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Background: Periodontitis is a chronic immuno-inflammatory disease characterized
by inflammatory destruction of tooth-supporting tissues. Its pathogenesis involves a
dysregulated local host immune response that is ineffective in combating microbial
challenges. An integrated investigation of genes involved in mediating immune response
suppression in periodontitis, based on multiple studies, can reveal genes pivotal to
periodontitis pathogenesis. Here, we aimed to apply a deep learning (DL)-based
autoencoder (AE) for predicting immunosuppression genes involved in periodontitis by
integrating multiples omics datasets.

Methods: Two periodontitis-related GEO transcriptomic datasets (GSE16134 and
GSE10334) and immunosuppression genes identified from DisGeNET and HisgAtlas
were included. Immunosuppression genes related to periodontitis in GSE16134
were used as input to build an AE, to identify the top disease-representative
immunosuppression gene features. Using K-means clustering and ANOVA, immune
subtype labels were assigned to disease samples and a support vector machine
(SVM) classifier was constructed. This classifier was applied to a validation set
(Immunosuppression genes related to periodontitis in GSE10334) for predicting
sample labels, evaluating the accuracy of the AE. In addition, differentially expressed
genes (DEGs), signaling pathways, and transcription factors (TFs) involved in
immunosuppression and periodontitis were determined with an array of bioinformatics
analysis. Shared DEGs common to DEGs differentiating periodontitis from controls
and those differentiating the immune subtypes were considered as the key
immunosuppression genes in periodontitis.

Results: We produced representative molecular features and identified two immune
subtypes in periodontitis using an AE. Two subtypes were also predicted in the validation
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set with the SVM classifier. Three “master” immunosuppression genes, PECAM1,
FCGR3A, and FOS were identified as candidates pivotal to immunosuppressive
mechanisms in periodontitis. Six transcription factors, NFKB1, FOS, JUN, HIF1A,
STAT5B, and STAT4, were identified as central to the TFs-DEGs interaction network.
The two immune subtypes were distinct in terms of their regulating pathways.

Conclusion: This study applied a DL-based AE for the first time to identify immune
subtypes of periodontitis and pivotal immunosuppression genes that discriminated
periodontitis from the healthy. Key signaling pathways and TF-target DEGs that
putatively mediate immune suppression in periodontitis were identified. PECAM1,
FCGR3A, and FOS emerged as high-value biomarkers and candidate therapeutic
targets for periodontitis.

Keywords: deep learning, autoencoder (AE), periodontitis, immunosuppression genes, therapeutic targets,
bioinformatics

INTRODUCTION

Periodontitis involves the inflammatory destruction of the
supporting tissues of teeth. It involves a perturbed local host
immune response that is ineffective in countering plaque biofilm
microbiota (Meyle and Chapple, 2015). Innate and adaptive
immunity work in tandem to counter the infectious challenge
posed by oral microbiota, limit the spread of infection, and
reestablish periodontal tissue homeostasis (Cekici et al., 2014).
This delicately orchestrated process involves the actions of several
immune regulatory cell types, including oral epithelial cells
(Dutzan et al., 2016), neutrophils (Scott and Krauss, 2011),
macrophages, dendritic cells (Zhou et al., 2019), B cells, and
T cells (Gemmell et al., 2002). Regulatory T cells (Tregs) have
particularly attracted much recent attention as they engender
multiple suppressive mechanisms to inhibit various cells involved
in innate and adaptive immunity. The role of Tregs in controlling
periodontitis due to their immune-suppressive capabilities
has been noted (Alvarez et al., 2018). Immune suppression
demands the tandem action of multiple immunosuppression
genes, several of which have been demonstrated in the context
of periodontal pathology. These include programmed cell
death 1 (PD1), PD-Ligand 1 (PD-L1) (Bailly, 2020), and
Cytotoxic T-Lymphocyte Antigen4 (CTLA4) (Aoyagi et al.,
2000), that function as immune checkpoint inhibitors to
modulate B-cells, CD8+ T-cells, and CD4+ T-cells, which
can amplify infection and promote tissue damage. Therefore,
an immune checkpoint blockade has been proposed as a
modality to manage periodontitis. However, existing reports have
documented very few immunosuppression genes in the context
of periodontitis. It is also recognized that immunosuppressive
agents impose a risk for periodontal diseases, inducing gingival
overgrowth or other alterations in periodontal tissues (Cota
et al., 2010). Immunosuppressive medications for immune-
related disorders such as rheumatoid arthritis or solid organ
transplantation are associated with periodontal disease. However,
the underlying molecular mechanisms remain unclear, and
few genes have been implicated. For instance, specific Human
Leukocyte Antigen (HLA)-DR1 genotype is documented to

protect from gingival overgrowth induced by cyclosporine A
(Cebeci et al., 1996). A more expansive understanding of immune
suppression genes that are relevant to periodontal disease
pathology can lead the identification of candidate genes and
molecular pathways of significant potential translational value.
Such data may enable the development of gene and targeted drug
therapy for multiple periodontal diseases.

