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Background: With the improvement of clinical treatment outcomes in diffuse large
B cell lymphoma (DLBCL), the high rate of relapse in DLBCL patients is still an
established barrier, as the therapeutic strategy selection based on potential targets
remains unsatisfactory. Therefore, there is an urgent need in further exploration of
prognostic biomarkers so as to improve the prognosis of DLBCL.

Methods: The univariable and multivariable Cox regression models were employed to
screen out gene signatures for DLBCL overall survival (OS) prediction. The differential
expression analysis was used to identify representative genes in high-risk and low-
risk groups, respectively, where student t test and fold change were implemented. The
functional difference between the high-risk and low-risk groups was identified by the
gene set enrichment analysis.

Results: We conducted a systematic data analysis to screen the candidate genes
significantly associated with OS of DLBCL in three NCBI Gene Expression Omnibus
(GEO) datasets. To construct a prognostic model, five genes (CEBPA, CYP27A1, LST1,
MREG, and TARP) were then screened and tested using the multivariable Cox model
and the stepwise regression method. Kaplan–Meier curve confirmed the good predictive
performance of this five-gene Cox model. Thereafter, the prognostic model and the
expression levels of the five genes were validated by means of an independent dataset.
High expression levels of these five genes were significantly associated with favorable
prognosis in DLBCL, both in training and validation datasets. Additionally, further
analysis revealed the independent value and superiority of this prognostic model in risk
prediction. Functional enrichment analysis revealed some vital pathways responsible for
unfavorable outcome and potential therapeutic targets in DLBCL.

Conclusion: We developed a five-gene Cox model for the clinical outcome prediction of
DLBCL patients. Meanwhile, potential drug selection using this model can help clinicians
to improve the clinical practice for the benefit of patients.
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INTRODUCTION

Diffuse large B cell lymphoma (DLBCL) is the most common type
of aggressive non-Hodgkin lymphoma with an annual incidence
of 1–5/10,000 (Li et al., 2018; Marangon et al., 2019). DLBCL is
an aggressive and potentially curable hematological malignancy,
which makes an early diagnosis and effective treatments
essential for patients. R-CHOP (rituximab, cyclophosphamide,
doxorubicin, vincristine, and prednisone) is currently the
standard first line treatment of DLBCL (Coiffier et al., 2002).
Despite the high rate of complete response (76%), approximately
40% of patients will relapse, and the molecular mechanism
underlying recurrence remains largely unknown (Coiffier et al.,
2010). DLBCL displays tremendous clinical, genetic and
molecular heterogeneity. The International Prognostic Index
(IPI) has been used to predict the prognosis of patients with
DLBCL for nearly 30 years, yet there still exists a minority
of patients whose clinical process were not in accord with
the IPI stratification (International Non-Hodgkin’s Lymphoma
Prognostic Factors Project, 1993). Gene expression profiling has
helped identify two major subtypes, known as germinal center
B-cell-like (GCB) and activated B-cell-like (ABC), and patients
with ABC DLBCL exhibit a generally worse prognosis (Lenz
et al., 2008a). However, the high prices and strict requirements
regarding tissue limit the routine use of this method. Therefore,
efforts have been made to find novel biomarkers with prognostic
values in order to improve therapeutic strategy selection based on
potential targets (Cabanillas and Shah, 2017).

Currently, various markers are defined through
immunophenotyping, such as CD5, CD30, BCL2, MYC, and
TP53 (Pierce and Mehta, 2017; Zhao et al., 2019). CD5 promotes
downstream B-cell receptor signaling, is associated with ABC
subtype and more aggressive clinical traits. Patients with CD30+
DLBCL, which leads to the downregulation of NF-κB and B-cell
receptor signaling, tend to exhibit a better prognosis (Bhatt et al.,
2016; Thakral et al., 2017). Meanwhile, in patients with the GCB
subtype, BCL2 and MYC rearrangements would lead to worse
prognosis (Visco et al., 2013). TP53 mutation also adversely
affects patients’ prognosis (Xu-Monette et al., 2012). Based on
the new integrated genetic map, Chapuy et al. (2018) identified
distinct subsets, including a previously unrecognized group of
low-risk ABC-DLBCLs, two GCB-DLBCLs subsets with different
prognoses and an ABC/GCB-independent group. In addition,
Schmitz et al. (2018) uncovered some previously unknown
subtypes of DLBCL by differences in gene-expression signatures
and responses to immunochemotherapy. The subset of high-risk
patients requires revolutionized therapeutics, and personalized
therapy based on patient’s histological and molecular-genetic
characteristics will bring greater benefits to patients. Therefore,
further exploration of prognostic indicators is still needed to
distinguish DLBCL patients of varied prognosis.

