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There is hope that genomic information will assist prediction, treatment, and
understanding of Alzheimer’s disease (AD). Here, using exome data from ∼10,000
individuals, we explore machine learning neural network (NN) methods to estimate
the impact of SNPs (i.e., genetic variants) on AD risk. We develop an NN-based
method (netSNP) that identifies hundreds of novel potentially protective or at-risk AD-
associated SNPs (along with an effect measure); the majority with frequency under
0.01. For case individuals, the number of “protective” (or “at-risk”) netSNP-identified
SNPs in their genome correlates positively (or inversely) with their age of AD diagnosis
and inversely (or positively) with autopsy neuropathology. The effect measure increases
correlations. Simulations suggest our results are not due to genetic linkage, overfitting,
or bias introduced by netSNP. These findings suggest that netSNP can identify SNPs
associated with AD pathophysiology that may assist with the diagnosis and mechanistic
understanding of the disease.

Keywords: machine learning, neural network, Alzheimer’s, disease, polygenic

INTRODUCTION

Alzheimer’s disease (AD), the most common form of dementia, is heritable [58–79%, estimated
from twin studies (Gatz et al., 2006)], and highly polygenic (Cauwenberghe et al., 2015). Mutations
in three genes (APP, PS1, PS2) cause rare forms of the disease [accounting for ∼1% of AD
cases (Mendez, 2017)], which shows autosomal dominant transmission with high penetrance and
displays an early onset [generally before age 60 (Carmona et al., 2018)]. In the more common
form of the disease, late onset AD (LOAD), APOE has been established unequivocally as a
susceptibility gene (Saunders et al., 1993) with several dozen other genetic loci receiving genetic
support (Carmona et al., 2018; Jansen et al., 2019; Kunkle et al., 2019).

The neuropathology of AD is defined by the presence of extracellular senile plaques containing
amyloid beta 42 and intracellular neurofibrillary tangles containing hyperphosphorylated tau
protein (DeTure and Dickson, 2019). The neuropathological progression of disease has been best
described using the Braak staging scheme (I–VI) (Braak et al., 2006). The most important genetic
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variant in LOAD is the APOE ε4 isoform, which predisposes
patients to an earlier appearance of AD and a higher Braak
score. The role of APOE or other identified genetic variants
in the pathophysiology of AD is not well understood (Sisodia
and George-Hyslop, 2002; Koffie et al., 2012; Karch and Goate,
2014; Shi et al., 2017). Currently available disease biomarkers can
be expensive, labor intensive, and do not provide a definitive
clinical diagnosis (Gustaw-Rothenberg et al., 2010; Hampel et al.,
2018; Jack et al., 2018; Penner et al., 2019). The identification
of additional LOAD-linked genetic variants could potentially
increase diagnostic accuracy, increase our understanding of the
disease, and unmask potential drug targets.

In 2009 two high-powered genome-wide association (GWAS)
studies were published that identified, along with APOE, several
single nucleotide polymorphism (SNPs) loci significantly linked
to AD, including SNPs in PICALM, CLU, and CR1 (Harold
et al., 2009; Lambert et al., 2009). To continue the search for
genetic targets linked to AD, the Alzheimer’s Disease Sequencing
Project (ADSP) was established as a collaboration between the
National Human Genome Research Institute (NHGRI) and the
National Institute on Aging (NIA). As part of this effort, whole-
exome sequencing was performed on 5,740 LOAD cases and
5,096 cognitively normal, older individuals, serving as controls
(Bis et al., 2018). The overarching goals of this initiative have been
to identify novel genomic targets that contribute risk or confer
protection toward AD outcomes, and to develop new insights
as to why some at-risk individuals do not develop AD. Indeed,
data from this project have been used to identify a number of
novel SNPs linked to AD (Beecham et al., 2018; Bis et al., 2018;
Raghavan et al., 2018; Ma et al., 2019; Patel et al., 2019; Zhang
et al., 2019).

Recent studies have presented polygenic risk score (PRS)
models for estimating AD risk (Escott-Price et al., 2015, 2017;
Desikan et al., 2017; Zhang et al., 2020). In these models,
GWAS summary data were used to identify AD-linked genomic
variants and to assign each variant a coefficient based on their
case-control asymmetries. While PRS models are a powerful
method to identify individuals at risk for a disease, we believe
they could provide another powerful utility – identifying novel
genetic variants that confer AD risk or protection that escape
GWAS identification for a number of factors, including rarity
and potential interactions (linear and non-linear) with other
variants. However, in order to capture these interactions the
PRS model needs to be based on individual genotypes (not just
GWAS summary data). Here we developed such a model based
on individual AD case and control SNP data provided by ADSP.
Specifically, artificial neural networks (Sejnowski, 2020) were
trained using individual case and control genotypes to estimate
polygenic risk. A primary aim of this study was to develop
a machine learning-based method (netSNP) that can be used
to identify the importance of individual SNPs in a complex
polygenic classifier’s decision making process.

netSNP can identify hundreds of AD-linked SNPs, most of
which have a low population frequency (<0.01). Supporting the
validity of our method are the observations that the number
of AD-linked SNPs identified by this method that are harbored
by an individual diagnosed with AD is correlated with the age

at which that individual’s AD was diagnosed as well as their
brain pathology. In particular, the number of risk- (or protection-
) linked SNPs an individual harbors correlates negatively (or
positively) with the age at which an individual is diagnosed with
AD and with their Braak score (i.e., individuals with more risk
SNPs had AD at earlier ages and higher Braak scores; individuals
with more protective SNPs had AD at later ages and lower Braak
scores). Furthermore, scaling the SNPs with a netSNP-derived
“importance factor” further increases the correlations. Thus,
these correlations provide support for the view that this method
correctly identifies AD-linked SNPs and correctly quantifies
their importance.

RESULTS

Dataset Pipeline, Case:Control
Balancing, and SNP Properties
A large variant call format (VCF) datafile [∼200 GB; Alzheimer’s
Disease Sequencing Project, ADSP (Beecham et al., 2017)]
containing SNP information (i.e., reference or alternate allele for
∼1.4 million SNP sites) on ∼11,000 individuals over the age
of 60 (Northern European descent; ∼6,000 diagnosed with AD,
and ∼5,000 aged non-AD controls), was organized into a more
manageable file (∼2 GB; N.B.: a VCF datafile contains mainly
zeros – indicating reference alleles – since >95% of minor allele
frequencies are <0.01) permitting rapid queries regarding SNP
content for any individual (see section “Materials and Methods”).
The minor frequency allele (MFA) and reference allele count were
determined at each SNP locus, separately for case and control
groups. The Fisher’s exact test was used to quantify the probability
(FishP) that the observed case/control minor allele asymmetry
could be due to chance.

The ADSP dataset consists of SNP information originating
from 24 cohort groups (Beecham et al., 2017; Crane et al.,
2017; Naj et al., 2018). We initially tested if a neural net (NN)
classifier could be trained (Moller, 1993), with SNPs as features
(50 SNPs with the lowest FishP values; 50 features were chosen
as this was computationally tractable; see section “Materials
and Methods”), to identify from which cohort an individual
originated. Indeed, the classifier could identify cohort identity
for each individual with ∼50% accuracy, much above the 4%
expected by chance (Supplementary Figures 1, 2). This was of
concern, because given the large case:control imbalance in many
cohorts (see Supplementary Figure 2), the classifier could use
cohort information to help identify patient AD status. Thus, the
SNPs would indicate something about the cohort (e.g., platform-
or probe-specific aspects of cohorts) rather than the disease. To
avoid this potentially confounding issue, we balanced cohorts.
In short, (a) only cohorts with at least 20% of the cohort
being cases or controls were used; and (b) the same number
of case and control individuals from each cohort was used in
training sets (see Supplementary Figure 2 and “Materials and
Methods” for details).

