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Single-cell sequencing technology can not only view the heterogeneity of cells from

a molecular perspective, but also discover new cell types. Although there are many

effective methods on dropout imputation, cell clustering, and lineage reconstruction

based on single cell RNA sequencing (RNA-seq) data, there is no systemic pipeline

on how to compare two single cell clusters at the molecular level. In the study, we

present a novel pipeline on comparing two single cell clusters, including calling differential

gene expression, coexpression network modules, and so on. The pipeline could reveal

mechanisms behind the biological difference between cell clusters and cell types, and

identify cell type specific molecular mechanisms. We applied the pipeline to two famous

single-cell databases, Usoskin from mouse brain and Xin from human pancreas, which

contained 622 and 1,600 cells, respectively, both of which were composed of four

types of cells. As a result, we identified many significant differential genes, differential

gene coexpression and network modules among the cell clusters, which confirmed that

different cell clusters might perform different functions.

Keywords: scRNA-seq, differential gene expression analysis, differential correlation analysis, network analysis,

differential network analysis

INTRODUCTION

The fundamental unit of an organism is the cell. Coordinated gene expression in each cell is
essential to biological functions, and aberrations often cause illness. Consequently, the genome-
wide quantification of RNA experiments help to understand the growth and development of
organism as well as pathogenesis of disease. One traditional technology of mRNA abundance
measured at cell line or tissue level averaged over thousands or millions of cells, which is also
called bulk RNA-seq (Stark et al., 2019). The bulk RNA-seq experiments has been successfully
applied to a multitude of studies, and improved our biology knowledge. However, the disadvantage
of bulk RNA-seq is that cell-specific mRNA abundance could not been provided, and some
important gene expression signals might be unobserved. Our current knowledge related with
cell types and there dynamic changes in biological system remains highly incomplete. Owing
to resolution in sequencing technology, single-cell RNA-seq (scRNA-seq) at genome-wide level
was first invented by Tang et al. (2009), and has been under rapidly booming development. The
scRNA-seq technology makes some very important and challenging scientific research possible.
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For instance, unknown cell types were identified (Trombetta
et al., 2014; Buettner et al., 2015). How to dissect gene expression
changes during dynamic development (Tang et al., 2010; Xue
et al., 2013; Yan et al., 2013). Study uncovered how tumorgenesis
and cancer cell immune escape and tumor cell heterogeneity
(Chung et al., 2017; Zhao et al., 2020). scRNA-seq was also used to
predict therapeutic response in patients and understanding drug
resistance mechanism (Lee et al., 2014; Liang et al., 2020), and
clarify the pathophysiology of complex diseases and guide the
successful treatment and intervention of patients with intractable
diseases (Shalek and Benson, 2017; Kim et al., 2020). Collectively,
the scRNA-seq technology has significantly promoted basic
biological research and clinical personalized medicine. At the
same time, the analysis of scRNA-seq data is challenging due to a
number of problems such as sparsity caused by technical dropout,
bimodal and multi-modal expression distributions (Korthauer
et al., 2016), and highly biological and technical cell-to-cell
variability (Vallejos et al., 2017; Hicks et al., 2018) giving rise
to cellular heterogeneity. One very important step of scRNA-
seq data analysis is to identify gene-specific expression pattern
and/or a gene-gene interacting network within a population of
cells or a biological condition in studies. Although numerous
computational methods have been developed and applied during
the past few years, most of them focused on difference in single
gene-level differentiation (Finak et al., 2015; Korthauer et al.,
2016; Butler et al., 2018; Miao et al., 2018; Stuart et al., 2019).
In the present study, we integrated a variety of computational
methods into a variance analysis workflow.