Abbreviations: DLBCL, diffuse large B cell lymphoma; IPI, International
Prognostic Index; GCB, germinal center B-cell-like; ABC, activated B-cell-
like; GEO, Gene Expression Omnibus; LDH, serum lactate dehydrogenase;
ECOG, Eastern Cooperative Oncology Group; CHOP, combine with intensive
chemotherapy; circRNA, circular RNAs; HCC, hepatocellular carcinoma; ncRNA,

MATERIALS AND METHODS

Data Collection
The gene expression data and corresponding clinical information
were collected from NCBI Gene Expression Omnibus (GEO)
database with accession numbers of GSE32918 (Barrans et al.,
2012) (n = 172), GSE4475 (Hummel et al., 2006) (n = 166),
GSE69051 (Sha et al., 2015) (n = 149), TCGA (Schmitz et al.,
2018) (n = 43), GSE31312 (Visco et al., 2012) (n = 470),
GSE34171 (Monti et al., 2012) (n = 68), GSE11318 (Lenz
et al., 2008b) (n = 203), and GSE10846 (Lenz et al., 2008a)
(n = 414). It should be noted that Burkitt lymphoma samples
in GSE69051 and GSE4475 have been excluded in this study.
Among these datasets, GSE32918, GSE4475, and GSE69051
were used for feature selection and model training, while the
remaining datasets including TCGA, GSE31312, GSE34171,
GSE11318, and GSE10846 were used as independent validation
datasets. The expression values were normalized by the data
submitters, and discretized by median values, which were used
for downstream analysis.

Cox Proportional Hazard Model
The univariable Cox proportional hazard model was used
to screen prognostic genes in the first three datasets. To
integrate the three datasets and remove batch effect, we
converted the continuous expression values of the shared
genes into two discrete expression levels, i.e., high and low
expression, using the median expression as the threshold value.
The principal component analysis based on the discretized
expression levels revealed that no clear batch effect was observed
between the three datasets (Kruskal–Wallis test for the top two
principal components, P-value > 0.05, Supplementary Figure 1),
suggesting that there was no significant transcriptional difference
between the three datasets. The comparison of the clinical
factors indicated that there were significant differences in age
and proportion of deceased cases among the three datasets
(Supplementary Table 1). Those three discretized datasets of the
shared prognostic signatures were then merged and used as the
training set for the multivariable Cox model, and the stepwise
regression method was used to determine the best model based
on the Akaike Information Criterion (AIC). The risk scores for
the samples of training and validation sets were estimated using
the multivariable Cox model based on the expression levels of
those five genes. The high- and low-risk groups were stratified
based on the median of the risk scores in the training set. The
independent value of this risk stratification was also assessed by
multivariable Cox model.

Differential Gene Expression Analysis
The differential gene expression analysis was conducted to
identify the genes that were upregulated or downregulated
between specific risk groups. The Wilcoxon rank-sum test
and fold change methods were employed, and the thresholds

non-coding RNAs; PVTT, portal vein tumor thrombosis; GSEA, gene set
enrichment analysis.
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FIGURE 1 | Screening a five-gene Cox model in the public DLBCL datasets from Gene Expression Omnibus (GEO). (A) Venn diagram summarizing the overlap
between the prognostic genes identified by univariable Cox regression analysis in three public DLBCL datasets with accession numbers of GSE32918 (n = 172),
GSE4475 (n = 166) and GSE69051 (n = 172). (B) The forest plots represent the association of the five gene signatures with overall survival in the three public DLBCL
datasets.