A quantile-quantile (Q-Q) plot of the -log(FishP) values of
a balanced dataset plotted against a similar computation of
the same dataset with shuffled case-control labels shows that
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FIGURE 1 | (A) Q-Q plots of balanced ADSP dataset for Alzheimer’s disease. Gray symbols (here and below) represent Q-Q plot of 100 random versus random
distributions (i.e., chance). See text for details. SNP order [based on − log(P)] is indicated by colors (see legend). (B) Q-Q plots of balanced ADSP dataset for 12
constructed (simulated) diseases (BDs). Each BD is represented by a different color. (C) Same as above with SNPs from APOE-residing chromosome 19 removed
before p-value quantiles were computed. Inset is a blow up of the indicated region, showing magenta SNPs fall outside the 100 random versus random distributions
(gray symbols). SNP order [based on − log(P)] is indicated by colors (see legend). (D) Same as above with SNPs from BDgene-residing chromosome removed
before p-value quantiles were computed. Plot as in B is shown for all BD1-33 in Supplementary Figure 12.

most of the case-control minor allele asymmetries across the 1.4
million SNP loci can be explained by chance (i.e., lie on the
x = y line; Figures 1A–D). For comparison we plotted 100 Q-Q
plots, wherein -log(FishP) values from one shuffled dataset was
plotted against -log(FishP) values from another shuffled dataset
(Figures 1A–D, gray symbols). For the AD population, in a
few SNPs from APOE and (its physically close linkage partner)
TOMM40 genes (Yu et al., 2007; Guerreiro and Hardy, 2012),
the observed distribution of reference allele (Ref) and MFA in the
case and control populations was far (orders of magnitude) from
what can be accounted for by chance (Figures 1A,C).

To address the possibility that artifacts can account for SNPs
off the x = y line (e.g., SPNs being linked to APOE, rather than
to AD), we constructed 33 separate simulated diseases (“bad
diseases,” BDs) using all ADSP individuals (cf., Bulik-Sullivan
et al., 2015). Each BD was based on an existing gene (BDgene)
that has two SNPs with frequencies in our population very close
to APOEε4 (0.147, E4-like) and APOEε2 (0.076, E2-like); see
Table 1, MAF (minor allele frequency) columns. Individuals with
the BDgene genotype (i.e., having E4-like or E2-like SNPs) in
the ADSP dataset were randomly ascribed to have BDs based on
control/case odds ratio of APOEε4 (0.30) and APOEε2 (2.41) for
AD. Individuals without BDgene SNPs were randomly assigned

based on the odds ratio of individuals without APOEε4 or ε2 (i.e.,
APOEε33 = 0.89). FishP values were computed for each SNP from
true (AD) and simulated (BDs) diseases from balanced data sets,
and Q-Q plots were generated (Figures 1B,D). Plots including
all SNPs showed many with FishP values outside what could be
accounted for by chance for both AD and BDs (Figures 1A,B).
However, if SNPs from chromosome 19 (where APOE resides)
or the chromosome with BDgene were removed, only SNPs for
AD could not be accounted for by chance (Figures 1C,D). This
result is consistent with the view previously observed that AD is
a highly polygenic disorder (Cauwenberghe et al., 2015; Escott-
Price et al., 2017) as there was a considerable asymmetry in
MAF between case and control populations for over 2,000 SNPs
(see Figure 1D). While artifacts related to data stratification can
account for this behavior in Q-Q plots (Lander and Schork,
1994; Slatkin, 2007), cohort balancing and our simulations argue
against such artifacts for our dataset, and support the existence of
a large number of SNPs linked to AD, consistent with previous
results (Cauwenberghe et al., 2015; Escott-Price et al., 2017).

NN Construction and Performance
Once the cohorts were balanced, we calculated the FishP values
for SNPs from a “training set” composed of 3,200 randomly
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TABLE 1 | netSNP identified tSNPs with greatest absolute average CVt when APOE locus variants were not excluded from the training set.

tSNPs predicted to confer most protection against AD tSNPs predicted to confer the most risk for AD

Chr Pos Gene mCVt FishP MAF Chr Pos Gene mCVt FishP MAF

5 612,536 CEP72 −0.243 5.7E-03 0.002 11 10,327,875 ADM 0.289 4.1E-08 0.008

6 1,390,303 FOXF2 −0.182 1.4E-02 0.003 19 45,411,941 APOE ε4* 0.261 3.4E-111 0.135

4 110,638,764 PLA2G12A −0.178 2.8E-02 0.002 7 23,213,734 KLHL7 0.217 5.1E-03 0.003

1 16,890,642 NBPF1 −0.174 3.3E-02 0.002 9 130,439,029 STXBP1 0.207 1.9E-02 0.001

11 1,017,294 MUC6 −0.157 1.4E-07 0.01 20 37,258,198 ARHGAP40 0.203 1.1E-02 0.002

1 40,961,395 ZFP69 −0.156 4.8E-04 0.002 15 41,862,356 TYRO3 0.197 8.4E-18 0.018

15 50,154,563 ATP8B4 −0.156 2.3E-02 0.004 6 146,276,263 SHPRH 0.195 6.6E-03 0.002

19 52,793,834 ZNF766 −0.155 2.8E-02 0.002 1 228,879,367 RHOU 0.195 6.4E-03 0.004

15 64,017,685 HERC1 −0.152 3.5E-03 0.004 9 131,398,647 WDR34 0.19 7.0E-03 0.002

19 45,412,079 APOE ε2* −0.152 7.1E-38 0.079 19 52,497,235 ZNF615 0.188 3.3E-02 0.003

16 8,740,006 METTL22 −0.15 2.1E-03 0.002 12 85,450,243 LRRIQ1 0.188 1.0E-02 0.006

9 139,396,933 NOTCH1 −0.143 3.3E-02 0.004 15 25,963,545 ATP10A 0.185 1.2E-02 0.002

19 18,561,473 ELL −0.137 7.3E-03 0.008 12 108,011,971 BTBD11 0.183 3.8E-03 0.007

11 57,467,411 ZDHHC5 −0.133 3.5E-03 0.002 9 107,533,232 NIPSNAP3B 0.181 1.1E-02 0.003

9 100,372,648 TSTD2 −0.131 2.2E-02 0.003 1 8,420,270 RERE 0.18 3.0E-02 0.004

1 65,120,426 CACHD1 −0.131 1.0E-02 0.002 8 10,480,495 RP1L1 0.179 3.1E-02 0.003

12 69,113,184 NUP107 −0.126 5.6E-03 0.006 4 5,682,993 EVC2 0.178 2.2E-02 0.004

5 145,508,644 LARS −0.126 1.2E-02 0.006 5 140,530,973 PCDHB6 0.178 1.4E-02 0.002

7 6,561,105 GRID2IP −0.125 2.9E-04 0.002 6 30,712,298 IER3 0.177 3.3E-03 0.007

19 43,268,061 PSG8 −0.125 2.9E-02 0.004 15 50,264,839 ATP8B4 0.176 1.1E-02 0.008

11 47,264,353 ACP2 −0.125 1.4E-03 0.004 16 3,604,305 NLRC3 0.176 2.7E-02 0.002

6 7,405,242 RIOK1 −0.124 1.5E-02 0.003 22 46,780,446 CELSR1 0.174 1.9E-02 0.003

3 146,167,089 PLSCR2 −0.123 2.3E-02 0.003 19 39,103,307 MAP4K1 0.173 1.9E-02 0.001

16 30,775,522 RNF40 −0.123 2.9E-02 0.006 1 89,579,827 GBP2 0.173 2.5E-02 0.005

9 139,008,644 C9orf69 −0.121 2.9E-03 0.003 12 50,500,080 GPD1 0.173 2.6E-03 0.002