A fundamental question raised of expression data is
what genes differentially expressed across conditions and
circumstances. Despite technological revolution for scRNA-seq
in recent years, technical stability of RNA quantification by
scRNA-seq is still worse than that in bulk RNA-seq. Thus, the
numerous variation computational tool established for bulk RNA
do not work well for single-cell RNA-seq. During the past few
years, a couple of computational methods have been designed
particularly for single-cell RNA-seq data (Soneson and Robinson,
2018). For example, MAST based on Generalized linear model
(Finak et al., 2015); DEsingle based on Zero inflated negative
binomial (Miao et al., 2018); D3E based on Cramér-von Mises
test, Kolmogorov-Smirnov test, likelihood ratio test (Delmans
and Hemberg, 2016); SCDE based on Poisson and negative
binomial model (Kharchenko et al., 2014); SigEMD based on
Non-parametric earth mover’s distance (Wang and Nabavi, 2018)
and so on. Marker genes found by differential expression analysis
play important role in cell type identification and discovery.
It is also essential for downstream drug targets prediction and
thus to prevent or treat disease. In addition to analyzing single
gene, analyzing the relationship between genes is also crucial for
construction of biological networks. For instance, the R package
DGCA offers a suite of tools for computing and analyzing
differential correlations between genes acrossmultiple conditions
(McKenzie et al., 2016).

If some genes always have similar expression patterns in a
physiological process or metabolic process, then we can consider
these genes to be functionally dependency, so they can be defined
as a functional module. If a gene module is identified, then

numerous researches would be done based of which, such as
screening the core genes of relevant trait modules, modeling
metabolic pathways, and establishing gene interaction networks.
Weighted correlation network analysis (WGCNA) is a typical
analysis tool at the network co-expression level (Langfelder and
Horvath, 2008). Since WGCNA is an analysis tool designed for
bulk sequencing data, almost no one uses it to analyze scRNA-seq
data. Based the correlation between the analyzed module and the
sample characteristics we can quickly extract gene co-expression
modules related to the sample characteristics from the complex
data for subsequent analysis. WGCNA builds a bridge between
sample characteristics and gene expression changes (Iancu et al.,
2012; Xue et al., 2013).

In the present study, we performed differential expression
genes (DEGs) analysis for each two categories in the scRNA-
seq data from a single gene level. Based the level of gene
pairs, differential correlation analysis for each two categories
were analyzed for the purpose of digging deeper biological
information. The gene pair with the most significant difference
in each category pair was obtained. The results of this analysis
provide theoretical support for medical staff. Based the level of
gene network, we used WGCNA to perform network analysis
on scRNA-seq data, and in order to explore the difference in
gene expression of each module, we used DiffCoEx (Tesson et al.,
2010) to analyze the difference network module. The results of
analysis from different levels of single cells, cell pairs, and cell
networks showed that such a complete system is more capable
of mining the underlying information contained in the scRNA-
seq data. The study provided a comprehensive analysis approach
for scRNA-seq researches in future.

MATERIALS AND METHODS

In recent years, with the microfluidic technology that can
separate individual cells from a piece of tissue, researchers have
made it more accurate to predict the diversity of biological
tissues and target drugs for related diseases. Compared with bulk
sequencing technology, the resolution of scRNA-seq technology
is very accurate for single-cell level analysis, so scRNA-seq
technology has developed rapidly. Although a series of work on
single-cell sequencing technology has been developed in recent
years, most of them are tested and verified in a single field, and
there is no complete system to mine the potentially valuable
information in single-cell data. Ignore some algorithms that
have been developed in bulk sequencing technology, such as
WGCNA. In this work, we have established a set of procedures for
analyzing scRNA-seq data, including differential gene expression
analysis (DEsingle, SigEMD), differential correlation analysis
(DGCA), network analysis (WGCNA), differential network
analysis (DNA). The specific flow chart is shown in Figure 1.
These processes are described in detail below.

Data Information
In this work, we used two single-cell data sets. One of them is
Usoskin [622 (cells) ∗ 25335 (genes)], which comes from the GEO
database (GSE59739) (Usoskin et al., 2015). This data is mainly
divided into 4 categories: NF, NP, PEP, and TH. We performed
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FIGURE 1 | Flow chart of scRNA-seq data analysis. Cat. is the abbreviation of category, cat.1–4, respectively represent four cell types. Note that the gene filtering

method in each method is different, please refer to the specific introduction in each section for details.

TABLE 1 | Brief information about Usoskin data.