Experimental studies are limited by scale, incomplete or
inaccurate existing databases, and the cost-intensive nature
of molecular experiments, so approaches that can predict
previously unidentified gene functions, enable gene function
discovery, and automate the identification of inaccuracies can
be very valuable (Chicco et al., 2014). Deep learning (DL)
computational frameworks are capable of these. In this regard,
an autoencoder (AE), is essentially a dimensionality reduction
tool, as the “building block” of DL, comprises of a three-layered
unsupervised artificial neural network that performs extraction
of representative features (Lee et al., 2009; Wang et al., 2016). The
AE has been implemented as a DL framework to predict survival
in liver cancer (Chaudhary et al., 2018), breast cancer (Tan et al.,
2014), head and neck squamous cell carcinoma (HNSCC) (Zhao
et al., 2019), and when applied to RNA-seq data (Xiao et al., 2018)
has shown value in generating key features from gene expression
data that are linked to clinical outcomes.

To our knowledge, the present study is the first to integrate
multi-omics data pertaining to immunosuppression genes in
periodontitis using a DL-based AE combined with a support
vector machine (SVM) classifier (Ju et al., 2015) confirmed in a
validation set, along with an array of bioinformatic analysis, with
an aim to identify the most significant immunosuppression genes
relevant to the pathogenesis of periodontitis.

MATERIALS AND METHODS

Study Design
An overview of the workflow of this study is depicted in Figure 1.
In brief, two cohorts of periodontitis datasets (GSE16134
and GSE10334) and immunosuppression genes were included.
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FIGURE 1 | Overall workflow. The flowchart depicts the autoencoder (AE) architecture and workflow combining deep learning (DL) techniques to identify key
immunosuppression genes in periodontitis. Immunosuppression genes related to periodontitis from GSE16134 were applied as input features for an AE. The new
transformed features in the bottleneck layer of the AE were clustered into different subtypes using K-mean clustering. Then, based on the clustering labels, we
selected the top 100 most related genes from GSE16134 based on ANOVA F values. The input dataset was split at a 60%/40% ratio (training set/test set) to assess
the robustness of the AE, using a 5-fold CV. Subsequently, based on the above labels of GSE16134, an SVM classifier was built and further applied for prediction in
a validation set (GSE10334). To explore the biological roles of the different identified subtypes, differentially expressed genes (DEGs) and transcription factors (TFs),
differential expression analysis, functional enrichment analysis, and construction of TF-target DEGs interaction network were, respectively, applied. Eventually, to
identify the immunosuppression genes that might be most pertinent to periodontitis, the overlapping DEGs among the DEGs discriminating disease (periodontitis)
and controls and DEGs discriminating the subtypes classified with the AE and SVM models were determined.

First, immunosuppression genes related to periodontitis from
GSE16134 were identified and applied as input features to build
an AE model. Second, each of the new transformed features in the
bottleneck layer of the AE was clustered into different subgroups
using K-mean clustering. In addition, based on the clustering
labels, we selected the top 100 most related genes from GSE16134
based on ANOVA F values. Data partitioning of the inferring
samples of GSE16134 was applied to assess the robustness of
the AE, using a 5-fold CV. The samples were randomly split
into 5 folds, 3 of which were used as the training set (60%) and
the remaining 2 (40%) as the test set. Thereafter, based on the
clustering results and the top 100 genes of GSE16134, a SVM
classifier was built with a 5-fold CV to identify the optimal
hyperparameters, and a validation set (immunosuppression
genes related to periodontitis in GSE10334) was applied for
SVM to predict the subtypes. To explore the biological roles of
the different identified subtypes, differentially expressed genes
(DEGs) and transcription factors (TFs), differential expression
analysis, functional enrichment analysis, and construction of
TF-target DEGs interaction network were, respectively, applied.
Finally, to identify the immunosuppression genes that might be
most pertinent to periodontitis, the overlapping DEGs among

the DEGs discriminating periodontitis and controls and DEGs
discriminating the subtypes classified with the DL-based model
were determined.

Pre-processing of the Dataset
Transcriptomic data from gingival tissue samples affected with
periodontitis and the corresponding controls (GSE16134 and
GSE10334) were obtained from the Gene Expression Omnibus
(GEO) database of NCBI1. Detailed information of the two
datasets is listed in Table 1. Immunosuppression genes were
obtained from databases DisGeNET2 and HisgAtlas3. From
these obtained genes, 1,207 immunosuppression genes related
to periodontitis were extracted. Next, the two datasets were
stacked, and 1,181 immunosuppression genes’ expression profiles
were found matching in the two datasets. Subsequently, the two
datasets were standardized using the “scale” function in R, setting
the parameters as (scale = TRUE and center = FALSE).

1http://www.ncbi.nlm.nih.gov/geo/
2http://www.disgenet.org
3http://biokb.ncpsb.org/HisgAtlas/
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TABLE 1 | Summary of periodontitis related GEO datasets used in this study.