Rows 26:1000 available online Rows 26:1000 available online

* Previously published AD-linked gene * Previously published AD-linked gene

chosen individuals (case + controls; equal number of each)
and used the 50 SNPs with the lowest FishP values in the
training set to train an NN classifier to predict if an individual
was a case or control (Figure 2, left; see section “Materials
and Methods”). Briefly (Demuth et al., 2014), an artificial NN
was trained to classify cases vs. controls using genotypes (for
50 SNPs) of individuals in the training set. The NN was
initialized with random weights connecting each node, so the
initial prediction y was random (each y was a real number
scaled between −0.5, the control label, and +0.5, the case
label). This prediction, also known as a classifier value (CV),
was evaluated against the true label (case or control) using a
loss function, and the network weights were updated using an
optimization function. Throughout training the optimizer adjusts
NN weights, working to minimize the loss function. Training
concluded when the NN weights were considered optimal (within
the constraints of the stopping criteria and cross validation; see
section “Materials and Methods”), at which point the NN weights
remain fixed. Thus, additional input to the NN would yield CV
predictions, but would not change network weights or alter the
model in any regard.

After the NN was trained as described above, it was applied
to the 50 SNPs of each individual from the “holdout set”

(1,500 individuals randomly chosen who were not included in
the training set), providing a CV for each. Overall these CVs
correlated well with actual AD status of each individual (case,
red; control, blue; Figure 2A and Supplementary Figure 4).
Using a classification threshold of zero (such that any positive
CV was predicted as case, and any negative CV was predicted
as control), the classifier accuracy was 67.3% (SD = 0.3%, see
section “Materials and Methods”). The NN performance with
50 SNPs was significantly better than what could be achieved
using only SNPs from the APOE locus (62.2%). It also performed
better than a logistic regression model using the same 50 SNPs
(64.2%, p < 10e-20, McNemar Test). When only considering
individuals with CVs closer to −0.5 or +0.5, the accuracy of the
NN increased. For individuals with CVs in the outer quartiles,
prediction accuracy was 76.4% (SD = 0.5%); for those with a
CV ranked in the upper 12.5% and lower 12.5% quantiles, the
classification accuracy was 82.6% (SD = 0.6%) (see Figure 2C).

We next trained an NN using a set of 50 SNPs (a) not
containing APOE gene SNPs, or (b) not containing the 22
previously published AD-associated SNPs (Carmona et al., 2018),
or (c) with the 51–100 lowest FishP values. The resulting
accuracy and receiver operator characteristic (ROC) curves,
which provide a measure of the sensitivity and specificity of a
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FIGURE 2 | Neural net prediction of case and control individuals. (Left) General neural net protocol and architecture; see text for details. (A) Histogram of neural net
confidence value (CV) output for case (red) and control (blue) holdout set individuals. (B) Receiver operator characteristic (ROC) curves for indicated SNP sets as
features. (C) (Left) Neural net accuracy for indicated populations using indicated SNP sets as features. “All CV” and “High abs(CV)” indicate inclusion of populations
with 100% or top 30% abs(CV) values in accuracy calculations. Error bars, SEM. (Right) Neural net accuracy with indicated size training set; two samples
(chromosomes) per individual. (D) False discovery rate (FDR) and positive predictive value (PPV) at each corresponding x-axis case prevalence, using a fixed CV
threshold (set to 0) or optimal operating point classification threshold (see section “Materials and Methods”). Additional measures are in
Supplementary Figures 9–11.

method (Koen et al., 2016), were all above chance in predicting
AD status of an individual (Figures 2B,C). Reducing the size of
the training set reduced the accuracy in a roughly linear fashion
(Figure 2C), suggesting that the NN accuracy did not asymptote
at 3,200 individuals, and that gathering SNP information from
more individuals would increase NN accuracy. The area under
the ROC curve (AUC) for our NN model with 50 SNPs was 0.755.
Further analysis of NN hyperparameters such as the number of
SNPs, which SNPs were employed, NN architecture, etc., may
improve NN performance; we note that producing an optimal
NN was not the primary goal of this study. Other methods, such
as PCA (Jolliffe, 1986; Selzam et al., 2018), or Random Forest
(Goldstein et al., 2011) analyses were not examined.

Due to the cohort counterbalancing requirement (see above),
the prevalence of AD in our training set was 0.5. Since disease
prevalence in most populations will almost certainly be lower
than 0.5, we quantified signal detection metrics for a range of
disease prevalence rates from 0.05 to 0.5 (0.05 is the approximate
AD prevalence at age 75), using the optimal operating point
(OOP) for each respective base rate (see section “Materials
and Methods”). Using the OOP, the false discovery rate was
largely independent of prevalence for values from ∼0.05 to 0.5
(Figure 2D). Similarly, the same optimal threshold maintained
a largely constant positive predictive rate (Figure 2D). Thus,

computing an NN with training data composed of an equal
number of cases and controls can be used despite a low
disease prevalence.

netSNP Description and Application
While NNs can perform well in solving complex problems,
determining the importance of different NN input features (in
this case, different SNPs) is difficult to assess. With this in
mind, we developed a method (netSNP) using a modification
of the standard NN protocol, aimed to assess the impact of
any SNP on conferring AD risk or protection. Specifically, we
derived a quantitative measure for the impact of an SNP on the
output of an NN.

netSNP is a modification of the Permutation Importance
method used in machine learning (Altmann et al., 2010; Molnar,
2021), which we have adapted for use with polygenic models. In
general Permutation Importance is used to address the question
“What variables have the biggest impact on the predictions of
a trained neural network classifier?” Permutation Importance
computations are performed after a model has already been fitted,
and works using a basic strategy: a single predictor variable
is modified in the input data, leaving all the other predictor
variables unchanged, and examining how this affects classifier
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performance. This procedure is then repeated, one variable at
a time, for all the predictor variables used in the model. This
permits one to determine the relative effect of each predictor
variable. The netSNP method uses a similar strategy. For a specific
SNP, netSNP addresses this question “if this SNP is artificially
made homozygous for the MFA, what impact does it have on
the classifier output?” If the average CV shifts to the right (e.g.,
goes from 0.1 to 0.3) when a SNP is set to homozygous for
the MFA, netSNP deems this SNP to confer risk. If the average
CV shifts to the left (e.g., goes from 0.1 to −0.2) when a SNP
is set to homozygous for the MFA, netSNP deems this SNP to
confer protection.