Usoskin (622) Num. of

cells

Num. of

genes

Description of cell groups

NF 139 25333 Neurofilament containing

NP 169 Non-peptidergic nociceptors

PEP 81 Peptidergic nociceptors

TH 233 Tyrosine hydroxylase containing

a concise preprocessing of the data, the gene filter removes
genes/transcripts that are expressed in <3 cells, and the cell filter
removes cells that are expressed in <500 genes, the number of
remaining samples is 622, and the gene dimension is 25333.
Table 1 summarizes the basic information of Usoskin data.

The other data used in this article is from human pancreas,
named Xin [1600 (cells) ∗ 39851 (genes)], which comes from
the GEO database (GSE81608) (Xin et al., 2016). Xin is also
divided into four categories: α, β , δ, and PP. The data uses
the same preprocessing method as Usoskin data, the number of
remaining samples is 1492, and the gene dimension is 28403.
Table 2 summarizes the basic information of Xin data.

TABLE 2 | Brief information about Xin data.

Xin (1492) Num. of cells Num. of genes Description of cell groups

α cells 886 28403 Produce glucagon

β cells 472 Insulin

δ cells 49 Somatostatin

PP cells 85 Pancreatic polypeptide

Differential Gene Expression Analysis
We performed pairwise difference expression genes (DEG)
analysis on the four types of cells in these two data sets. The
methods used for DEGs are DEsingle (Miao et al., 2018) and
SigEMD (Wang and Nabavi, 2018), both of which are methods
for scRNA-seq data.

One of the biggest features of scRNA-seq data is that it
contains a high proportion of 0 values, which is mainly due
to two reasons: on the one hand, these “true” 0 values are
the natural expression values of genes; on the other hand, due
to the reverse transcription and sequencing process, there are
too many “false” 0 values caused by the technical noise of
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the company, we call the latter “dropout.” In response to this
phenomenon, most of the current differential analysis methods
cannot separate the two situations, so DEsingle was developed to
solve the differential analysis that contains the dropout problem
data. DEsingle employed Zero-Inflated Negative Binomial
model to estimate the proportion of real and dropout zeros
and detect three types of DEGs in scRNA-seq data with
higher accuracy.

The SigEMD method also takes into account the “dropout”
problem. Using a logistic regression model and a non-parametric
method based on the distance of the earth mover can accurately
and effectively identify the DEGs in the scRNA-seq data.
Regression models and data imputation are used to reduce
the impact of a large number of zero counts, and non-
parametric methods are used to improve the sensitivity of
detecting DEGs from multimodal scRNAseq data. And used
simulated data sets and real data sets to verify the accuracy of
this method.

Differential Gene Correlation Analysis
The key step to establish a biological system prediction model
is to analyze the regulatory relationship between genes, so an
effective solution is to study the difference in correlation between
gene pairs. Differential Gene Correlation Analysis (DGCA) is
proposed to solve such problems (McKenzie et al., 2016). In order
to minimize parameter assumptions, DGCA calculates empirical
p-values through permutation tests. In order to understand the
differential correlation at the system level, DGCA conducted a
higher-level analysis through simulation research. The simple
method based on Z score adopted by DGCA is significantly
better than the existing alternative methods of calculating
differential correlation.

Network Analysis
Weighted correlation network analysis (WGCNA) is a systems
biology method used to describe gene association patterns
between different samples (Liu et al., 2017). WGCNA can be
used to identify highly coordinated gene sets, and identify
candidate biomarker genes or therapeutic targets based on
the interconnectivity of gene sets and the association between
gene sets and phenotypes. Compared with only focusing on
differentially expressed genes, WGCNA uses the information
of thousands or tens of thousands of genes with the greatest
changes or all genes to identify the gene set of interest, and
conducts significant association analysis with the phenotype.
It not only makes full use of information, but also converts
the associations between thousands of genes and phenotypes
into associations between multiple genomes and phenotypes,
eliminating the problems of multiple hypothesis testing
and correction.

Differential Network Analysis
In scRNA-seq data, if certain genes always have similar
expression changes in a physiological process or in different
tissues, then we have reason to believe that these genes are
functionally related and can be defined as a module. When
the gene module is defined, we can use these results to do

a lot of further work. For example, we use DiffCoEx for
differential network analysis (Tesson et al., 2010), which is a
method for identifying changes in association patterns. This
method is based on the commonly used WGCNA framework
for co-expression analysis. Prove its usefulness by identifying
biologically relevant, differentially co-expressed modules in the
mouse dataset.