TABLE 1 | The statistics for the gene signatures in the multivariable Cox model.

Gene coef exp (coef) se(coef) Z Pr(> | z|)

CEBPA −0.384 0.681 0.180 −2.138 3.25E-02

CYP27A1 −0.390 0.677 0.187 −2.086 3.69E-02

LST1 −0.468 0.626 0.178 −2.631 8.50E-03

MREG −0.420 0.657 0.170 −2.471 1.35E-02

TARP −0.292 0.746 0.156 −1.873 6.11E-02

of adjusted p-value and log2-fold change were determined
at 0.05 and 0.5.

The Pathway Enrichment Analysis
The upregulated genes in each risk group were further
investigated using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis, respectively.
Hypergeometric test was applied to test the statistical significance
of those identified pathways. The threshold for adjusted P-value
was determined at 0.05.

The Drug-Target Identification
The therapeutic targets were selected from the upregulated genes
in each risk group. The drugs and upregulated genes were
mapped by the R package maftools with drugInteractions.

RESULTS

Systematic Identification of Prognostic
Gene Signatures for Overall Survival
Prediction
To identify the prognostic gene signatures, we collected
three public DLBCL datasets with accession numbers of
GSE32918 (n = 172), GSE4475 (n = 166), and GSE69051
(n = 149) from GEO database as depicted in the flow
chart in Supplementary Figure 1. Subsequently, univariable
Cox regression analysis was conducted, and a total of 763,
685, and 589 genes were identified to be associated with
overall survival (OS) based on the gene expression profiles
of these three datasets (Figure 1A, log-rank test, P < 0.01),
respectively. Particularly, CEBPA, CSF2RA, CYP27A1, LST1,
MREG, SCPEP1, and TARP were found to be significantly
associated with OS in all the three datasets at the stringent
threshold (Figure 1A). Furthermore, the three datasets were
merged into one training set (n = 487), and a multivariable
Cox regression model was then built from gene expression
profiles of the merged dataset. A stepwise method was used
to select a subset of those gene signatures to construct a
multivariable Cox regression model that could achieve the
highest performance. Specifically, five genes including CEBPA,
CYP27A1, LST1, MREG, and TARP were retained in the
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FIGURE 2 | The performance of the five gene signatures in predicting the patients’ risk. K-M curves for the prognostic model in the training datasets (A) and the five
validation datasets (B–F). The red and blue lines represent the high- and low-risk groups, respectively. The numbers within risk tables on the bottom represent the
number of survivors at that time point.

multivariable Cox model (Table 1), which was termed as the five-
gene Cox model, and all of them were associated with favorable
prognoses (Figure 1B).

Performance Validation in an
Independent Dataset
To evaluate the performance of the multivariable model in risk
prediction, we first calculated the risk scores of the DLBCL
samples in the training set, and stratified these samples into
high- and low-risk groups by the median of risk scores.
The high-risk group exhibited worse prognosis than the low-
risk group (Figure 2A, P < 0.0001). Moreover, we also
collected five independent gene expression datasets with long-
term follow-up (TCGA, GSE31312, GSE34171, GSE11318, and
GSE10846), predicted the risk scores and stratified the samples

of those datasets into high- and low-risk groups. Consistently,
these two groups also had significant difference in prognosis
(Figures 2B–F, P < 0.05). Furthermore, the five gene signatures
were found to be upregulated in low-risk group than high-
risk group in both the training (Figure 3A) and validation sets
(Figures 3B–F). These results indicated that these five gene
signatures were robust and consistently associated with OS in
both training and validation datasets.

