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The mixed linear model (MLM) has been widely used in genome-wide association
study (GWAS) to dissect quantitative traits in human, animal, and plant genetics. Most
methodologies consider all single nucleotide polymorphism (SNP) effects as random
effects under the MLM framework, which fail to detect the joint minor effect of multiple
genetic markers on a trait. Therefore, polygenes with minor effects remain largely
unexplored in today’s big data era. In this study, we developed a new algorithm under
the MLM framework, which is called the fast multi-locus ridge regression (FastRR)
algorithm. The FastRR algorithm first whitens the covariance matrix of the polygenic
matrix K and environmental noise, then selects potentially related SNPs among large
scale markers, which have a high correlation with the target trait, and finally analyzes the
subset variables using a multi-locus deshrinking ridge regression for true quantitative
trait nucleotide (QTN) detection. Results from the analyses of both simulated and real
data show that the FastRR algorithm is more powerful for both large and small QTN
detection, more accurate in QTN effect estimation, and has more stable results under
various polygenic backgrounds. Moreover, compared with existing methods, the FastRR
algorithm has the advantage of high computing speed. In conclusion, the FastRR
algorithm provides an alternative algorithm for multi-locus GWAS in high dimensional
genomic datasets.

Keywords: genome-wide association study, mixed linear model, multi-locus algorithm, statistical power,
polygenic background, minor effect

INTRODUCTION

Genome-wide association study (GWAS) has been widely used in the genetic dissection of
quantitative traits in human, animal, and plant genetics. GWAS typically searches for the
correlations between genetic variants and hundreds or thousands of individuals. However, a
complete characterization of the biological mechanism for most quantitative traits remains elusive

Abbreviations: MLM, the mixed linear model; GWAS, genome-wide association study; FastRR, fast multi-locus ridge
regression; SNP, single nucleotide polymorphism; QTN, quantitative trait nucleotide; EMMA, efficient mixed model
association; DRR, deshrinking ridge regression; ORR, ordinary ridge regression; BLUP, best linear unbiased prediction; lasso,
least absolute shrinkage and selection operator; SCAD, smoothly clipped absolute deviation; DEMMA, Decontaminated
efficient mixed model association; MAF, minor allele frequency; LD, days to flowering under long days; SD, days to flowering
under short days; SDV, days to flowering under short days with vernalization; MSE, mean squared error.
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(Dahl et al., 2016) and a number of polygenes with minor effects
are unexplored (Zhang and Xu, 2005; Wen et al., 2019). This
may be because the GWAS approach is still quite crude, and
most of the minor biological associations between sequence
and phenotype remain unmeasured. Recently, advanced
biotechnology has generated large-scale single nucleotide
polymorphisms (SNPs) and phenotypes, which have been
valuable for genetic analysis. A large number of statistical
methodologies for GWAS have been proposed (Atwell et al.,
2010; Lippert et al., 2011; Zhou and Stephens, 2012; Wen et al.,
2018, 2020; Sun et al., 2019; Wang et al., 2020).

Since the introduction of the Q + K (Q represents the
population structure and K represents the kinship matrix)
mixed linear model (MLM) approach (Yu et al., 2006) to the
concept of GWAS, the power of quantitative trait nucleotide
(QTN) detection has been significantly increased. On this
basis, the compressed MLM (Zhang et al., 2010) and enriched
compressed MLM (Li et al., 2014) have been proposed to improve
computational efficiency. Meanwhile, an efficient mixed model
association (EMMA) (Kang et al., 2008) was regarded as the
milestone improvement in the MLM approach, which treated
the polygenic effect as the random effect to fit the mixed model.
Currently, this concept has become more and more popular in
genomic analysis. A number of methods based on this concept
are continually emerging, such as EMMAX (Kang et al., 2010),
FaST-LMM (Lippert et al., 2011), and GEMMA (Zhou and
Stephens, 2012). Because of the dissection of genetic variants and
computational speed, all these methods have been successfully
applied in MLM. For all the above methods, they comprise a
one-dimensional genome scan by testing one marker at a time,
more importantly, the SNP effect is considered as the fixed effect,
which may be disadvantageous to the detection of QTN in GWAS
(Goddard et al., 2009; Zhang et al., 2017; Wen et al., 2018, 2020).