SOFTWARE AVAILABILITY

The codes for the two methods of differential gene expression
analysis are freely available (DEsingle: https://bioconductor.org/
packages/DEsingle, SigEMD: https://github.com/NabaviLab/
SigEMD); This article uses the DAVID website for feature
enrichment analysis. The website is available for free in https://
david.ncifcrf.gov/ Difference correlation analysis is freely
available in https://github.com/andymckenzie/DGCA WGCNA
is freely available in https://cran.r-project.org/web/packages/
WGCNA/index.html DiffCoEx is freely available in https://
bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-
2105-11-497.

RESULTS

DEGs Between Two Categories
With the development of high-throughput technology, the field
of biomedical related research has entered the omics era, and
the research of a single gene can no longer meet the needs of
researchers. However, such a large amount of data brings new
challenges to the effective extraction and analysis of information.
Taking sequencing data as an example, the analysis of sequencing
results often results in a list of differentially expressed genes or
proteins. But for many researchers, it is difficult to associate this
long list of genes or proteins with a biological phenomenon to
be studied and its underlyingmechanism. Functional enrichment
analysis is to divide a gene or protein list into multiple parts, that
is, to classify a bunch of genes, and the classification criteria here
are often limited according to the function of the gene. In other
words, it is to put together genes with similar functions in a gene
list and associate them with biological phenotypes.

We use DEsingle and SigEMD two methods to analyze the
four types of data contained in Usoskin, overlap the differential
genes obtained by the two methods, and select the differential
genes with p < 0.05 for functional enrichment analysis. In this
work, we usedDAVID to perform two enrichment analyses of GO
and KEGG on overlapping differential genes obtained from two
NF-NP data, and correlated them with biological phenotypes.
Among them, GO (Gene Ontology) enrichment analysis is
mainly divided into three parts: Molecular Function (MF),
Biological Process (BP), and Cellular Component (CC), as shown
in Figure 2A, we have selected the top 20 representative Go terms
for BP, CC, and MF. The x-axis represents the first 20 terms
selected for each part, the y-axis represents the change of pvalue,
and the color represents z-score. The KEGG (Kyoto Encyclopedia
of Genes and Genomes) is a database that systematically
analyzes the metabolic pathways of gene products in cells
and the functions of these gene products. KEGG integrates
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FIGURE 2 | GO and KEGG analysis were performed on the differential genes with overlapping NF-NP data. (A) Perform enrichment analysis on the differential genes

with overlapping datasets, and display the top 20 most significant terms in BP, CC, and MF. (B) Perform KEGG enrichment analysis on the differential genes with

overlapping NF-NP data. (C) Basic information of six specified terms, among them, blue means down-regulated genes, red means up-regulated genes.

data on the genome, chemical molecules, and biochemical
systems, including metabolic pathways (PATHWAY), etc. As
shown in Figure 2B, we can observe that seven pathways are
obtained in the two sets of NF-NP data, and the number of
genes expressed in the pathway Mmu030133: RNA transport
pathway is large, and the p-value lower, indicating that the
enrichment of this pathway is the most significant. In addition,
we selected two terms with the most significant enrichment
among the three indicators of BP, CC, and MF, and analyzed

the up-regulated and down-regulated genes of these six terms,
as well as their z-score changes, as shown in Figure 2C. The
Xin data set and the other five analysis results are shown
in Supplementary Material 1.

Gene Pairs With Significant Differences
Between Two Categories
Analyzing the regulatory relationship between genes is a key
step in establishing an accurate prediction model of biological
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systems. To achieve this goal, a powerful method is to
systematically study the correlation differences between gene
pairs in more than one situation. In our work, we will perform
pairwise analysis on the four data types contained in Usoskin
and Xin, and consider the difference and correlation between
gene pairs in different types of datasets. We used overlapping
differentially expressed genes as the input of DGCA, and listed
the most different gene pairs in six different situations, as shown
in Tables 3, 4.