The Five-Gene Cox Model Is Superior to
Other Gene Expression-Based Cox
Models
To demonstrate the superiority of this five-gene Cox model
based on the five gene signatures, we compared its performance
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FIGURE 3 | The expression patterns of five prognostic gene signatures in the training and five validation sets. The expression patterns of the five prognostic genes in
training (A) and validation (B–F) sets. The risk scores were estimated by the linear predictors of the Cox model. The samples were ordered by the risk scores.

with three sets of gene signatures (Rosenwald et al., 2002;
Wright et al., 2003; Lossos, 2008) on the five validation
datasets. Utilizing the trained models that were constructed
from different gene signatures, the samples in the validation
sets could also be stratified into high- and low-risk groups.
The gene signatures proposed by Rosenwald et al. (2002)
had the worst performance on almost all validation datasets
(Figure 4). However, survival difference between samples
stratified by our proposed five gene signatures was the
most statistically significant across all the validation datasets
(Figure 4), especially in the TCGA and GSE34171 cohorts
with smaller sample size (Figures 4A,B), suggesting that the
Cox model based on our five gene signatures was superior
to other models.

The Five-Gene-Based Risk Stratification
Is a Prognostic Factor Independent of
Clinical Factors
To further investigate the robustness of the five-gene Cox
model, we tested whether the five-gene-based risk stratification

was an independent predictor in the validation set. Since
the IPI scoring system was a well-recognized factor for
prognostic risk prediction and widely applied in clinical practice
(Martelli et al., 2013), the samples were first divided into
two groups of high (≥3) or low (<3) IPI scores, considering
age, serum lactate dehydrogenase (LDH), Eastern Cooperative
Oncology Group (ECOG) Performance Status, Ann Arbor
stage, and extranodal infiltration sites (International Non-
Hodgkin’s Lymphoma Prognostic Factors Project, 1993). As
shown in Figure 5A, no significant difference was observed
between the risk scores of the two groups, which were
estimated using the five-gene Cox model (high vs. low IPI).
Moreover, the differences were also not observed across
the four stages. In contrast, the samples with high IPI
had significantly higher risk scores when estimated with
the three sets of gene signatures as mentioned above, than
those with low IPI (Supplementary Figure 2). These results
suggested that the risk scores were not only irrelevant to
IPI scoring system and tumor stage, but also had a higher
independent predictive values than those derived from previous
gene signatures.
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FIGURE 4 | The Cox model based on the five gene signatures was superior to other models. The performance of the four prognostic models in the validation
datasets of TCGA (n = 43), GSE34171 (n = 68), GSE10846 (n = 414), GSE31312 (n = 470), and GSE11318 (n = 203) are displayed in panels (A–E). The log2-hazard
ratios and 95% confidence intervals were denoted by the red boxes and lines.

Notably, the samples could be classified into four groups
by combining the IPI scoring system and the five-gene-based
risk stratification, and the four groups exhibited significantly
prognostic difference (Figure 5B, P < 0.0001). It should be noted
that the differences of OS were not observed between the two
groups with the worse prognosis, but the samples with IPI ≥ 3
in high-risk group still had shorter OS than samples with IPI ≥ 3
in the low-risk group based on the KM curve.

Moreover, we also tested whether the risk stratification was
independent of the DLBCL subtypes. Consistently, the three
subtypes, including ABC, GCB and unclassified subtypes, could
be further stratified into high- and low-risk groups. Except
unclassified subtype, the ABC and GBC subtypes still maintained
the statistical difference in OS between the high-risk and low-
risk groups (Figures 5C,D, FDR < 0.05, and Figure 5E,
FDR > 0.05). To test whether the chemotherapy treatment affects
the performance of the gene signatures, we compared the two
risk groups of patients treated with R-CHOP-like or CHOP-like

regimens. Consistently, high-risk patients, who were treated with
R-CHOP-like or CHOP-like regimens, still had shorter OS than
the corresponding low-risk patients (Figures 5F,G), suggesting
that the gene signatures were independent of the chemotherapy
treatment. In addition, we also fitted the IPI scoring system,
stage, subtype and risk stratification into a multivariable Cox
model, and found that the risk stratification was still statistically
significant with these prognostic factors as cofactors (Table 2).
These results further demonstrated that the five-gene-based risk
stratification was an independent prognostic factor for DLBCL
risk prediction.