Although the current single variant methods of GWAS have
succeeded in identifying QTNs associated with the interested
traits, these approaches fail to consider the joint minor effect
of multiple genetic markers on a trait (Tamba et al., 2017);
furthermore, they do not match the internal genetic mechanism
of these quantitative traits (Tamba et al., 2017; Zhang et al., 2017;
Sun et al., 2019; Wen et al., 2019). To overcome this drawback,
multi-locus methodologies have been developed, such as least
absolute shrinkage and selection operator (lasso) (Tibshirani,
1996; Xu, 2010; Zhang et al., 2012), Bayesian lasso (Yi and Xu,
2008), adaptive mixed lasso (Wang et al., 2011), and empirical
Bayes (Xu, 2007). All SNPs can be included in the model and can
be simultaneously estimated by using multi-locus methodologies.
If the number of SNPs (p) is many times larger than the
number of individuals (n), the approaches will fail to analyze
this oversaturated model. Under this circumstance, a natural
response is to consider reducing the number of SNP effects in
the multi-locus genetic model. Zhou et al. (2013) and Moser
et al. (2015) proposed the Bayesian model, which estimates
only a few variance components instead of considering all. It is
an alternative approach to solve the “big p, small n” problem.
Currently, two-stage methodologies (Tamba et al., 2017; Zhang
et al., 2017; Wen et al., 2018) borrowed this idea and have
been proposed for multi-locus GWAS. All these methodologies

provide the tools for high-dimensional genetic data analysis.
It is known that the quantitative traits are controlled by a
few genes with large effects and numerous polygenes with
minor effects. Nevertheless, the dissection of the polygenes with
minor effects needs to be improved in above mentioned multi-
locus approaches.

In this study, we propose a multi-stage flexible approach
for GWAS to detect the associated (large and minor effects)
variables/SNPs. In our model, the fast multi-locus ridge
regression algorithm (FastRR), all SNP effects are considered
as random effects. The FastRR algorithm first whitens the
covariance matrix of the polygenic matrix K and environmental
noise. Subsequently, the FastRR algorithm reduces the number
of SNPs according to correlation, the variables of which
significantly correlate with the response are retained for the next
stage. In the final stage, deshrinking ridge regression (DRR)
is applied to implement parametric estimation and significance
tests of variables. In this study, a series of simulated and
real dataset analyses are used to validate this new method.
For comparison, five established methods – lasso, adaptive
lasso, smoothly clipped absolute deviation (SCAD), EMMA, and
decontaminated efficient mixed model association (DEMMA) are
used for analysis.

MATERIALS AND METHODS

Genetic Model
Let yi(i = 1, 2, ..., n) be the phenotypic value of the i-th
individual in a sample of size n from a natural population, and
the genetic model can be described as:

y = Wα + Zγ + u + ε (1)

where y = (y1, ..., yn)T ; α is a c × 1 vector of the fixed
effects, such as the intercept, population structure effect and
so on, W is the corresponding designed matrix for α; Z is an
n × 1 vector of marker genotypes, and γ ∼ N(0, σ 2

γ ) is a random
effect of putative QTN. σ 2

γ is the variance of the putative QTN;
u∼MVN(0, σg2K) is an n × 1 random vector of polygenic
effects, σg2 is the variance of polygenic background, K is a known
n × n relatedness matrix; ε is an n × 1 vector of residual errors
with an assumedMVN(0, σ 2In) distribution; σ 2 is the variance of
residual error; and In is a n × n identity matrix. MVN denotes
multivariate normal distribution.

As γ is treated as being a random effect, the variance of y in
the model (1) is:

var(y) = σ 2
γZZT

+ σg
2K + σ 2In =

σ 2(λγZZT
+ λgK + In) (2)

where λγ = σγ
2/σ 2, λg = σg

2/σ 2.