The first column in Table 3 shows the matching analysis pairs
of six different data subtypes, corresponding to class1 and class2,
respectively in columns four and five, and the sixth column
shows the change value of Z-score, indicating the change of
correlation between gene pairs. Table 4 is the same. NF_NP,
NF_PEP, NF_TH, NP_PEP, PEP_TH these five pairs of data
from class1 to class2 gene pair correlation completely lost, on
the contrary, NP_TH this pair of data is completely irrelevant
from class1 to class2 correlation has been significantly improved.
Please refer to Table 5 for basic information about the two
genes Il17rd and Pde1b. For detailed information about these
two genes, please refer to the database MGI (Mouse Genome
Informatics, http://www.informatics.jax.org/).

Co-expression Networks Generated With
WGCNA
WGCNA is mainly divided into two steps. In the first step,
WGCNA analysis uses the weighted value of the correlation
coefficient, that is, the gene correlation coefficient is taken to
the power of β, so that the connection between the genes in
the network obeys the scale-free network distribution (scale-
free networks), determine the β parameter by the square of
the correlation coefficient of log(k) and logp[

(

k
)

]. In general,
the higher the square of the correlation coefficient, the closer
the network is to the distribution without network scale.
This algorithm has more biological significance. The second
step is to construct a hierarchical clustering tree through the
correlation coefficients between genes. Different branches of the
clustering tree represent different gene modules, and different
colors represent different modules. Based on the weighted
correlation coefficients of genes, genes are classified according
to their expression patterns, and genes with similar patterns
are grouped into one module. In this way, tens of thousands
of genes can be divided into dozens of modules through
gene expression patterns, which is a process of extracting
general information.

TABLE 3 | The six gene pairs in Usoskin data have the largest differences in different situations.

Gene1 Gene2 class1_cor class2_cor zScoreDiff empPVals Classes

NF_NP Robo1 Grid1 −0.0797 0.9913 23.5578 3.11102E-08 0/+

NF_PEP Tomm22 Zc3h13 −0.1886 0.9901 20.0313 3.96294E-08 −/+

NF_TH Fam84a Omg −0.0701 0.9953 25.0786 1.57764E-08 0/+

NP_PEP Itga3 Synj2 −0.0263 0.9968 19.5367 4.84097E-06 0/+

NP_TH Il17rd Pde1b 0.9865 −0.0098 −24.5847 1.25299E-06 +/0

PEP_TH H2.M11 Pde8b −0.0716 0.9945 20.6581 2.66991E-07 0/+

TABLE 4 | The six gene pairs in Xin data have the largest differences in different situations.

Gene1 Gene2 class1_cor class2_cor zScoreDiff empPVals Classes

α_β DAPL1 HMOX1 0.9962 −0.0402 −47.0484 9.33E-09 +/0

α_δ GCG G6PC2 −0.1662 0.9967 18.8006 3.79E-07 −/+

α_pp SLC25A53 RPL518 −0.0630 0.9901 23.6008 6.44E-08 0/+

β_δ INS IAPP −0.1771 0.1000 18.4667 1.33E-06 −/+

β_pp INS IAPP −0.1771 0.1000 23.7250 7.50E-08 −/+

δ_pp RBP4 SST −0.0414 0.9979 14.5204 1.53E-05 0/+

TABLE 5 | Basic information of genes Il17rd and Pde1b.

Il17rd Pde1b

Name Interleukin 17 receptor D Phosphodiesterase 1B, Ca2+-calmodulin dependent

Feature type Protein coding gene Protein coding gene

Human ortholog IL17RD, interleukin 17 receptor D PDE1B, phosphodiesterase 1B

Chr location 3p14.3; chr3:57089982-57170317 (−) GRCh38.p7 12q13.2; chr12:54549393-54579239 (+) GRCh38.p7

HomoloGene Vertebrate Homology Class 9717 Vertebrate Homology Class 37370

HCOP Human homology predictions: IL17RD Human homology predictions: PDE1B

Frontiers in Genetics | www.frontiersin.org 6 March 2021 | Volume 12 | Article 648898

http://www.informatics.jax.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Cui et al. Identify Differences Between Single Cells

TABLE 6 | The Hub gene of the NF data subset.