Data GPL (General
public license)

Gene Sample
control

Sample
case

GSE16134 GPL570 24441 69 241

GSE10334 GPL570 24441 64 183

Features Transformation
Immunosuppression gene expression profiles of 241 disease
samples in the GSE16134 dataset were selected as the input for
the AE. The re-coding of the DL algorithms was performed
using the Python library “Keras4”. An AE is a three-layered
neural network consisting of input, hidden, and output layers
(Wang et al., 2016), and here an AE with three hidden layers was
implemented with 200, 100, and 200 nodes per layer each. One
hundred nodes produced by the bottleneck layer were regarded
as the new compressed representative features of the data. In
accordance with previous research, the AE was set up using the
following equations (Chaudhary et al., 2018).

y = fi(x) = tanh (wi.x+ bi)

x′ = F1→k(x) = f o
1 ...of o

k−1
ofk(x)

logloss(x, x′) =
d∑

k=1

(xklog(x′k)+ (1− xk)log (1− x′k))

L(x, x′) = logloss(x, x′)+
k∑

i=1

(∂w||Wi||1 + ∂a||F1→i(x)||22)

To control overfitting, the penalty values αα and αw (the activity
regularizer of layer output) were set to 0.00002 and 0.00001.
In addition, the AE was trained using the gradient descent
algorithm with 20 epochs and 50% dropout. Here, an epoch is an
iteration that indicates the number of passes of the entire training
dataset, while the size 20 is one of the appropriate training cycles
calculated in the evaluation of the model.

K-Means Clustering to Identify Subtypes
of Immunosuppression Genes in
Periodontitis
The 100 nodes from the bottleneck-hidden layer were considered
as new features for the analysis and were clustered with
the K-means algorithm. The optimal number of clusters was
determined based on two metrics: Silhouette index (Rousseeuw,
1987) and Calinski–Harabasz index (Calinski and Harabasz,
1974), using scikit-learn package (Pedregosa et al., 2011).

Comparison of AE With PCA Based
Clustering
Principal component analysis (PCA), a conventional dimension
reduction approach was applied to compare with the AE
performance (Chaudhary et al., 2018). The same number (100)
of the principal components were set as the features in the

4https://github.com/fchollet/keras

bottleneck layer and clustering performances of AE and PCA
were evaluated using the Silhouette index (Rousseeuw, 1987).

Data Partitioning and Robustness
Assessment
Data partitioning of the inferring samples of GSE16134 was done
to assess the robustness of the model, using a cross-validation
(CV)–like procedure, as described in earlier reports (Chaudhary
et al., 2018; Zhao et al., 2019). First, the samples were randomly
split into 5 folds, 3 of which were used as the training set
(60%) and the remaining 2 (40%) as the test set. Using this CV
approach,10 new combinations (folds) were obtained. In each,
a distinct AE and a classifier were constructed in each training
fold and were used for predicting the labels in the test set.
Eventually, category labels were inferred using an AE based on
all the samples, and these labels were used for predicting labels of
the validation dataset.

Supervised Classification
First, the obtained features from GSE16134 were standardized
with the “scale” function in R, setting the scale as (center = TRUE
and scale = TRUE). Then, the top 100 “most relevant”
immunosuppression genes in GSE16134 were selected based
on the clustering labels and analysis of variance (ANOVA) F
values. Since the top 100 genes were also present in GSE10334
dataset, a complementation test for missing genes was not
conducted. Subsequently, based on the labels assigned using
GSE16134, a SVM classifier was built and further applied for
prediction in a validation set (GSE10334). The “scikit-learn”
package (Pedregosa et al., 2011) was used to perform a grid search
for the identification of the optimal hyperparameters for the SVM
model using a 5-fold CV.

Evaluation of the SVM Classifier
Accuracy and area under the curve (AUC) were selected as two
metrics to evaluate the performance of the SVM classifier. The
percentage of accuracy was calculated as: Accuracy (%) = Predict
number / Test number. A receiver operating characteristic (ROC)
curve was plotted for the model using the “pROC” (Robin
et al., 2011) and the “ggplot2” packages in R5. The AUC is the
area under the ROC curve, where an AUC value above 70% is
considered acceptable (Mandrekar, 2010).

Differential Expression Analysis
Differential expression analysis was performed for each of
the datasets (GSE16134 and GSE10334), to identify genes
discriminating between the disease and control samples, using
the “Linear Models for Microarray data” (“limma”) package in R
(Ritchie et al., 2015). Genes with P value < 0.05, and |log FC| ≥ 1
was selected as differentially expressed genes (DEGs). The DEGs
with Log FC ≥ 1 was defined as up-regulated DEGs, while the
DEGs with log FC ≤−1 were defined as down-regulated DEGs.