To demonstrate the netSNP method on a specific example,
we used netSNP to compute the impact of the APOE genotype
on AD risk. From a balanced dataset, we randomly chose a
training set composed of 3,200 cases+controls (which contained
individuals with all APOE genomic variants; i.e., APOE ε22,
ε23, ε24, ε33, ε34, and ε44). This set was used to train an
NN (which we call NNε) to identify cases or controls based
on their top 50 SNPs (see section “Materials and Methods”
and Figure 3 left panel, top). After this training session, NNε

was not modified in the subsequent analysis of the APOE
genomic variants. We then applied NNε to a holdout set of
1,500 individuals (Figure 3, left panel, bottom), producing 1,500
CV outputs with a distribution shown in Figure 3A (dashed
line; this is used as a baseline for comparisons). We next
reasoned that the impact of a specific APOE genotype on NNε

predictions could be assessed by artificially modifying the APOE
genotype of every holdout set individual to that specific APOE
genotype. For instance, to assess the impact of the ε22 genotype,
we artificially assigned every holdout set individual the APOE
ε22 genotype (keeping non-APOE genotypes of each individual
unaltered). After applying NNε to these modified genotypes,
the distribution of CV outputs was strongly shifted leftward
compared to the baseline distribution (Figure 3A, compare blue
distribution to dashed line). Alternatively, if we assigned all
holdout set individuals the ε44 genotype, the CV distribution
shifted significantly rightward from baseline (Figure 3A, compare
orange distribution to dashed line). Falling between the ε22
and ε44 distributions were the CV distributions when NNε was
applied to holdout set individuals assigned either the ε23, or ε33,
or ε24, or ε34 genotype (Figure 3A).

We next performed a critical test of netSNP: to determine
if the above (i.e., the colored CV distributions in Figure 3A)
corresponded to distributions when NNε was applied for
individuals who did have distinct APOE genotypes. To test
for this, we created holdout sets with individuals with only
one APOE genotype (i.e., one holdout set included only
APOE ε22 individuals, another holdout set only APOE ε23
individuals, etc.). We then used NNε to compute CVs for
individuals in each of these holdout sets (using the true
genotypes for each individual, for 50 SNPs). The resulting CV
distribution for true APOE genotype holdout sets moved from
left to right as APOE changed from ε22 to ε44 (Figure 3B),
closely matching the CV distributions from above, where
APOE status was assigned to all individuals in the holdout
set (compare Figures 3A,B). This result suggests that netSNP

can accurately assess the impact of individual SNPs on a
classifier output.

Since APOE SNPs are known to significantly impact AD risk,
this result also suggests that the netSNP method could be used
to estimate the impact of many different target SNPs of interest
(which we call tSNPs) on AD risk. We achieved this for each
tSNP by performing the following procedure (analogous to the
procedure used to test the impact of APOE genotypes above;
see Figure 3, left panel): From a balanced dataset, we randomly
chose a training set composed of 3,200 cases+controls. This
set was used to train an NN (which we call NNt) to identify
cases or controls based on their true genotypes for 50 SNPs (the
top 49 SNPs based on FishP value, and the tSNP of interest).
Then we constructed a holdout set of 1,500 individuals, and
applied NNt on each individual, using the same 50 SNPs used
in training, and using the true genotypes of each individual.
This produced 1,500 baseline CV values. Finally we constructed
a holdout set of 1,500 individuals, and used the same 50 SNPs,
using their true genotypes for each individual for 49 SNPs,
but the tSNP was set to be homozygous for the tSNP MFA.
We then applied the NNt producing 1,500 CV values (which
we call CVt) which can be plotted in a frequency distribution
(Figure 3, bottom). We repeated this procedure for many tSNPs
(see section “Materials and Methods”; Figure 3C shows CVt
distributions for several tSNPs). Intuitively, we reasoned that if
an SNP had an effect on AD risk, then when evaluated as a
tSNP, the CVt distribution would be shifted compared to the
baseline CV distribution – shifts to the left would indicate the
MFA SNP is AD-protective (Figure 3, left panel, “Protective SNP
t” distribution); shifts to the right would indicate the MFA SNP
incurs AD risk; the larger the shift, the greater the impact on AD.
We test this proposal below.

We used netSNP to test 4,000 individual SNPs as tSNPs; we
chose those SNPs with the 4,000 lowest FishP values. Each tSNP
was evaluated 20 times (see section “Materials and Methods”)
from which a mean CVt (mCVt) is computed over all holdout
set individuals for all 20 runs. Evaluating APOEε4 as a tSNP
with netSNP resulted in a CVε4 distribution that was shifted
to the right (Figure 3C, 2nd from top; same as Figure 3A,
green), as expected. Surprisingly, the MFA of an adrenomedullin
(ADM) SNP shifted the CV distribution more to the right than
APOEε4 (mCVε4 = 0.26 ± 0.001; mCVADM = 0.29 ± 0.001).
Also, a number of SNPs shifted NNt output CVs more
to the left than APOEε2 (e.g., mCVε2 = −0.15 ± 0.001;
mCVCEP72 = −0.24 ± 0.001; see Table 1 for tSNPs with the
most extreme mCVt. Thus netSNP appears to identify a number
of SNPs that can considerably shift NN output CV, potentially
identifying SNPs that confer AD protection (shifting CV to the
left) and AD risk (shifting CV to the right).

To exclude the artifactual possibility that netSNP was
dependent on APOE, we repeated the netSNP method with APOE
(and TOMM40) SNPs excluded from the 49 SNPs with the lowest
FishP values as features in training NNt (although APOE was
tested as a target tSNP). Results were very similar to the above,
with hundreds of tSNPs shifting CV to the right (potentially
AD risk SNPs) and hundreds of tSNPs shifting CV to the
left (potentially AD protective SNPs; Supplementary Table 1).
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FIGURE 3 | netSNP accurately reproduces CV values for APOE genotypes and identifies potential AD-risk and AD-protective SNPs. (Left) Diagram of netSNP
method; details in text. SNP t assignment, APOE genotype for A; and homozygous MFA for C. (A) netSNP-generated CVt values for all holdout set individuals (all
APOE genotypes) with their genotype artificially assigned to indicated genotype. The dashed line indicates distribution of CV values for all holdout set individuals with
correct genotype. (B) Frequency distribution of CV values for holdout set subsets containing only individuals with indicated APOE genotype. Dashed line as above.
(C) Example netSNP-generated CV distributions for all holdout individuals with true genotype (light gray) or CVt with indicated target SNPs (dark gray) assigned
alt/alt; symbols on X-axis: mean CVt (mCVt) values. Note that mCVt value for TOMM40 SNP is close to zero, indicating that it perturbs NN output little (i.e., provides
little additional information) when APOE SNPs are used in training. CVt distributions for 50 tSNPs shifting CV most to the left and 50 tSNPs shifting CV most to the
right are shown in Supplementary Figure 5. tSNPs having potentially a protective effect on individuals with APOE4 are shown in Supplementary Figure 5,
Supplementary Table 2, and online.

In general, this method provides a quantitative measure of the
impact (as indicated by mCVt values) of specific SNPs on NN
output, and potentially (see below) the effect of such SNPs
on developing AD.