Module Hub gene Module Hub gene

Bisque4 Prr14 Lightyellow Pml

Black Tmem8b Magenta Acvr2a

Blue BC052040 Mediumpurple3 Myo1b

Brown Cntn2 Midnightblue Atrx

Brown4 BC021891 Orange Mybl1

Cyan Tmem130 Orangered4 Acbd3

Darkgreen Robo3 Paleturquoise Taf1c

Darkgrey Mboat1 Pink Gm13375

Darkmagenta Fam70b Plum1 Pkn2

Darkolivegreen Slc7a8 Plum2 Mmadhc

Darkorange Slc25a47 Purple Hhex

Darkorange2 Chd8 Red Apc2

Darkred Gpx2.ps1 Royalblue Med26

Darkslateblue Catsper2 Saddlebrown Slc25a44

Darkturquoise Ebf4 Salmon Orm3

Floralwhite Klhl28 Sienna3 Scube2

Green Grem2 Skyblue Nanp

Greenyellow Usp18 Skyblue3 Nek11

Grey60 Zcchc12 Steelblue Crx

Ivory Ep300 Tan Zfp651

Lightcyan Ptgds Turquoise Ap3m2

Lightcyan1 mt.Rnr2 Violet Qk

Lightgreen Gstm2 White B230217O12Rik

Lightsteelblue1 Disp1 Yellow Inpp4a

Yellowgreen Zswim1

In this work, in order to reduce the running time of WGCNA,
we calculated the standard deviation of the genes in each data set,
and then left the genes with the largest standard deviation of the
first 5000. The reason is that data with large variance contains the
main biological information in the data, and it can also reduce the
complexity of calculation.We first analyze two data subsets of NF
and PEP, as shown in Figure 3. The Xin data set and the other two
analysis results are shown in Supplementary Material 2.

Figure 3 shows the heat map of the module. Both the abscissa
and the ordinate are genes, and the entire module represents the
relationship between genes. On the left and top is the hierarchical
clustering tree and module allocation. Red represents higher
similarity, and yellow represents lower similarity. Since the
module is composed of genes with high similarity, corresponding
to the red area of the diagonal line in the figure, the target gene
analysis and the correlation between the module and the trait can
be performed for the module of interest.

Hub gene is a gene that plays a vital role in biological
processes. In related pathways, the regulation of other genes
is often affected by this gene. Therefore, hub gene is
often an important target and research hot spot. We use
chooseTopHubInEachModule in the WGCNA package to find the
Hub genes in each module, and predict the gene function of the
module through functional enrichment analysis. Here we show
the Hub genes of the NF data type in Table 6 and the results of
the functional enrichment analysis in Table 7.

TABLE 7 | Functional enrichment analysis of Hub genes in NF data subsets.