Fast Multi-Locus Ridge Regression
Algorithm
The FastRR algorithm is a multi-stage flexible approach for
GWAS, which simultaneously implements estimation and testing
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to detect associated variables/SNPs. We describe it with the
following stages:

The Polygenic and Residual Noise Whitening Stage
The key point of solving the model (1) is to estimate two ratios
of variance components, λγ and λg , which cause expensive
computational burden. It is noted that polygenic variance is
always larger than zero, while variance components for most
SNPs are zero because these markers are not associated with the
interested trait, which is λγ = 0 for most SNPs. Therefore, in the
first step, we estimate λ̂g by the reduced form of the model (1),
which deleted Zγ with only polygenic background, and replace
λg in (2) by the λ̂g (Wen et al., 2018, 2020), avoiding re-estimate
λg for each single marker scanning. Thus,

var(y) = σ 2(λγZZT
+ λ̂gK + In) = σ 2(λγZZT

+ B) (3)

An eigen (or spectral) decomposition of the positive definite
matrix B = λ̂gK + In is:

B = Q3QT
= (Q3

1
2 QT)(Q3

1
2 QT) (4)

where Q is orthogonal and 3 is a diagonal matrix with positive
eigenvalues. Let C = Q3−

1
2 QT, the model (1) is changed to:

yc = Wcα + Zcγ + εc (5)

where, yc = Cy, Wc = CW, Zc = CZ, εc = Cu + Cε ∼
MVN(0, σ 2In) (Wen et al., 2018, 2020).

Variable Reduction Stage
A number of studies have illustrated that most quantitative traits
are controlled by a small portion of genes, including a few genes
with large effects and polygenes with minor effects (Zhang et al.,
2017; Wen et al., 2019). It is critical to dissect all associated loci
from large-scale genetic markers. Herein, we conduct a variable
reduction stage, whose purpose is dimension reduction. At this
stage, the FastRR algorithm detects a subset of putative variables
associated with the phenotype, and thus avoids the intractable
computational problems of high-dimensional datasets analysis.

We calculate the marginal correlation coefficients between
Zc (variables after polygenic background correction) and yc
(phenotype after polygenic background correction) under model
(5), R function cor.test returns the p-value of the correlation
test. The critical value for significance was set at p-value < 0.01
(Tamba et al., 2017). For the threshold of 0.01, even the slight
correlations between predictors and the response will be captured
(Tamba et al., 2017), and the unassociated loci will be removed.
All the most potential QTNs are selected to construct the reduced
multi-locus model for the next stage. Essentially, this marginal
correlation step is similar to the single marker scanning, which
combined with the polygenic background without considering
variance components σ 2

γ .

Parameter Estimation Stage
In the multi-locus model,

y = Wα + Zγ + ε (6)

where y is the phenotypic value of the quantitative trait, which is
the same as that in the model (1); α is a vector of fixed effects, γ

is a q × 1 random effect vector of the selected q markers from
the above stage, and γk ∼ N

(
0, φ2) , k = 1, ..., q; W and Z are

the corresponding design matrices for α and γ. Here, polygenic
background correction is not considered in model (6), because
the above two steps under the polygenic background model had
already selected all potential associated QTNs. All the parameters
in model (6) are estimated by DRR proposed by Wang et al.
(2020).

Before introducing the DRR, let us briefly recall the ordinary
ridge regression (ORR). According to the best linear unbiased
prediction (BLUP) of the marker effects and the prediction
error variances using the conditional expectation and conditional
variance, the estimates of ORR are as follows,

γ̂ORR = E
(
γ|y
)
= λZTH−1(y −Wα) (7)

var
(̂
γORR|y

)
=

(
λI−λZTH−1Zλ

)
(8)

where λ = φ2

σ2 ,H =
(
ZZT) λ+ In.

Ordinary ridge regression is inflexible and inaccurate for
GWAS (Wang et al., 2020). Therefore, we apply the following
DRR method, which can bring both the accurate effects and tests
back. The essential difference between ORR and DRR is the well-
measurement-factor (also called degree of freedom), which is

dk = 1−
var

(̂
γORRk |y

)
φ2 = λZT

k H−1Zk (9)

γ̂ORRk is the k-th element of γ̂ORR, where φ2and var
(̂
γORRk |y

)
are

prior and posterior variances for γk, respectively.

