrease time consumption, we used the datasets
of Deng to investigate the effect of the hyperparameters to

the performance of these seven methods. Detailed evaluation
parameters are shown in Supplementary Table 3. Using grid
search strategy, we found that ZIFA is insensitive to their
respective hyperparameters, and the evaluation metrics have little
change in different settings (Figure 6A). The evaluation metrics
of t-SNE and SIMLR increased when their hyperparameters
increased from 2 to 5, after that ARI and NMI tend to
be stable. Silhouette scores are largely reduced when the
hyperparameters are larger than 20 (Figures 6B,C). For those
methods with multiple adjustable hyperparameters including
GrandPrix, scvis, UMAP, and VAE, we noticed a dramatic
change in the results when choosing different hyperparameter
settings (Figures 6D–G). Therefore, we recommend that users
consider the impact of hyperparameter settings before using
these four methods.

Data Preprocessing of All Methods
For the arithmetic design adapting to different algorithms,
we performed the corresponding normalization process
for one raw single-cell RNA-seq data based on the
description of the algorithm. First, PCA, ICA, t-SNE,
UMAP, ZIFA, and SIMLR used the original count
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FIGURE 4 | The overall performance of the 10 dimensionality reduction algorithms. The methods are sorted by overall performance score, which is a weighted
integration of accuracy, stability, and computing cost. The accuracy and stability are the average value of scaled ARI, scaled NMI, and scaled SIL in real data and
simulated data, respectively. Running time and memory are scaled to a value in [0,1] before averaged as computing cost.

FIGURE 5 | Evaluation accuracy of the 10 dimensionality reduction methods on real scRNA-seq data measured by (A) ARI, (B) NMI, and (C) SIL.

matrix of scRNA-seq data as the input. For DCA and
GrandPrix, the input is a feature matrix with all the cells
and 1,000 highly variable genes. Scvis used PCA as a
preprocessing for noise reduction to project the cells into a
100-dimensional space.

The Outputs of All Methods
For some methods, in addition to the low-dimensional
representation of the data, other useful information is also

provided. Specifically, scvis, DCA, and VAE were developed
based on deep learning; thus, a trained model is saved
in the corresponding output folder, containing the loss
parameters and validation for models. Furthermore, being
used as a process of noise reduction, DCA provides an
output file which represents the mean parameter of the ZINB
distribution which has the same dimensions as the input
file. Detailed workflows and explanations are available in the
original publications.
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FIGURE 6 | The effect of hyperparameters to the performance of dimensionality reduction methods. (A) ZIFA. (B) t-SNE. (C) SIMLR. (D) Grandprix. (E) Scvis.
(F) UMAP. (G) VAE.

FIGURE 7 | Evaluation computing cost for each method on metrics of (A) running time and (B) memory limitation. The analyses were run on computing equipment
with Inter i7 4790@3.60 GHz CPU and 16G running memory.

Computing Cost Overview
The current scRNA-seq analysis methods are expected to
cope with hundreds of thousands of cells as the number
of cells profiling by the current protocols increases. We
estimated the computational efficiency of each method using
running time and memory usage. We generated ten datasets
containing different number of cells through downsampling the
PBMC68k data. Overall, the running time and memory usage
of all methods are positively correlated with the cell number.
Most methods except SIMLR and scvis can be completed in
30 min even using all the cells of PBMC68k dataset (Figure 7A).
Most methods except SIMLR and ZIFA can complete all the
processes within 4 GB (Figure 7B). We noted that SIMLR
is difficult to be performed on the dataset with more than
10,000 cells due to its unique multikernel matrix operation.
In general, ICA took the shortest time (3.7 min) and t-SNE
had the lowest memory requirements (2.5 GB) when the
number of cells is 68k. Overall, t-SNE has the best computing
cost (Figure 4).

Overall Performance
By integrating three metrics from measurement of accuracy,
stability, and computing cost, we obtained the overall
performance score for each method (Figure 4). We found
that t-SNE achieved the best overall performance score with
the highest accuracy and computing cost. Meanwhile, UMAP
exhibited the highest stability, as well as moderate accuracy and
the second highest computing cost. However, the performance
score of these methods is different across evaluation criteria. For
example, SIMLR and PCA performed better than UMAP based
on accuracy, while SIMLR showed weaker computing cost and
PCA showed weaker stability.

DISCUSSION

Since 2015, the emergence of 10X Genomics, Drop-seq, Micro-
well, and Split-seq technologies has completely reduced the cost
of single-cell sequencing. This technology has been widely used
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in basic scientific and clinical research. An important application
of single-cell sequencing is to identify and characterize new cell
types and cell states. In this process, the key question is how to
measure the similarity of the expression profiles of a set of cells,
whereas, such similarity analysis can be improved after reducing
dimensionality, which can help in noise reduction.

Here, we performed a comprehensive evaluation of 10
dimensionality reduction methods using simulation and real
dataset to examine the stability, accuracy, computing cost, and
sensitivity to hyperparameters. Taken together, we observed
that the summarized performance of t-SNE outperformed the
performance of other methods. UMAP has the highest stability
and can separate distinct cell types very well. Although, both
methods are not specifically designed for single-cell expression
data. However, the performance of most methods decreased
as cell number and dropout rate increased. Therefore, new
algorithms will likely be needed to effectively deal with dropout
rate and millions of cells. In addition, the dataset from
Segerstolpe et al. containing the lower evaluation metrics
showed that the dimensionality reduction method should
be improved for the heterogeneous dataset with more cell
types. We suggested that users adjust the hyperparameters
when using these non-linear and neural network methods.
Finally, basic linear methods such as PCA and ICA have
shown to be most time saving but perform worse in highly
heterogeneous data.

To conclude, we provide a new procedure for comparing
single-cell dimensionality reduction methods. We hope
that this will be useful in providing and giving method
users and algorithm developers an exhaustive evaluation of
different data and appropriate recommendation guidelines.
At the same time, new dimensionality reduction methods
are being developed which will become more robust and
standardized. These developments will deepen further
exploration and comprehensive understanding of single-cell
RNA-seq applications.
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