Category Term Count P-value Fold

enrichment

FDR

BP GO:0045944 9 9.13E-04 4.19373792 0.233863747

BP GO:0006351 12 0.001284966 2.951560906 0.233863747

BP GO:0007275 8 0.005066806 3.604594952 0.422224333

BP GO:0030154 7 0.005358539 4.160880999 0.422224333

BP GO:0006355 12 0.005799785 2.441286664 0.422224333

BP GO:0032206 2 0.020822877 92.72820513 1

BP GO:0006810 9 0.032934936 2.290213628 1

BP GO:0042771 2 0.063185914 29.91232423 1

BP GO:0016055 3 0.07364446 6.530155291 1

CC GO:0005634 18 0.059352202 1.469995016 1

CC GO:0032993 2 0.059738529 31.71290323 1

CC GO:0005654 8 0.083476947 2.032248062 1

MF GO:0003677 10 0.010936964 2.55286147 0.677053596

MF GO:0008013 3 0.012979407 16.83976834 0.677053596

MF GO:0003682 5 0.015065842 5.05915787 0.677053596

MF GO:0032183 2 0.018423227 104.7807808 0.677053596

MF GO:0000978 4 0.037404986 5.253632463 1

MF GO:0035257 2 0.048397769 39.29279279 1

MF GO:0003713 3 0.053050255 7.858558559 1

MF GO:0004674 4 0.057674865 4.406668351 1

MF GO:0000977 3 0.07599868 6.40063593 1

MF GO:0016740 7 0.078508897 2.242251763 1

MF GO:0005524 7 0.085817386 2.190175577 1

MF GO:0035064 2 0.092637771 20.06440483 1

MF GO:0004672 4 0.09568683 3.551890874 1

Differential Network Analysis With
DiffCoEx
When we use DiffCoEx to analyze the difference network of
each two types of Usoskin and Xin data, using the default
parameters will lead to too many modules. In order to reduce
the number of modules as much as possible, the gene is sampled,
in other words, only 1/2 of the genes were randomly selected
as the input to DiffCoEx, and the “cutHeight” parameter of
the “mergeCloseModules” function was adjusted to 0.5 (default
0.2). Here, we only show the results of the two data types
of NF-NP in the Usoskin dataset, as shown in Figure 4. The
Xin data set and the other five analysis results are show in
Supplementary Material 3.

The upper half of the main matrix in the figure shows the
relationship between genes and genes in the NF subset, and the
lower half shows the relationship between genes and genes in
the NP subset. There are a total of 21 modules in the figure.
Some modules have a higher expression level in NF and some
have higher expression levels in NP. The color difference between
the two sides is more obvious, indicating that this module has
a large difference between NF and NP, which can be targeted
at the difference. Analysis of the more obvious modules plays
a vital role in the exploration of downstream target genes and
drug prediction.

Frontiers in Genetics | www.frontiersin.org 7 March 2021 | Volume 12 | Article 648898

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Cui et al. Identify Differences Between Single Cells

FIGURE 3 | (A,B) are network heat maps of NF and PEP, respectively. On the left side and top are the hierarchical clustering trees and modules of genes. In the figure,

red represents higher similarity and yellow represents lower similarity. As the module is composed of genes with high similarity, it corresponds to the diagonal red in the

figure.

FIGURE 4 | Comparative correlation heat map of NF and NP. The upper

diagonal of the main matrix shows a correlation between pairs of genes

among the NF (the red color corresponds to positive correlations, blue to

negative correlations). The lower diagonal of the heat map shows a correlation

between the same gene pairs in the NP controls. Modules are identified in the

heat map by black squares and on the right side of the heat map by a color

bar. The brown bands on the right side indicate the mean expression of the

modules in the NF (first column) and the NP (second column); darker colors

indicate higher mean expression levels.

DISCUSSION

In recent years, the rapid development of single-cell sequencing
technology can simultaneously measure the expression levels
of tens of thousands of cells in a single experiment. Because

of this, single-cell sequencing technology has developed rapidly
in recent years. Although a large number of research methods
have been developed for single-cell sequencing technology, there
is no systematic framework on how to compare two single-
cell clusters at the molecular level. Due to the difference in
gene expression levels, different cells have different biological
meanings and different physiological functions. Each gene is
involved in a different biological process. It is not feasible to
analyze all genes blindly to predict drugs and treat diseases.
Therefore, analyzing data from the perspective of genetics plays
an important role in clinical trials and scientific research. In this
work, we performed a complete process analysis of scRNA-seq
data at the molecular level. For example, through DEGs, we can
know whether there are differences between different groups,
and which genes are different. Furthermore, the functional
enrichment analysis (GO, KEGG) of these differential genes
was performed to explore the relevant signal pathways and
the biological processes mediated by the differences in the
expression of these genes. By constructing a gene regulatory
network (WGCNA), it is helpful to understand the function of
different genes and the interaction between genes as a whole, to
better understand the gene expression mechanism inside cells,
and to promote the research of disease pathology. By analyzing
the difference modules in the entire gene regulatory network,
exploring modules that contain more biological information
provides effective guidance for the prediction of targeted genes
and subsequent analysis.

This work mainly focuses on the analysis of the gene level
in single-cell data, including the analysis of differential genes,
the analysis of differential correlation, the construction of gene
regulatory networks and the analysis of differential networks,
without considering the internal dynamics between cells. How to
effectively express the biological information contained in genes
and cells in words is one of our future research directions. And
due to the lack of relevant biological background knowledge, the
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analysis and description of the analysis results and the regulatory
relationship between genes are insufficient. At the same time,
more algorithm models can be considered for constructing the
relationship between genes.
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