γ̂DRRk =
φ2

φ2 − var
(̂
γORRk |y

) γ̂ORRk = d−1
k γ̂ORRk (10)

var
(̂
γDRRk

)
=

φ2

φ2 − var
(̂
γORRk |y

)var (̂γORRk |y
)

= d−1
k var

(̂
γORRk |y

)
(11)

Wk =

(̂
γDRRk

)2

var
(̂
γDRRk

) = (̂
γORRk /dk

)2

var
(̂
γORRk |y

)
/dk
= d−1

k

(̂
γORRk

)2

var
(̂
γORRk |y

)
(12)

The test statistic of DRR, Wk, follows a Chi-square distribution
with one degree of freedom under the null model, H0 : γk = 0.
The DRR method deshrinks both the estimated effects of
markers and their estimated variances from the ORR, resulting
in deshrunk Wald test statistics.

Comparison Methods
LASSO
Lasso regression (Tibshirani, 1996) is a type of linear regression
that implements shrinkage by performing L1 regularization and
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selects the most correlated with response variables. It is a popular
method for simultaneous estimation and variable selection. The
method was implemented by the R software package lars1.

Adaptive Lasso
Similar to the lasso, the adaptive lasso (Zou, 2006) is
a mainstream method of variable selection, in which the
adaptive weights are used for penalizing different coefficients
in the L1 penalty. Adaptive lasso shows more consistence for
variable selection than lasso in data analysis. The method was
implemented by the R software package glmnet2.

SCAD
SCAD (Fan and Li, 2001) as the variable selection has the nice
oracle property. The estimator of SCAD attempts to alleviate bias
from variable selection, while also retaining a continuous penalty
that encourages sparsity. The method was implemented by the R
software package ncvreg3.

EMMA
Efficient mixed-model association (Kang et al., 2008) is an
established genome-wide single-marker scan methodology under
the framework of MLM, in which the polygenic background
and population structure are controlled. The method was
implemented by the R software package EMMA4.

DEMMA
The polygenic effect (the sum of all marker effects) is treated as
a random effect in EMMA. On the other side, EMMA already
included the marker effect as the fixed effect. Thus, there are two
effects for each marker, which lead to a reduced power for testing.
Wang et al. (2020) proposed DEMMA to overcome the above
drawback. The method was implemented by the R code5.

Experimental Materials
The Simulation Data
Three Monte Carlo simulation experiments were conducted
to evaluate the performances of the FastRR algorithm and
other methods. We generated genotypes according to the
minor allele frequency (MAF) in the interval (0.1, 0.5) under
Hardy–Weinberg equilibrium. The simulation datasets contained
n = 2000 individuals with p = 10,000 genetic variants, which
were generated with MLM. The total average was set at 10.0
and residual variance was set at 10.0. We considered three
scenarios for each simulation, including two times polygenic
background, five times polygenic background, and ten times
polygenic background.

Only one QTN with a fixed position (Table 1) was simulated
and placed on the SNPs with 0.1 heritability for the first
simulation; five QTNs with fixed positions were assigned and
placed on the SNPs for the second simulation, the heritabilities of
the QTNs were set as 0.02, 0.05, 0.05, 0.08, and 0.10, respectively.

1https://cran.r-project.org/web/packages/lars/index.html
2https://glmnet.stanford.edu/
3https://cran.r-project.org/web/packages/ncvreg/index.html
4http://mouse.cs.ucla.edu/emma/
5https://doi.org/10.1093/bioinformatics/btaa345/ TA
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TABLE 2A | Comparison of lasso, adaptive lasso, SCAD, EMMA, DEMMA, and FastRR methods in the second simulation experiment (scenarios 1: two times polygenic background).

QTN True value Lasso Adaptive lasso SCAD EMMA DEMMA FastRR

Position Effect r2 Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE

Polygenic background (2K)

1 98 0.5451 2% 99.0 0.298
(0.091)

6.833 96.0 0.416
(0.149)

3.703 99.0 0.269
(0.122)

9.011 91.0 0.600
(0.087)

0.956 94.0 0.596
(0.089)

0.978 99.0 0.587
(0.094)

1.035

2 301 0.8622 5% 100.0 0578
(0.100)

9.080 100.0 0.782
(0.114)

1.924 100.0 0.683
(0.174)

6.221 100.0 0.822
(0.095)

1.044 100.0 0.822
(0.095)