NN and CV as Predictors of AD and Its
Pathophysiology
While CV values (computed with or without APOE as an
NN feature) predict well the likelihood of an individual being
diagnosed with AD (Supplementary Figure 4), we aimed to
determine if CV values correlate with the pathophysiology
underlying AD. We reasoned that individuals diagnosed with
AD at an earlier age may have a more aggressive form of the
disease, which could be a consequence of their genetics, and
this might be detected by more positive CV values; equivalently,
AD diagnosis at an older age may correlate with less aggressive
AD pathophysiology, and may have more negative CV values.
This reasoning is supported by previous findings with APOE

genotypes (Corder et al., 1993), which we found to also be
true in our dataset (Figure 4A). Linear regression fitting shows
that, for case individuals, as their APOEε2 allele count increases,
so does their observed disease onset age [F(2,4750) = 86,
β (slope; indicating number of years per ε2 allele) = 3.8,
p < 2.6e-20; general linear model, see section “Materials and
Methods”]; conversely, the number of APOEε4 alleles reduces
the age of AD diagnosis [F(2,4750) = 1910, β = −8.4, p < 1e-
300]. With this reasoning in mind, we tested and found that
the age at which cases were diagnosed with AD could be
predicted by their CV values [as computed in section “NN
Construction and Performance”; more positive CV for younger
age of AD diagnosis, F(2,4752) = 571, β = −27, p < 2.3e-
119; Figure 4B]. Furthermore, an individual’s CV was positively
correlated with Braak score, for case individuals receiving
autopsy [F(2,2025) = 154, β = 1.8, p < 4.1e-34; Figure 4G]. These
effects were also highly significant if APOE was not included in
the NN calculation of CV [CV vs. age, F(2,4752) = 422, β =−22.4,
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p = 5.3e-90; CV vs. Braak, F(2,2025) = 59, β = 1.7, p = 1.8e-14].
These findings support the view that the NN output value CV, as
described above in section “NN Construction and Performance,”
is related to the pathophysiology of AD.

netSNP as Predictor of AD-Linked tSNPs
and AD Pathophysiology
We next tested if netSNP can identify AD-linked SNPs and
can quantify their impact on the likelihood of developing
AD. We considered a set of tSNPs for which their computed
mCVt values were significantly (p < 0.05) outside the range
of mCVt values generated by randomly choosing target SNPs
from the set of all 1.4 × 106 ADSP SNPs (see section “Materials
and Methods”). This resulted in 851 tSNPs with mCVt < 0
(provisionally indicated “AD-protective tSNPs”) and 672 tSNPs
with mCVt > 0 (“AD-risk tSNPs”), the majority (64%) with
MAF under 0.01. Only some of the previously published AD-
linked SNPs (which we exclude from the subsequent validation
analysis) are in these sets (see Table 1). Using a general linear
model, we found that the number of “AD-protective tSNPs”
harbored by each case individual correlated positively with their
age of AD diagnosis [F(2,4750) = 13.9, β = 0.072, p < 1.9e-4;
Figure 4C], while the number of “AD-risk tSNPs” they harbored
correlated inversely with age of AD diagnosis [F(2,4750) = 18.2,
β = −0.11, p < 1.9e-05; Figure 4C]. Providing tSNPs with
a CVt weight increased the positive correlation between CVt-
weighted “AD protective tSNPs” [F(2,4750) = 400, β = 22,
p < 1.6e-85], or the negative correlation between CVt-weighted
“AD risk tSNPs” [F(2,4750) = 404, β = −25, p < 2.4e-86;
Figure 4D] and age of AD diagnosis. Interestingly, the number
of previously published AD risk SNPs (excluding APOE and
TOMM40 SNPs) per individual did not correlate with age of
AD diagnosis (p = 0.32; Figure 4E). However, if netSNP is
used to calculate CVt for each of these SNPs, the number
of CVt-weighted SNPs did correlate inversely with age of AD
diagnosis [F(2,4750) = 419, β = −22, p < 2.2e-89; Figure 4E],
supporting the view that CVt provides a quantitative measure
of the impact of an SNP on AD pathophysiology. We were
concerned that the netSNP method may ascribe CVt values
to SNPs based on genetic linkage to APOEε2 or ε4, therefore
we performed simulations using BD populations (see section
“Materials and Methods”: netSNP Validation Simulations). These
simulations support the view that the netSNP method is
not choosing AD “protective” and AD “at-risk” SNPs based
on genetic linkage or some other bias introduced in the
netSNP procedure.

We also examined the relation of netSNP-identified tSNPs
to the Braak scores that individuals (cases and controls)
received during autopsy. The number of netSNP-identified
“AD protective tSNPs” harbored per person displayed a
negative correlation with Braak scores [F(2,2698) = 349,
β = −0.08, p < 3.0e-73; Figure 4H], while the number
of netSNP-identified “AD risk tSNPs” harbored per
person displayed a positive correlation with Braak scores
[F(2,2698) = 272, β = 0.09, p < 3.4e-58; Figure 4H].
These significant correlations, and the effect of providing

CVt weights, were obtained if APOE and TOMM40 SNPs
were (Figure 4) or were not (Supplementary Figure 8)
included in the training matrix, indicating that the observed
correlations were not driven by APOE (or SNPs in linkage
disequilibrium with APOE; see Supplementary Figure 13 and
“Materials and Methods”).

DISCUSSION

Here we applied a standard and modified neural network tool
to a large LOAD dataset and examined the association of
SNPs to AD. We found that a standard NN trained with 50
SNPs can identify an individual’s cohort identity above chance;
thus data were subsequently analyzed using only cohorts that
were case:control balanced. Comparing Q-Q plots for AD and
simulated constructed diseases (based on real genes with SNPs
that have true population frequency as APOEε2 and ε4) supports
previous suggestions (Escott-Price et al., 2015, 2017) that there
exist considerably more SNPs than the ∼20 previously identified
as AD-associated.

An NN trained with 50 SNPs can predict dataset cases with
accuracy greater (albeit, slightly) than if using only APOE SNPs
genotypes, or a basic logistic regression model. NN accuracy was
related approximately linearly with training set size, suggesting
increasing dataset size will increase NN accuracy. NN accuracy
was above chance if an NN was trained without (a) APOE
SNPs, or (b) previously published AD-linked SNPs, or (c) 50
SNPs displaying the greatest case control asymmetry. These
findings further support the view (Escott-Price et al., 2015,
2017) that more than the previously identified SNPs contain
information regarding AD.

We developed netSNP, which investigated the impact of
specific SNPs on NN output. In netSNP, once an NN was
trained, the holdout set genotype was artificially assigned at
a single (or multiple) target SNP(s); in the general case the
target SNP was assigned as homozygous to the minor frequency
allele; the effect of the artificially introduced genotype was
reflected by how much the NN output value was modified.
netSNP recapitulated well the effect of different APOE genotypes
on NN output. netSNP identified several hundred SNPs with
weight values (i.e., mCVt) significantly outside values produced
by randomly chosen SNPs. Some netSNP-identified SNPs had
more extreme weight values than APOEε2 or ε4. Notably,
FishP values of SNPs with extreme mCVt values were not
low in general, likely because too few individuals carry these
SNPs. Yet their impact on NN output was large, possibly
by leveraging non-linear interactions embedded in an NN.
Notably, ADM (containing an SNP with the largest mCVt
value despite a MAF = 0.009) was elevated in AD brains
(Ferrero et al., 2017), contributed to age-related memory loss
in mice (Larrayoz et al., 2017), was elevated in aging human
brains (Larrayoz et al., 2017), and had been proposed as a
novel drug target for AD (Ferrero et al., 2018). We also
examined ABHD17A, as it relates to findings indicating that
reduced function of this enzyme increases synaptic PSD-95
levels (Jeyifous et al., 2016; Yokoi et al., 2016), which protect
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FIGURE 4 | netSNP validation: Number of netSNP-identified tSNPs and netSNP-CVt-weighted tSNPs correlate with age of AD diagnosis of all case individuals
(N = 4752) and AD pathology (case and control receiving autopsy, N = 2700). (See Supplementary Figure 8 for results excluding APOE and TOMM40 in netSNP
training matrices; results are similar; conclusions are the same.) (A) Age of AD diagnosis plotted against the number of APOE e4 (or APOE e2) SNPs per person.
Here and below: boxplot X-axis values indicate mean value of boxed group; p-values based on general linear model analysis of variance. (B) Age of AD diagnosis
plotted versus 50 SNP neural net CV. (C) Age of AD diagnosis plotted versus number of netSNP-identified AD-protective, left, or AD-risk tSNPs. (D) Age of AD
diagnosis plotted versus netSNP-CVt-weighted number of AD-protective (left) and AD-risk (right) tSNPs. (E) Age of AD diagnosis plotted versus number (left) or
netSNP-CVt-weighted number (right) of previously published AD-linked SNPs, excluding those in APOE/TOMM40. n.s., not significant. (F) Diagram of human brain
with affected regions for indicated Braak scores. (G) Neural net CV plotted versus Braak score. (H) netSNP-identified AD-protective (left) and AD-risk (right) tSNPs
per person plotted versus Braak score.