Differential expression analysis was also similarly conducted
for the classified subtypes. Here, genes with P value < 0.05, and

5https://ggplot2.tidyverse.org
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FIGURE 2 | Performance of the autoencoder (AE) and support vector machine (SVM) model. (A) Clustering results using the Silhouette index. Horizontal axis:
Average silhouette width; Vertical axis: Number of clusters k. The optimal number of clusters is 2. (B) Clustering outcomes using Calinski–Harabasz criterion.
Horizontal axis: Sum of the squared errors; Vertical axis: Number of clusters k. The optimal number of clusters is 2. (C,D) Comparison of AE with principal
component analysis (PCA) based clustering. (C) The performance of AE based on Silhouette index. The optimum cluster number using AE is 2. Dim = dimensions.
(D) The performance of PCA based on Silhouette index. The optimum cluster number using PCA is 6. Dim = dimensions. (E) Receiver operating characteristic (ROC)
curve of the SVM model. Horizontal axis: false discovery rate (FDR); Vertical axis: true positive rate (TPR). The area under the curve (AUC) value of the GSE16134 test
set is 97.72%.

|log FC| ≥ 0.05 were selected as DEGs; The DEGs with Log
FC ≤ 0.05 were defined as up-regulated DEGs, while the DEGs
with log FC ≤−0.05 were defined as down-regulated DEGs.

To identify the most critical immunosuppression genes in
periodontitis, the DEGs discriminating disease and control
samples that overlapped with DEGs discriminating the different
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subtypes were identified and visualized using a Venn diagram.
To evaluate the performance of each such identified gene, a ROC
curve was plotted as described earlier.

Functional Enrichment Analysis
The DEGs overlapping in the two datasets (GSE16134 and
GSE10334) were identified using the “ClusterProfiler” package in
R (Yu et al., 2012). The functions of these DEGs were explored
by investigating their enriched Gene Ontology (GO) terms,
particularly biological processes (BPs) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways. The GO/BP terms and
KEGG pathways with P value < 0.05 were regarded as significant
functions. The top 30 of the enriched GO/BPs and pathways were
chosen to be visualized in a bar plot.

In addition, KEGG pathway analysis was applied to determine
the characteristics of different subtypes in GSE16134 and
GSE10334 each. KEGG pathways with P value < 0.05 were
regarded as significant functions. The top 20 of the enriched
pathways were listed and visualized using the heatmap function
in R (Galili et al., 2017).

Construction of TF-Target DEGs
Interaction Network
TF-target gene interaction pairs were downloaded from multiple
databases, including TRRUST6, cGRNB7, HTRIdb8, ORTI9, and
TRANSFAC10. The TFs targeting DEGs overlapping in the
two datasets (GSE16134 and GSE10334) were extracted and
used for constructing the TFs-target DEGs interaction network.
The network was visualized using Cytoscape (Version 3.7.2)
(Shannon et al., 2003), and the topological characteristics of the
nodes in the TF-target gene network were determined.

RESULTS

Identification of Two Subtypes of
Immunosuppression Genes in GSE16134
by AE
The optimal number of clusters was determined based on two
metrics: Silhouette index (Figure 2A) and Calinski–Harabasz
index (Figure 2B). The value of the silhouette coefficient is
between [−1, 1] and the score near 1 indicates a highly
dense clustering. When k = 2, the average silhouette width
was nearest to 1 (Figure 2A). Using Calinski–Harabasz index,
better performance of clustering depends on a higher score
and at k = 2, the score (sum of the squared errors) was the
highest (Figure 2B). Therefore, the genes were clustered into two
subtypes, defined as S1 and S2.

6https://www.grnpedia.org/trrust/
7https://www.scbit.org/cgrnb
8http://www.lbbc.ibb.unesp.br/htri/
9http://orti.sydney.edu.au/about.html
10http://gene-regulation.com/pub/databases.html

The AE Performed Better Compared to
PCA
The performance of the AE was compared to that of PCA based
clustering using Silhouette index. While two optimal clusters
were extracted by AE (Figure 2C), six optimal clusters were
extracted using PCA (Figure 2D), indicating that the difference
between PCA transformed features was minimal, and it was
difficult to cluster them effectively. Furthermore, the PCA landing
points were concentrated in one zone, and the division was not
clear. Therefore, the AE emerged as more effective and accurate
in clustering features.

SVM Model and Its Validation
Using a 5-fold CV, the input dataset (immunosuppression
genes related to periodontitis from GSE16134) were split at a
60%/40% ratio for the training set and testing set. The SVM
model presented an accuracy of 92.78% (Table 2), and the
AUC score at 97.72%, above 90% (Figure 2E), supporting the
model was efficient in distinguishing between classes and thus
reliable in predicting significant immunosuppression genes in the
GSE10334 dataset (Mandrekar, 2010).

DEGs Involved in Immunosuppression
and Periodontitis
Differential expression analysis was applied to the disease and
control samples, as well as the two classified subtypes. A total
of 236 DEGs consisting of 48 down-regulated DEGs and
188 up-regulated DEGs were identified from the GSE16134
dataset, while a total of 194 DEGs consisting of 42 down-
regulated DEGs and 152 up-regulated DEGs were identified

TABLE 2 | Classifier performance outcomes of SVM.

GSE16134

Test Predict Accuracy (%)

Cluster 1 27 21

Cluster 2 70 69

Total 97 90 92.78%

TABLE 3 | Outcome of differential gene expression analysis for datasets
GSE16134 and GSE10334.