The Molecular Characteristics and
Potential Drugs for the Two Risk Groups
To reveal the molecular characteristics of the two risk groups, we
compared the gene expression profiles of high-risk with those
of low-risk group using the five validation datasets. A total
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FIGURE 5 | The risk stratification based on the five prognostic genes is independent of clinical factors. (A) The risk scores in different IPI groups (left panel) and
clinical stages (right panel). The boxes show the median and the interquartile range (IQR) of the risk scores grouped by the IPI scoring system and clinical stage in the
validation dataset. There are no significant differences between those groups (P > 0.05). (B) Kaplan–Meier survival curves show the overall survival of samples
grouped by combining the IPI scoring system and the five-gene-based risk stratification. ***P < 0.0001. The differences of overall survival between the high-risk and
low-risk groups in specific subtype or with specific chemotherapy regiment [(C) ABC subtype; (D) GCB subtype; (E) unclassified subtype, (F) DLBCL treated with
CHOP-Like regiment, (G) DLBCL treated with R-CHOP-Like regiment].

of 1,158 genes, jointly differentially expressed between high-
and low-risk groups of the five validation datasets, were then
selected by Wilcoxon rank-sum test and fold change (Adjusted

P-value < 0.05 and log2-fold change > 0.5). Moreover, the
overrepresentation enrichment analysis (ORA) was employed
to identify the pathways potentially involved in the DLBCL
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TABLE 2 | The statistics for the risk stratification and prognostically clinical factors in the multivariable Cox model.

Variables Log2 hazard ratio Hazard ratio Standard error Z score P-value

Subtype

ABC

GCB −0.94 0.39 0.20 −4.66 3.18E-06

Unclassified −0.79 0.45 0.27 −2.94 3.26E-03

Stage

1

2 0.99 2.70 0.41 2.41 1.62E-02

3 0.64 1.89 0.44 1.45 1.47E-01

4 0.99 2.69 0.42 2.34 1.94E-02

Risk stratification

High-risk

Low-risk −0.59 0.55 0.18 −3.34 8.46E-04

IPI

<3

≥3 1.02 2.77 0.21 4.83 1.40E-06

Treatment

R-CHOP

R-CHOP-like −0.72 0.48 0.19 −3.74 1.82E-04

progression (Figure 6A). Specifically, cell cycle-related pathway
and those associated with genomic stability maintenance, such
as mismatch repair, were highly upregulated in high-risk
group (Adjusted P-value < 0.05). In contrast, immune-related
pathways such as rheumatoid arthritis, antigen processing and
presentation, hematopoietic cell lineage, and Th1 and Th2 cell
differentiation were upregulated in low-risk group (Adjusted
P-value < 0.05). Moreover, we also conducted correlation
analysis between our signature genes and the DEGs in the five
validation datasets. As high expression of the five signature
genes indicates better prognosis, consistently, they are positively
or conversely correlated with most of the upregulated genes
in high-risk or low groups, respectively, indicating that those
DEGs might also be associated with prognosis to a certain
extent (Figure 6B).

For the low-risk group, some immune checkpoint proteins
and inhibitors were identified, such as PDCD1 (PD-1),
CD274 (PD-L1), CTLA4, and their corresponding drugs
(Figure 6C), suggesting that the low-risk samples might
benefit from inhibiting the immune checkpoint pathway.
Besides, the cell cycle kinase, CDK1, was upregulated in
high-risk group, and BARASERTIB and DINACICLIB
might be the potential drugs for treating DLBCL classified
as high-risk (Figure 6D). As we have known, CD20 (also
termed MS4A1) is expressed on the surface of normal B
lymphocytes and is detected in almost all DLBCL cases.
At present, RITUXIMAB, a chimeric monoclonal antibody
directed against the CD20, combined with intensive
chemotherapy (CHOP) is the standard therapy for DLBCL
(Figure 6D). These results indicated the stratification
may contribute to the selection of targeted drugs for
the DLBCL patients.

DISCUSSION

Diffuse large B cell lymphoma is a remarkably heterogeneous
disease, both histologically and genetically. Despite significant
advances in subtype classification of DLBCL, accurate prediction
of prognosis remains a challenge. With the development of high
throughput sequencing technology, some potential prognostic
genomic markers for DLBCL patients have been identified
(Rosenwald et al., 2002; Wright et al., 2003; Lossos, 2008).
However, the number of prognostic markers is still limited. There
is an urgent need to screen out more biomarkers to improve the
accuracy of prognostic prediction.