1.044 100.0 0.820
(0.094)

1.054

3 540 0.8598 5% 100.0 0.605
(0.093)

7.350 100.0 0.811
(0.101)

1.240 100.0 0.730
(0.150)

3.906 100.0 0.852
(0.089)

0.788 100.0 0.852
(0.089)

0.788 100.0 0.850
(0.089)

0.788

4 801 1.0789 8% 100.0 0.807
(0.099)

8.34 100.0 1.030
(0.105)

1.333 100.0 1.025
(0.139)

2.211 100.0 1.061
(0.094)

0.914 100.0 1.061
(0.094)

0.914 100.0 1.059
(0.094)

0.911

5 1000 1.2093 10% 100.0 0.957
(0.095)

7.276 100.0 1.118
(0.098)

1.023 100.0 1.207
(0.251)

10.129 100.0 1.223
(0.094)

0.886 100.0 1.223
(0.094)

0.886 100.0 1.220
(0.094)

0.878

False positive rate (h) 0.461 0.024 0.355 0.000 0.007 0.422

Three scenarios, including two times polygenic background, five times polygenic background, and ten times polygenic background.
MSE, mean squared error.
The numbers in parentheses represent the standard deviation.

TABLE 2B | Comparison of lasso, adaptive lasso, SCAD, EMMA, DEMMA, and FastRR methods in the second simulation experiment (scenarios 2: five times polygenic background)

QTN True value Lasso Adaptive lasso SCAD EMMA DEMMA FastRR

Position Effect r2 Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE Power
(%)

Effect
(SD)

MSE

Polygenic background (5K)

1 98 0.5451 2% 89.0 0.239
(0.091)

9.048 71.0 0.375
(0.179)

4.297 88.0 0.216
(0.098)

10.367 52.0 0.656
(0.072)

0.943 73.0 0.622
(0.082)

0.910 96.0 0.587
(0.095)

1.029

2 301 0.8622 5% 100.0 0.527
(0.119)

12.673 100.0 0.764
(0.166)

3.703 100.0 0.606
(0.200)

10.515 99.0 0.841
(0.106)

1.140 99.0 0.841
(0.106)

1.140 100.0 0.820
(0.126)

1.283

3 540 0.8598 5% 100.0 0.518
(0.117)

13.063 100.0 0.754
(0.153)

3.439 100.0 0.591
(0.191)

10.812 99.0 0.831
(0.107)

1.195 100.0 0.828
(0.110)

1.297 100.0 0.826
(0.109)

1.299

4 801 1.0789 8% 100.0 0.755
(0.116)

11.824 100.0 1.029
(0.126)

1.811 100.0 0.957
(0.186)

4.911 100.0 1.077
(0.117)

1.336 100.0 1.077
(0.116)

1.336 100.0 1.075
(0.116)

1.334

5 1000 1.2093 10% 100.0 0.897
(0.109)

10.937 100.0 1.176
(0.117)

1.480 100.0 1.165
(0.150)

2.428 100.0 1.234
(0.101)

1.063 100.0 1.234
(0.101)

1.063 100.0 1.232
(0.100)

1.049

False positive rate (h) 0.510 0.102 0.473 0.040 0.014 0.431

Three scenarios, including two times polygenic background, five times polygenic background, and ten times polygenic background.
MSE, mean squared error.
The numbers in parentheses represent the standard deviation.
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Their positions and effects are listed in Tables 2A–C. For the
third simulation experiment, we randomly selected 100 QTNs,
and the sum contribution of QTNs to the total phenotypic
variance was 0.5. Each simulation experiment was repeated 100
times. The power for each QTN was defined as the proportion
of samples over the threshold to the total number of replicates
(100), the criterion for lasso, adaptive lasso, and SCAD was set
as LOD ≥ 3.0, the criterion for ORR, EMMA, DEMMA, and
the FastRR algorithm was set as 0.05/p, where p was the number
of markers in the genetic model. The false positive rate was
calculated as the ratio of the number of false positive effects to
the total number of zero effects.