synapses from beta amyloid (Malinow, unpublished observation).
netSNP predicted that an ABHD17A SNP was protective for
individuals with APOEε4 (see Supplementary Table 2). Indeed,
we found that ε4 carrier case individuals with this ABHD17A
SNP received an AD diagnosis almost 6 years later than such
individuals without this SNP [76.6 years (N = 19) vs. 70.8 years
(N = 1831), p < 0.0001; t-test], which is consistent with
this SNP being protective against AD in APOEε4 carriers.
These findings support the view that netSNP can identify
AD-relevant SNPs.

To validate netSNP we considered variables not used in any
netSNP computations: age of an individual’s AD diagnosis (cf.,
Mars et al., 2020) and Braak score. The number of netSNP-
identified “AD-protective SNPs” harbored by an individual
correlated significantly with the age an individual was diagnosed
with AD and inversely with Braak score; while the number of

netSNP-identified “AD-risk SNPs” harbored by an individual
correlated significantly inversely with the age an individual
was diagnosed with AD and positively with Braak score.
Scaling each netSNP-identified SNP with CVt increased the
significance of these correlations. Notably, applying netSNP-
derived CVt weights to previously reported AD SNPs (each
thought to have a small effect on AD pathophysiology) converted
their correlation to age of diagnosis from not significant to
significant, suggesting that netSNP can accurately assess small-
effect SNPs. The correlations examined in this validation test
hold if APOE or TOMM40 are not used in the training step
of netSNP, indicating that the netSNP-identified SNPs as well
as the netSNP-generated CVt weights are not dependent on a
bias imposed by APOE SNPs (or SNPs in linkage disequilibrium
with APOE, Supplementary Figure 13) in netSNP. Further
validation of netSNP and net-SNP-identified SNPs suggested
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to be “protective” or “at-risk” in this study will require
tests using an independent AD dataset as well as biological
experimentation.

Our data suggest the set, as a whole, of netSNP-identified
SNPs are highly predictive of AD age of onset and physiological
severity, and their relative importance may be indicated by
the netSNP-derived mCVt weight. The netSNP-identified SNPs
would each, on average, be expected to have a small impact
on the disease (on average ∼1/200 that of APOEε4; but see
above for ABHD17A SNP). Insight into AD provided by
such small-effect SNPs will require computational methods
that can analyze disease and biochemical pathways from large
groups of genes. Such tools may be aided by incorporation
of mCVt values.

In general, our findings suggest that netSNP may be useful
in identifying pathophysiologically relevant genes in AD; it may
be equally applicable to other conditions. It will be important
to test these methods on a completely independent AD dataset
with similar ethnic make-up (and compare those results with
results in this study), as well as AD datasets with different ethnic
backgrounds, for this method to be generally applicable to the
multicultural nature of the United States and world population
(Martin et al., 2019).

MATERIALS AND METHODS

Alzheimer’s Disease Sequencing Project
Dataset
The dataset used in these analyses was generously provided
by the Alzheimer’s Disease Sequencing Project (ADSP), and
has been previously described in detail in other manuscripts
(Harold et al., 2009; Raghavan et al., 2018) and online at
niagads.org. To summarize, individuals in this dataset were
from well-characterized cohorts, including ∼6,000 individuals
diagnosed with late-onset Alzheimer’s disease (mean age of
diagnosis: 75.4) and ∼5,000 elderly controls without dementia
(mean age: 86.1, at the date of last visit to AD practitioner).
Whole-exome sequencing data for each individual went through
a quality-control “cleaning” process by two independent sources
(Baylor and Broad Institutes), and was provided in variant
call format (.vcf); genotype data was accompanied by several
phenotypic and qualitative metrics (e.g., each individual’s sex,
age, race, cohort, etc.). For ∼28% of individuals an autopsy was
performed and their Braak staging score was reported (Braak
et al., 2006). Data are available for download upon administrative
approval from the NIA Genetics of Alzheimer’s Disease Storage
Site (NIAGADS).

VCF Data Compression
Raw SNP data were passed through an automated preprocessing
pipeline that involved reducing the dataset size by ∼100-fold
using sparse matrices and annotating SNPs of interest. The raw
data were downloaded to a secure local hard drive as VCFs. VCFs
were formatted as a matrix with rows being loci and columns
being samples. This matrix was converted into a structure like
an adjacency list. Sample IDs were replaced with seven-digit IDs.

Flags passed through the VCFs were converted to numeric flags.
Counts of homozygous and heterozygous samples, as well as
the sample names and genotypes were recorded per locus. The
dataset was binned into three bins according to the following
criteria: first, if the genotype was heterozygous (noted as 1), or
homozygous (noted as 2) for the alternate allele. The second, if
the genotype was homozygous for the reference allele (noted as
0). Third, if there was missing data for that sample (noted as−1).
The combination of the bins and information contained within
makes the ∼100-fold compression conversion a lossless process.
The resulting matrices were relatively small and thus easier to
query/manipulate than VCFs.

General Data Processing
Unless otherwise stated, data processing and analyses were
conducted using MATLAB scientific computing software
(Mathworks, 2020a,b). A compressed version of the data (as
described in the section above) was imported into the MATLAB
workspace. The data were then prepared for machine learning
by splitting the data into training and holdout datasets. As
the data were split, an attempt was made to balance cases and
controls from each cohort. Cohorts that had too few cases or
controls (<20% of each other; or fewer than 20 individuals)
were omitted (see Supplementary Figure 2). After splitting and
counterbalancing, a Fisher’s exact test was performed for each
SNP to assign a p-value to the case:control asymmetries. SNPs
were then sorted, ascending, by p-value.

Artificial Neural Network Classification
In most instances, the model training matrix (feature matrix)
consisted of individual genotypes for the 50 top SNPs after sorting
SNPs by the training group’s Fisher’s exact test p-value. The rows
and columns of this feature matrix represented individuals and
SNPs, respectively, with each cell indicating whether a person was
a homozygous reference, heterozygous, or homozygous alternate
(see Supplementary Figure 3).