Data
(Disease vs. Normal)

DEG
(Up)

DEG
(Down)

Total Log FC
Abs

P value

GSE16134 188 48 236 >1 <0.05

GSE10334 152 42 194 >1 <0.05

TABLE 4 | Differential expression analysis applied to disease samples based on
identified subtypes.

Data (Subtype1 vs.
Subtype 2)

DEG
(Up)

DEG
(Down)

Total Log FC
Abs

P value

GSE16134 134 85 219 >0.05 <0.05

GSE10334 145 95 240 >0.05 <0.05
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from the GSE10334 dataset (Table 3). For discriminating the
designated subtype labels, a total of 219 DEGs consisting
of 85 down-regulated DEGs and 134 up-regulated DEGs
were identified in the GSE16134, while a total of 240

DEGs consisting of 95 down-regulated DEGs and 145 up-
regulated DEGs were identified in the GSE10334 dataset
(Table 4). As shown in the Venn diagram (Figure 3A), three
significant DEGs, Platelet Endothelial Cell Adhesion Molecule

FIGURE 3 | Identification of the significant DEGs. (A) Intersection of DEGs discriminating sample type (disease vs. normal) (236 DEGs from GSE16134 and 194
DEGs from GSE10334) and DEGs of the disease samples classified into subtypes (subtype 1 vs. subtype 2) (219 DEGs from GSE16134 and 240 DEGs from
GSE10334). (B,C) ROC curve of three significant genes (PECAM1, FCGR3A, and FOS) in GSE16134 (B) and GSE10334 (C). Horizontal axis: false discovery rate
(FDR); Vertical axis: true positive rate (TPR).
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TABLE 5 | AUC values of the three most significant genes.

Gene GSE10334_ROC_AUC
(%)

GSE16134_ROC_AUC
(%)

Mean (%)

PECAM1 87.09 90.45 88.77

FCGR3A 77.66 80.95 79.31

FOS 71.06 72.37 71.72

(PECAM) 1, Fc Gamma Receptor (FCGR) 3A, and FOS were
found intersecting and considered as potentially most robust
immunosuppression genes related to periodontitis. Each of the
three DEGs has an acceptable performance, with an AUC
value above 70%, listed in Table 5. The ROC curves of the
three genes from GSE16134 and GSE10334 are shown in
Figures 3B,C, respectively.

Functional Terms Enriched Among the
DEGs
Significantly enriched biological processes and signaling
pathways related to the immunosuppressive DEGs were
identified from those overlapping between GSE16134 and
GSE10334. The immunosuppressive DEGs involved in
periodontitis were implicated in biological processes, including T
cell activation, regulation of lymphocyte activation, regulation of
T cell activation, regulation of cell-cell adhesion, and leukocyte
cell-cell adhesion (Figure 4A). The immune activities were
mainly regulated by Th17 cell differentiation, cytokine-cytokine
receptor interaction, T cell receptor signaling pathway, Th1
and Th2 cell differentiation, Mitogen-activated Protein Kinase
(MAPK) signaling pathway, osteoclast differentiation, and
Phosphatidylinositol 3-Kinase (PI3K)-Protein Kinase B (Akt)
signaling pathway (Figure 4B).

Most pathways of the two subtypes were evident as distinct in
GSE16134 (Figure 5), indicating significant differences between
the two subtypes in terms of immunosuppressive activities in
periodontitis. This difference was also detected between the two
predicted subtypes in GSE10334 (Figure 6). Specifically, subtype

S1 of immunosuppressive DEGs in periodontitis from both
GSE16134 (Figure 5A) and GSE10334 (Figure 6A) was mainly
enriched in cytokine-cytokine receptor interaction, chemokine
signaling pathway, Janus kinase (JAK)- Signal Transducer and
Activator of Transcription Protein (STAT) signaling pathway,
Hypoxia-inducible Factor (HIF)-1 signaling pathway, and T
cell receptor signaling pathway. Of note, subtype S1 from
GSE16134 was also enriched in PD-L1 expression and PD-1
checkpoint pathway in cancer (Figure 5A). Whereas subtype S2
was mainly associated with MAPK signaling pathway, osteoclast
differentiation, and infection of virus and E. coli bacteria
(Figures 5B, 6B).

Identification of Hub Transcription
Factors That Targeted DEGs
The TFs-target DEGs interaction network of the
immunosuppression genes in periodontitis is shown in Figure 7,
consisting of 197 nodes and 447 edges. Top 30 TFs (Table 6)
with the highest degree were considered to represent those most
critical to this network. Of these, the top 10 TFs in the network
were determined as the hubs, including Androgen Receptor
(AR), Hypoxia-inducible Factor (HIF)1A, Signal Transducer and
Activator of Transcription Protein (STAT) 5B, and STAT4, which
were not only TFs but also up-regulated DEGs, and Nuclear
Factor Kappa B Subunit 1 (NFKB1), MYC, JUN, Tumor Protein
(TP)53, FOS, and Forkhead Box (FOX) O3, which were not only
TFs but also down-regulated DEGs.