The Rice Data
To validate the FastRR algorithm, the rice data that was used
in this study for GWAS demonstration consists of 524 inbred
varieties, which were collected from China and southeast Asia
(Chen et al., 2014; Wei et al., 2018). A total of 6.5 million high-
quality SNPs covering 90% of total SNPs were analyzed by Chen
et al. (2014). A total of 314,393 SNPs and grain width traits
(Wang et al., 2020) were analyzed in this study. These data were
downloaded from the link.6

The Arabidopsis Data
To further evaluate the performance of FastRR, we reanalyzed
the genetic data sets of Arabidopsis published by Atwell et al.
(2010). Both phenotypes and genotypes were obtained from the
link7. A total of 199 Arabidopsis lines and 216,130 SNPs were used
for analysis. Among all traits, we analyzed three traits related to
flowering time: (1) LD: days to flowering under long days; (2)
SD: days to flowering under short days; and (3) SDV: days to
flowering under short days with vernalization.

RESULTS

Simulation Studies
Statistical Power for QTN Detection
In the first simulation experiment, only one QTN with a
fixed position is simulated, and the power in the detection
of the QTN is higher for the FastRR algorithm than for the
others (Figure 1 and Table 1). The FastRR algorithm has a
dramatically higher statistical power for 10 times polygenic
background especially. When five QTNs with the fixed position
are simulated in the second experiment, a similar trend is
observed (Figure 2 and Tables 2A–C). Three minor effect QTNs
(QTL 1 and QTL 2 for three scenarios; QTL 3 for the third
scenario) are illustrated in Figure 2, the power of each QTN is
less than 100%. Notably, the FastRR algorithm has the highest
power for the 98th marker (minor effect locus, r2 = 2%) under
different polygenic backgrounds. One hundred random QTNs
are simulated in the third experiment and the total heritabilities
are 50%. As the genetic background increases, the power of
the FastRR algorithm is getting increasingly high (Figure 3).

6https://doi.org/10.1093/bioinformatics/btaa345/
7http://www.arabidopsis.usc.edu/
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FIGURE 1 | The statistical powers for the fixed position QTN in the first simulation experiment using six methods (lasso, adaptive lasso, SCAD, EMMA, DEMMA, and
the FastRR algorithm).

FIGURE 2 | The statistical powers for the minor effect QTNs in the second simulation experiment using six methods (lasso, adaptive lasso, SCAD, EMMA, DEMMA,
and the FastRR algorithm).

The results illustrate that the trends are similar to the above
experiments (Figure 3). In summary, the FastRR algorithm
retains an obviously advantageous performance for the random
loci experiment. These results demonstrate the highest power of
the FastRR algorithm across all the approaches under various
genetic backgrounds.

Accuracy for the Estimated QTN Effects
The average effect and mean squared error (MSE) are used
to measure the accuracy of an estimated QTN effect. We
evaluated the accuracies for the (fixed positions, including
simulation experiment 1 and 2) estimates using all six methods
(Tables 1, 2A–C). As a result, the estimates for each QTN effect
for EMMA, DEMMA, and FastRR are much closer to the true
value, and EMMA and DEMMA are slightly better than the
FastRR algorithm, nevertheless, EMMA and DEMMA methods
have relatively lower power than FastRR. The performance of

SCAD, adaptive lasso, and lasso are unsatisfactory. The MSE
shows a similar trend to the average effect. On these occasions,
the FastRR algorithm, EMMA, and DEMMA methods are
recommended for the estimation of QTN effects.

The false positive rate is a crucial index in GWAS. All the false
positive rate results of simulation experiment 1 and 2 are listed
in Tables 1, 2A–C. Obviously, the false positive rate becomes
increasingly high along with the stronger polygenic background.
EMMA, DEMMA, and adaptive lasso have a relatively lower false
positive rate followed by FastRR, SCAD, and lasso. The false
positive rates of all six methods are under control.

Computing Time
We compare the computing time of 100 repeated simulated
analyses by using six approaches. In each of the three simulation
experiments, computing times are recorded and are shown in
Figure 4 and Supplementary Figures 1, 2 (Intel Xeon E5-2630
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FIGURE 3 | The average statistical powers for all QTNs in the third simulation experiment using six methods (lasso, adaptive lasso, SCAD, EMMA, DEMMA, and the
FastRR algorithm).