In the present study, we identified potential gene candidates
through the univariable Cox regression analysis to examine
associations between gene expression and patient prognosis
of three DLBCL cohorts in GEO. To further narrow down
the list of candidate gene signatures, multivariate Cox analysis
was carried out on the merged datasets. A stepwise approach
was used to select a subset of gene candidates to achieve
the highest performance, and a risk model was established
for predicting DLBCL prognosis based on the expression
levels of five genes including CEBPA, CYP27A1, LST1, MREG,
and TARP. We evaluated the model performance using an
independent gene expression dataset and compared it with
previously reported models. Our five-gene based risk model
showed improved robustness, accuracy, and efficiency compared
to those models and was demonstrated to be an independent
prognostic factor for OS in patients with DLBCL. Subsequently,
we compared the gene expression profiles of high-risk with those
of low-risk group and performed ORA to identify pathways
potentially involved in the DLBCL progression. Thus, we
believe that our five-gene-based risk scoring model can be
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FIGURE 6 | The molecular characteristics and potential drugs for the two risk groups. (A) The top-ten GO terms enriched by the upregulated genes in high-risk and
low-risk groups. The dots size and color represent the ratio of gene counts and statistical significance, respectively. (B) The probability density function of the
Spearman’s correlation between the five prognostic genes and the differentially expressed genes (DEGs). The colors represent the validation datasets. (C) The
upregulated immune checkpoint proteins and the corresponding drugs in the low-risk group. (D) The upregulated cell cycle kinase and their potential drugs in
high-risk group.

used for refining DLBCL subtypes and potentially improving
patient therapy.

According to the multivariable Cox model, high expression
of the five genes was all associated with a favorable survival
outcome. CEBPA is a transcription factor playing roles in
regulating proliferation and differentiation of many cell types
(Gery et al., 2005). Within the hematopoietic system, inactivation
mutation of CEBPA blocks the granulocytic differentiation in
acute myeloid leukemia (AML) (Wang et al., 1999). In addition,

it has been reported that CEBPA-regulated PER2 activation is
a potential tumor suppressor pathway in diffuse large B-cell
lymphoma (DLBCL) (Thoennissen et al., 2012). CYP27A1, a
cytochrome P450 oxidase family member, is closely related
to the proliferation of multiple tumor cells, such as prostate,
breast and colon cancer (Ji et al., 2016; Alfaqih et al., 2017;
Kimbung et al., 2017). LST1 is encoded within the TNF region
of the human MHC which regulates lymphocyte proliferation
(Rollinger-Holzinger et al., 2000). MREG is reported to suppress
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thyroid cancer cell invasion and proliferation through PI3K/Akt-
mTOR signaling pathway (Meng et al., 2017). The biological roles
of these genes in DLBCL need to be further investigated.

The ORA of DEGs suggests that the abnormal cell cycle
progression and increased genomic instability contribute to the
rapid progression of DLBCL. Inhibitors of cell cycle kinase,
such as BARASERTIB and DINACICLIB, may be effective in
high-risk patients. On the contrary, genes related to immune-
related pathways, such as antigen processing and presentation,
Th1 and Th2 cell differentiation, were enriched in low-risk
group, suggesting that activated host immune response may
indicate favorable prognosis and response to therapy. These
findings provide novel clues into the explanation of the
mechanisms of DLBCL.

The prognostic model we proposed is helpful for further risk
stratification at the genetic level on the basis of the present
traditional subtyping, but this study still has some limitations.
Some potential prognostic factors may be excluded in the model
such as the racial factors and the roles that the five genes play in
DLBCL requires further experimental validation. To sum up, our
research indicates that the five-gene prognostic model is a reliable
tool for predicting the OS of DLBCL patients and providing some
hints on drug selection, which can assist clinicians in selecting
personalized treatment, although specific drug selection requires
further molecular biology research and clinical trials.
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