DISCUSSION

In this study, we used a DL-based algorithm, the AE, for
identifying the pivotal immunosuppression genes relevant to
periodontitis. With this approach, we re-constructed multi-
omics data and produced representative molecular features
grouped into two immune subtypes and then built an SVM
model based on these, which was confirmed using a validation
set. Besides, significant pathways and TF-target DEGs involved
in immunosuppression during periodontitis were identified.

FIGURE 4 | The functional enrichment analysis of the overlapping DEGs common to the two datasets (GSE16134 and GSE10334). (A) The significantly enriched
biological processes of the overlapped DEGs; (B) The significantly enriched signaling pathways of the overlapped DEGs.
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FIGURE 5 | Pathways enriched in the DEGs characterizing the two subtypes in GSE16134. (A) Top 20 enriched signaling pathways of DEGs in subtype 1. (B) Top
20 enriched signaling pathways of DEGs in subtype 2. (C) Heatmap shows the enriched signaling pathways of DEGs in the two subtypes.

Notably, we identified the key characteristics of two immune
subtypes of periodontitis. We also identified three “master”
immunosuppression genes, PECAM1, FCGR3A, and FOS, as
candidate genes central to immune suppressive pathogenic
mechanisms in periodontitis.

An AE-based DL approach has demonstrated high efficiency
and accuracy in predicting biomarker genes for lung cancer,
breast cancer, and HNSCC (Xiao et al., 2018). Akin to these
studies, CV results indicated this approach was robust
in classifying patients into two subgroups. Furthermore,

the AE was more efficient and precise in clustering the
distinct features, as compared with the commonly utilized
unsupervised ordination method, PCA. In addition, the
robustness and reliability of the model were confirmed in
a validation set.

The central finding of our study is the identification of
three distinct immunosuppression genes, PECAM1, FCGR3A,
and FOS, which could be potentially high-value biomarkers or
candidate therapeutic targets for periodontitis. PECAM1, also
known as CD31, is an immunoglobulin (Ig) gene expressed
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FIGURE 6 | Pathways enriched in the DEGs characterizing the two subtypes in GSE10334. (A) Top 20 enriched signaling pathways of DEGs in subtype1. (B) Top 20
enriched signaling pathways of DEGs in subtype 2. (C) Heatmap shows the enriched signaling pathways of DEGs in the two subtypes.

in various cells, such as endothelial cells (ECs), platelets, and
immune cells. PECAM1 is found to be a co-modulator of T-cell
immunity (Huang et al., 2017) and a promoter of endothelial
junctional integrity (Marelli-Berg et al., 2013). Periodontal
pathogens, particularly P. gingivalis, can induce vascular damage
through the degradation of PECAM1 (Yun et al., 2005;
Farrugia et al., 2020). A protective effect of PECAM1 was also
detected in transplant arteriosclerosis (Ensminger et al., 2002).
FCGR3A is a member of FCGR families, forming a critical link
between humoral and cellular immune responses to periodontal
microbiota (Chai et al., 2010; Pavkovic et al., 2018). Previous

studies have reported single-nucleotide polymorphisms (SNPs)
of FCGR3A (rs396991 and rs4455090) were correlated with
periodontitis and might impact susceptibility to periodontitis
(Kobayashi et al., 2001; Chai et al., 2010). Besides, FCGR3A
polymorphism and the allele rs396991 was identified as an
independent susceptibility marker of allograft rejection in
patients after organ transplants, highly responsive to natural
killer (NK) cells (Paul et al., 2019). FOS was also identified as a
significant TF in the study.

Of the top 10 hub TFs, six “leader” immunosuppressive TF-
target DEGs with plausible literature evidence were identified
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FIGURE 7 | The transcription factor (TF)-target interaction network of GSE16134 and GSE10334 involved in immunosuppression and periodontitis. Top 30 TFs were
visualized in the network. Red and gray dots: up-regulated TF and DEG; Green and gray dots: down-regulated TF and DEG; Red dots: up-regulated DEG; Green
dots: down-regulated DEG.

as key to periodontitis pathogenesis and included the down-
regulated TFs (NFKB1, FOS, and JUN), as well as up-regulated
TFs (HIF1A, STAT5B, and STAT4). NFKB1, also termed NF-
κB, is a core TF implicated in immune and inflammatory
diseases (Tak and Firestein, 2001). Periodontal pathogens
can activate NF-κB, and thus inhibition of NF-κB might be
a therapeutic target for periodontitis (Ambili et al., 2005).
Furthermore, NF-κB is activated in transplanted tissue, and
its blockade may be potent in preventing allograft rejection

after solid organ transplants, considering the role of NF-κB
in T cell activation and differentiation (Molinero and Alegre,
2012). FOS is implicated in periodontitis progression acting
via the regulation of T-cell receptor (TCR) signaling (Maekawa
et al., 2017). C-Jun (encoded by JUN) signaling is activated
by Receptor Activator of Nuclear Factor Kb Ligand (RANKL)
and essential for osteoclast differentiation (Ikeda et al., 2004).
Activator Protein (AP)-1 is a heterodimer composed of the
Fos and Jun subunits, which downregulates osteoprotegerin and
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TABLE 6 | The topological characteristics of the top 30 nodes in the TF-target interaction network.