For polygenic classification we used a multilayer pattern
recognition neural network (Mathworks, 2020a). This feed-
forward neural net architecture can be trained to predict target
classes (i.e., “labels” or “conditions” like case/control) based on a
set of training features (Demuth et al., 2014). Labels for pattern
recognition networks in a binary classification problem consist of
a vector of 0 s and 1 s, where a 0 represents the negative condition
(i.e., control), while a 1 represents the positive condition (i.e.,
case). In our formulation a pattern recognition network includes
the following parameterization:

patternnet(nLayers, fTrain, fPerf)

where nLayers is the row vector of length n, representing
the number of hidden layers; each nth value specifies the
number of neurons in a given layer (e.g., [50, 10] would
have two hidden layers of 50 neurons and 10 neurons,
respectively). fTrain specifies the network training function (e.g.,
BFGS Quasi-Newton). fPerf specifies the performance function
(e.g., cross-entropy).
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We used a scaled conjugate gradient (SCG) training function
for the polygenic classification task (fTrain = SCG). The SCG
network training function updates network weights and bias
values using conjugate gradient backpropagation, and can be
used to train any network with derivatives for weight, input,
and transfer functions (Moller, 1993). With regard to network
training speed, SCG is significantly faster than other conjugate
gradient methods, because it does not require line searches during
each machine learning iteration (∼0.1 core hours per training
session). Parameterization of the training function involves:

fTrain (maxEpochs, minGrad, maxFails, WtSigma, Lambda)
where maxEpochs is the maximum number of epochs to
train (e.g., 1000), minGradient is the minimum performance
gradient (e.g., 1e-6), maxFails is the maximum validation failures
allowed (e.g., 10), WtSigma is the change in weight for second
derivative approximation (e.g., 5.0e-5), and Lambda regulates
the indefiniteness of the Hessian (e.g., 5.0e-7). Unless otherwise
noted, the model was implemented in the MATLAB (Mathworks
– Deep Learning Toolbox) scientific programming environment
and parameterized with the following values:

patternnet(nLayers = (50, 10) , fTrain = “SCG”,

fPerf = “cross-entropy”)

SCG(maxEpochs = 1000, minGrad = 1e− 6, maxFails = 10,

WtSigma = 5e− 5, Lambda = 5e− 7)

cross-entropy(reg = 0.1, norm = (−0.5, 0.5)).

The last steps involve preparing the data for network training:
(1) individuals are randomly split into a training, validation,
or holdout group; (2) a Fisher’s exact test is used to compute
the p-value associated with the case:control asymmetry in the
training set at each variant locus; (3) the list of SNPs are sorted,
ascending by p-value; and (4), some number of SNPs (e.g., the
top 50) are selected for generating an individual-by-SNP matrix,
where each cell contains the genotype of a given person at a given
SNP locus. Finally, with the feature matrices prepared, and the
model fully parameterized, neural net training can commence:

net = train(patternnet, Xt, Yt, Xv, Yv)

Again, patternnet represents the parameterized model (and
all instructions for model training), Xt and Xv represent
the individual-by-SNP feature matrix for the training and
validation groups, respectively, and Yt and Yv are binary arrays
indicating whether each person is a case or control (i.e., the
condition labels). The model is trained as described above, and
the final output is a fitted neural network model (a set of
network weights).

netSNP Validation Test Using BD
Populations
We conducted simulations to rule out the possibility that
the netSNP method may choose SNPs based on genetic
linkage to APOE ε2 or ε4; i.e., significant tSNPs could

display at-risk or protective properties despite their not being
pathophysiologically associated with AD. Furthermore, other
details of the netSNP method may predispose cases to artifactual
correlations with age of AD diagnosis and Braak scores (We
note, however, that neither the age of AD diagnosis, nor their
Braak score, was used in any calculations performed in section
“NN Construction and Performance” or “netSNP Description
and Application”).

We thus tested for the correlations shown in section “NN
and CV as Predictors of AD and Its Pathophysiology.” for BDs
1–12 (see above; Supplementary Table 3 and Supplementary
Figure 7). Age of diagnosis of BD was ascribed based on
APOE SNPs effects in age of AD diagnosis (using MATLAB
empirical cumulative distribution functions). For each BD,
a balanced dataset was constructed (as for AD, see section
“Dataset Pipeline, Case:Control Balancing and SNP Properties”),
and BD “protective” and “at-risk” tSNPs were identified as
described for AD in section “NN and CV as Predictors of
AD and Its Pathophysiology.” Next, we considered the set of
individuals ascribed BD. We computed a correlation probability,
based on a general linear model, between their age of BD
diagnosis and the number of BD tSNPs or number of BD
CVt-weighted tSNPs. Results for one BD (based on a BD
constructed from BDgene CHSY1; Supplementary Figure 7D)
is compared with results for AD (Supplementary Figure 7C).
A summary of results for the 12 separate BDs, and AD for
comparison, are shown in Supplementary Table 3. Note that
for no BD was there a significant correlation (right columns).
These simulations support the view that the netSNP method
is not choosing AD “protective” and AD “at-risk” SNPs based
on genetic linkage or some other bias introduced in the
netSNP procedure.

Statistics
Statistical methods described per figure below.

For each BD constructed, individuals in the ADSP population
were assigned a BD based on their genotype; those with
APOEε2-like SNPs were randomly assigned as control with OR
2.41; those with APOEε4-like SNPs were assigned as case with
OR 0.30. Those without either SNPs were assigned randomly
to control with OR 0.89 (see Supplementary Table 3). To
generate random Q-Q plots, 100 datasets were generated with
randomly scrambled case-control labels. Fisher’s exact test p-
values were then computed for those 100 scrambled sets.
Scrambled sets were plotted against each other to generate the
C.I. region (gray dots) and also plotted against the actual data
(colored dots).

Hundred random groups were generated with cases and
controls counterbalanced within cohorts to formulate neural
network training matrices. As described above, in each run
one of these random groups was selected and an artificial NN
was trained using the 50 SNPs with the lowest Fisher’s exact
test p-value among training group individuals. NN classifier
performance on the holdout set was then evaluated. A histogram
of each individual’s mean NN classifier value (CV). Shows
receiver operator characteristic (ROC) curves using SNP sets as
features and normalizing CVs to range between 0 and 1: curve
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“1–50” used 50 SNPs with the lowest training group p-values; “1–
50 -APOE” used 50 SNPs with the lowest training group p-values
omitting APOE and TOMM40; “1–50 -GWAS” used 50 SNPs with
the lowest training group p-values omitting SNPs that previously
met genome-wide significance in the literature; “51–100” used
SNPs with the 51st–100th lowest training group p-values. The
left panel shows the mean correct predictions in percent for each
condition in (Figure 2B); the right panel was generated like the
left panel’s “Top 50,” except the experimental manipulation varied
the number of samples in the training group (1 sample = 1
chromosome), as indicated in the figure legend. CVs were
generated like in “2B 1–50,” and normalized to a range between –
0.5 and 0.5. The classification threshold was fixed at 0 and the false
discovery rate (FDR) and positive predictive value (PPV) were
then computed at each corresponding x-axis case prevalence.
The FDR and PPV were also computed using the optimal
operating point (OOP):

S =
Cost(P|N)− Cost(N|N)

Cost(N|P)− Cost(P|P)
∗

N
P

where Cost(N| P) is the cost of misclassifying a case, Cost(P|
N) is the cost of misclassifying a control, where P = TP
+ FN, and N = TN + FP (TP, true positive; TN, true
negative; FP, false positive; FN, false negative). The OOP
was then determined by moving a line with slope S from
FPR = 0, TPR = 1 (the top left of the ROC) down-and-
right, until it intersected with the ROC curve (Mathworks,
2020b).

The histograms shown in (Figure 3A) are the result of training
an NN using individuals of all APOE subtypes, and applying
this NN on holdout set individuals assigned to each of the six
APOE genotypes. That is, after the NN is trained as described
above in General Data Preprocessing, all holdout individuals are
assigned the APOEε22 genotype and a histogram is generated;
then all holdout individuals are assigned the APOEε23 genotype
and another histogram is generated, etc. We call this genotype
assignment procedure the netSNP method (described below)
which we show can be used as a general method for assessing the
importance of any SNP on NN performance. For comparison,
histograms shown in (Figure 3B) are the result of training
an NN using a balanced set of individuals, and computing
CVs for holdout set subgroups of individuals with the APOE
genotypes limited to one of APOEε22, ε23, ε24, ε33, ε34, or
ε44. netSNP method: 4,000 target SNPs were chosen based on
them having the lowest Fisher’s exact test p-value. For each
target SNP, the netSNP method can produce a NAT, REF, ALT,
and DIF value for each individual. For a single target SNP,
obtaining these values involved the following steps: (1) a target
SNP was selected to be part of a 50-SNP training matrix.
(2) A random subset (∼70%) of a balanced set of individuals
served as a training set. (3) From this training set, a Fisher’s
exact test p-value was calculated for each of the (∼1.4 million)
SNPs. (4) A single target SNP was paired with the 49 SNPs
with the lowest p-value to generate a neural network training
matrix. (5) The neural network was trained as described above
in the General Data Processing methods. (6) A CV score was

generated for each of the individuals in the holdout set (NAT
score). (7) All holdout individuals were assigned the homozygous
reference genotype for the target SNP and again a CV was
generated (REF score). (8) All holdout individuals were assigned
the homozygous alternate allele (minor frequency allele) for
the target SNP and a CV was generated (ALT score). (9) The
difference between the ALT and REF scores were computed
(DIF score). This procedure was performed 20x for each target
SNP; for a given target SNP, each individual’s average ALT score
represents that individual’s CVt score for the given target SNP. In
this study we tested if CVt value could be considered a weighted
measure of the impact of target SNP t on the NN. Similar to
how histograms are generated for, after the NN was trained
as described above in General Data Preprocessing, all holdout
individuals were assigned the homozygous genotype for minor
frequency allele of the target SNP for the indicated gene (see
Table 1 for chromosome and position of the target SNP for each
indicated gene).

Boxplots in (Figure 4A) were generated by grouping case
individuals based on whether they had a homozygous reference,
heterozygous, or homozygous minor frequency for the indicated
allele, and plotted the median AD age-of-onset (+/– interquartile
range, IQR; whiskers = range; dots = outliers). Boxplots were
generated by pooling case individuals into six bins that were
uniformly discretized based on the NN CV value, on the number
of protective (left) or risk (right) target SNPs each individual had,
or CVt-weighted target SNPs, and then plotted the median AD
age-of-onset (+/– IQR; whiskers = range; dots = outliers) for
each of these bins. Figure 4E (left) was generated like Figure
4C, considering previously published (without APOE) AD SNPs.
Figure 4D (right) was generated like Figure 4C, providing a
netSNP-computed CVt for each previously published (without
APOE) AD SNPs. Brain sections in (Figure 4F) depict Braak
staging – a method used to classify the degree of pathology in
Alzheimer’s disease – commonly used in post-mortem clinical
diagnosis of AD by performing brain autopsy; images here
intend to summarize the general disease sequelae as shown in
actual brain images from Braak et al. (2006). The bar plot in
(Figure 4G) was generated by identifying individuals that had
mCVt scores across all tSNPs that fall into each of the indicated
bins, and the mean Braak stage of the individuals in each bin
was plotted. Boxplots in (Figure 4H) pool individuals based on
ADSP-reported Braak values and plot the median number of
target SNPs (+/– IQR; whiskers = range; dots = outliers) found
in individuals with a brain pathology that fall into one of these six
Braak stages; as in (Figures 4C,D), effects are shown separately
for SNPs that potentially confer protection (left panel) and risk
(right panel). P-values were computed using a general linear
model, where p-value represents the probability of the slope
coefficient having such a magnitude, under the null hypothesis.
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Supplementary Figure 1 | A multi-layer feed forward neural network was trained
to classify individuals by cohort identity. The scaled conjugate gradient (SCG)
algorithm was the primary learning algorithm used to minimize neural network
weights, here and in all other applications of a neural network in this manuscript
unless otherwise noted.

Supplementary Figure 2 | ROC curves of NN performance were generated
based on neural net output after being trained on individual cohort labels, and
using individual genotypes (for the top 50 SNPs) as training features.

Supplementary Figure 3 | For neural net architecture used to classify individuals
as cases or controls see methods for Supplementary Figure 1.

Supplementary Figure 4 | See legend.

Supplementary Figure 5 | Distributions of CVt values are based on netSNP
outputs (see netSNP method above). To determine if any tSNPs might confer
protection from APOEε4 effects, neural nets weights were fit using true training
group genotypes; then the netSNP test was performed simultaneously for
APOEε4 and the tSNP, such that in each holdout group individual the APOE
locus was set to ε4 and the target SNP locus were set to the homozygous minor
alleles, and neural net output (CVt) was evaluated.

Supplementary Figure 6 | The CVt distributions of holdout group individuals for
different tSNPs were generated using the netSNP method (see netSNP method
above); here APOE and TOMM40 were excluded as training features.

Supplementary Figure 7 | Same methods used to generate Figure 4, with the
only modification being that APOE and TOMM40 were excluded as training
features, except Panel-A which necessarily includes APOE as a training feature.
The left boxplot of Panel-E is the same as in Figure 4 since the raw per-person
count of known AD genes is independent of neural network output and
netSNP manipulations.

Supplementary Figure 8 | See text: results section “netSNP as Predictor of
AD-Linked tSNPs and AD Pathophysiology.” For cases, ages of BD diagnosis was
assigned based on AD age distribution for analogous genotype [e.g., those with
SNP2 (E4-like) were given age of diagnosis with a distribution as individuals with
APOEε4 are diagnosed with AD]. For each BD, netSNP analysis was performed as
it was for AD (netSNP method, above). Correlations between age of BD
diagnosis and 12 of netSNP-identified SNPs and CVt-weighted 12 of
netSNP-identified SNPs was conducted as for AD (Figure 4).

Supplementary Figure 9 | Same methods used to generate Figure 2D using a
classification threshold fixed at zero. NCASE, the number of individuals in the case
condition; PCASE, the number of individuals predicted as case; NCTRL, the
number of individuals in the control condition; PCTRL, the number of individuals
predicted as control; TP, true positive; TN, true negative; FP, false positive; FN,
false negative; TPR, true positive rate; TNR, true negative rate; FPR, false positive
rate; FNR, false negative rate; PPV, positive predictive value; NPV, negative
predictive value; FOR, false omission rate; FDR, false discovery rate; AUC, area
under the curve; ACC, accuracy; FOS, F1-score; PLR, positive likelihood ratio;
NLR, negative likelihood ratio; DOR, diagnostic odds ratio; MCC, Matthews
correlation coefficient.

Supplementary Figure 10 | Same methods used to generate Figure 2D using
the OOP as the classification threshold. Same abbreviations as in
Supplementary Figure 9.

Supplementary Figure 11 | Definitions in Supplementary Figure 9 shown in
the form of a confusion matrix.

Supplementary Figure 12 | See Figure 1C.

Supplementary Figure 13 | See Figure legend.
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