Name Label Degree Average Shortest
Path Length

Betweenness
Centrality

Closeness
Centrality

Clustering
Coefficient

Topological
Coefficient

AR TF&DEG_Up 87 1.6327 0.4063 0.6125 0.0270 0.0351

NFKB1 TF&DEG_Down 62 1.7143 0.2926 0.5833 0.0518 0.0457

MYC TF&DEG_Down 56 1.7398 0.2342 0.5748 0.0610 0.0497

JUN TF&DEG_Down 49 1.8163 0.1276 0.5506 0.0859 0.0541

TP53 TF&DEG_Down 41 2.0816 0.0906 0.4804 0.0634 0.0603

FOS TF&DEG_Down 40 1.8776 0.0975 0.5326 0.1077 0.0670

HIF1A TF&DEG_Up 17 2.0051 0.0433 0.4987 0.1985 0.1076

STAT5B TF&DEG_Up 16 2.5408 0.0063 0.3936 0.0917 0.1517

FOXO3 TF&DEG_Down 15 2.3418 0.0175 0.4270 0.2000 0.1202

STAT4 TF&DEG_Up 15 2.0459 0.0329 0.4888 0.2190 0.1298

CTNNB1 TF&DEG_Down 14 2.1837 0.0514 0.4579 0.1648 0.1186

BAX TF&DEG_Down 13 2.2857 0.0264 0.4375 0.1795 0.1348

KLF4 TF&DEG_Down 13 1.9949 0.0268 0.5013 0.2821 0.1560

IRF2 TF&DEG_Down 13 2.5918 0.0283 0.3858 0.0385 0.1110

ESR2 TF&DEG_Up 11 2.2092 0.0060 0.4527 0.3455 0.1706

NFKB2 TF&DEG_Down 10 2.3827 0.0182 0.4197 0.2889 0.1806

PLAU TF&DEG_Down 10 2.4694 0.0140 0.4050 0.1556 0.1538

EGFR DEG_Up 9 2.1327 0.0037 0.4689 0.4167 0.2059

VDR TF&DEG_Down 9 2.4388 0.0030 0.4100 0.2500 0.1993

RARB TF&DEG_Up 8 2.2245 0.0083 0.4495 0.3571 0.2083

BCL2L1 DEG_Down 7 2.1531 0.0021 0.4645 0.6190 0.2706

SIM2 TF&DEG_Up 7 2.2245 0.0045 0.4495 0.2857 0.2351

ABL1 TF&DEG_Down 6 2.2959 0.0029 0.4356 0.3333 0.2561

TGFB1 DEG_Down 6 2.0816 0.0005 0.4804 0.8667 0.3209

PRL DEG_Up 6 2.4286 0.0014 0.4118 0.4000 0.2434

CD40LG DEG_Up 6 2.4694 0.0031 0.4050 0.4000 0.2508

IFNG DEG_Up 6 2.5918 0.0013 0.3858 0.3333 0.2405

MMP2 DEG_Up 6 2.4031 0.0003 0.4161 0.8000 0.2670

DUSP1 DEG_Down 5 2.2245 0.0022 0.4495 0.4000 0.3270

MAPK1 DEG_Down 5 2.3061 0.0009 0.4336 0.5000 0.3090

is highly expressed in periodontal ligament cells, suggesting
their role in bone resorption during periodontitis (Suda et al.,
2009). Inhibition of c-Fos/AP-1 by T-5224 (a novel chemical)
could attenuate inflammation, T cell proliferation, and allograft
rejection in pancreatic islet transplantation (PIT) (Yoshida et al.,
2015) and be suggested as a target for immunosuppressive
therapy. HIF1A/HIF1, an oxygen-regulated subunit (Corrado
and Fontana, 2020), is involved in the immune response of
periodontitis, playing a pleitropic role in defending against
macrobiotics and facilitating the progression of periodontitis
(Wang et al., 2017). HIF1 was also suggested to mediate
inflammation and immune responses after organ transplantation,
mediating angiogenesis and allograft in the donor organs
(Xu et al., 2019). STAT5B and STAT4 are members of the
STAT family that play important roles in activating gene
transcription through various cytokines. STAT5B and STAT4
can be activated by a variety of cytokines, including Interleukin
(IL)12, Type I Interferon (IFNI), IL23, IL2, IL27, and IL35
(Garcia de Aquino et al., 2009; Sanpaolo et al., 2020; Yang
et al., 2020), which are prominently involved in mediating
immune responses during periodontitis. IFN-γ could stimulate

the expression of Indoleamine 2,3-Dioxygenase (IDO)1, a critical
immunosuppression protein, in primary human periodontal
ligament stem cells (Andrukhov et al., 2017). Thus, evidence
suggests STAT5B and STAT4 may mediate immunosuppression
during periodontitis.

The immunosuppression DEGs in the two subtypes were
functionally related to multiple immune-related biological
processes and pathways, and the two subtypes were distinct in
their regulating pathways. In subtype S1, PD1/PLL1 checkpoint
signaling, T cell receptor signaling, and signaling pathways
related to immunosuppressive factors, including cytokines,
chemokines, Janus Kinase (JAK) -STAT, and HIF1, are found
to activate up-regulated TFs, such as HIF1A, STAT4, and
STAT5B (de Souza et al., 2012). Whereas the signaling
pathways enriched in subtype S2 primarily regulated the
MAPK signaling pathway and osteoclast differentiation, as
well as the infection of virus and E. coli bacteria, targeting
the down-regulated TFs, such as NFKB1, FOS, and JUN (de
Souza et al., 2012). Immune response-related pathways were
mainly involved in the subtype S1, supporting a hypothesis
that periodontitis patients with molecular subtype S1 may be
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more sensitive to and thus respond comparatively well to the
immune-related target therapy.

Considering PDL1/PD1 signaling that characterized the
subtype S1, it has been found that peptidoglycans from
P. gingivalis can lead to the up-regulation of PDL1 expressed
by gingival keratinocytes, as well as the overexpression of PD1
expressed on T lymphocytes (Bailly, 2020). The interaction
between PDL1 and PD1 can suppress the initial activation
and effector function of T cells and thereby promote the
progression of periodontal inflammation (Yang et al., 2019).
As PDL1-inhibitor has shown significant effects as a cancer
therapy in clinical trials (Kim et al., 2020), it may also
hold potential as immune therapy for periodontitis patients,
especially in the case of immune-compromised patients. The
inhibition of the JAK-STAT pathway has been indicated as
a potential strategy for immunosuppression therapy, targeting
the key cytokines, such as IFNg and IL12 (O’Shea and
Plenge, 2012). HIF1A pathway has been found to modulate
immunosuppressive molecules, typically VEGF, in periodontitis
(Vasconcelos et al., 2016), and tumor microenvironment (El-
Sayed Mohammed Youssef et al., 2015). Manipulation of
the HIF1A pathway has been proposed as a therapeutic
intervention in tumor immunotherapy (Li et al., 2018). The
MAPK pathway identified in subtype S2, consists of three
family sub-members, extracellular regulated kinases (ERK),
c-Jun N-terminal activated kinases (JNK), and p38, and is
closely related to osteoblast differentiation (Rodríguez-Carballo
et al., 2016). Further, inhibition of p38 may particularly have
potential therapeutic value in limiting periodontitis progression
at multiple levels of the immune response via its effects on
different extracellular stimuli (Kirkwood and Rossa, 2009). Of
note, bone resorption, a hallmark of periodontitis, is mainly
affected through RANKL, a vital osteoclast differentiation factor
(Taubman et al., 2005) and Tumor Necrosis Factor (TNF)-a,
majorly activated by MAPK and NF-κB pathways (Ketherin
and Sandra, 2018), indicating a key role of these pathways in
osteoimmunology.

Altogether, using the DL-based predictive model and
bioinformatic analysis, our study provides a predictive and
theoretical description of functions and mechanisms relevant to
immunosuppression genes active in periodontitis pathogenesis.
The validated efficiency and accuracy of the DL-model overcome
the bottlenecks of current evidence and suggest new insights
valuable for potential translation in therapeutic gene targeting.
However, considering our study is the first to apply DL methods
in the periodontal disease context, it is expected that further
well-designed investigations can validate the model considering
other aspects of periodontal disease, where specific and precise
associations between clinical parameters and target genes
might be identified. One caveat of our study is the lack of
phenotype information about the periodontitis cases which
were grouped into two distinct immune subtypes. Periodontitis
is well recognized as a multifactorial disease, where a disease
phenotype may result from multiple factors in a “sufficient cause
model” (Heaton and Dietrich, 2012). Distinct “immunotypes” in
periodontitis may represent heterogeneity in the core biological
mechanisms contributing to disease in different subjects.

A more in-depth understanding of these could support precision
medicine approaches in the future. Besides, the possible clinical
translation of these results may include multiple directions.
For instance, the identification of immunosuppression genes
may direct the development of improved topical drugs for
delivery at diseased periodontal sites, which could avoid side
effects inherent to conventional drugs such as antimicrobials.
Also, these findings support a hypothesis that manipulation
of the identified immunosuppression genes or selection of
the drugs targeting immune checkpoints could be protective
against periodontal diseases in patients who have had long-
time immunosuppressive therapy, such as those with organ
transplantation.

CONCLUSION

The DL-based model applied in this study was reliable and
robust in predicting immunosuppression genes in periodontitis.
An array of pathways and TF-target DEGs were found to
be implicated in the immunosuppressive activity during
periodontitis. Three “master” immunosuppression genes,
PECAM1, FCGR3A, and FOS, were identified as critical to
immune suppression occurring during periodontal pathology.
Taken together, the DL model revealed novel insights into
the molecular mechanisms underpinning periodontitis and
identified key candidate genes for further translation in the
context of risk profiling and therapeutic development.
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