FIGURE 4 | Comparison of computing times to analyze simulation experiment 1 using all six methods (lasso, adaptive lasso, SCAD, EMMA, DEMMA, and the
FastRR algorithm).

v4, CPU 2.20 GHz, Memory 64G). The computing time of the
LASSO and FastRR algorithm have a faster computing speed than
the other methods, which are on the same order of magnitude.
They are followed by the adaptive lasso and SCAD. DEMMA
and EMMA methods take the most expensive computing time
at about 600 min, which is nearly seven times more than the
FastRR algorithm.

Analysis of the Rice Data Set
To validate the FastRR algorithm, the grain width trait of
rice data is analyzed by using six methods: lasso, adaptive
lasso, SCAD, EMMA, DEMMA, and the FastRR algorithm. The
rice dataset contains 310,000 SNPs genotyped for 524 inbred
varieties. Supplementary Figure 3 shows the LOD plot for three
variable selection methods and Manhattan plots for the other

three methods. Obviously, DEMMA method and the FastRR
algorithm have the identical detected regions, two significant
peaks on chromosome 5 and 9. Both DEMMA and FastRR
detect the cloned gene GW5 (Weng et al., 2008) that controls
grain width trait. The test statistics of SNP135176 (the most
significant SNP) for the DEMMA method and FastRR algorithm
are 2.31 × 10−26 and 1.92 × 10−20, respectively; the p-value for
the DEMMA method is lower than for the FastRR algorithm.
However, the test statistics for the EMMA method do not
reach the Bonferroni correction threshold. In addition, three
variable selection methods, lasso, adaptive lasso, and SCAD, show
unsatisfactory performance according to the LOD scores.

The average computing times are listed in Table 3. The
relatively fast methods, lasso, SCAD, and FastRR, are 235.33,
455.31, and 561.31 s, respectively. Lasso is the fastest method
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TABLE 3 | The computation times (seconds) for analyzing Arabidopsis flowering time traits and rice grain width by using lasso, adaptive lasso, SCAD, EMMA, DEMMA,
and FastRR methods.

Traits Lasso Adaptive lasso SCAD EMMA DEMMA FastRR

Rice

Grain width 235.33 1067.22 455.31 60813.82 26417.71 561.31

Arabidopsis

LD 36.11 189.36 128.79 1362.55 1117.49 105.17

SD 37.17 159.00 114.17 1350.19 4114.88 112.75

SDV 44.47 140.96 112.34 1665.94 4123.34 107.36

among all six methods, which is followed by SCAD and FastRR.
In Table 3, the adaptive lasso is different from the above
simulation experiments, which consumes much computing time
in the cross-validation along with the increasing number of SNPs.
The EMMA method takes more than ten times the computing
time than the FastRR algorithm.

Analysis of the Arabidopsis Data Set
To further validate the FastRR algorithm, this new algorithm
FastRR along with lasso, adaptive lasso, SCAD, EMMA, and
DEMMA methods are used to reanalyze the Arabidopsis data
for three traits related to flowering time (LD, SD, and SDV).
The results are illustrated in Supplementary Figures 4–6.
Each putative QTN (over the threshold) is used to mine the
candidate genes by The Arabidopsis Information Resource8.
The FastRR algorithm detects the confirmed genes AGL17
and CDKG1, which are detected by SCAD and DEMMA
as well. From the analysis results, lasso shows several false
positive loci in the detection of SD and SDV, meanwhile the
adaptive lasso and SCAD methods are inflexible in dissecting
the SNPs associated with the target traits. The statistical tests
of EMMA are under the Bonferroni corrected threshold. The
FastRR algorithm shows a similar pattern as the DEMMA
method for all results of three traits, the statistics of part
SNPs using the DEMMA method are slightly more significant
than the FastRR algorithm, which is similar to the results of
the rice datasets.

In terms of the computing speed for all three traits, lasso
is computationally much faster than the other methods. The
computing times of FastRR, SCAD, and adaptive lasso are
on the same order of magnitude, which require less than
200 s. The DEMMA and EMMA methods have much more
computational burden than the other methods, both of which
require over ten times the computing time required by the FastRR
algorithm. Overall, the FastRR algorithm is recommended
from the perspective of detection and computing speed across
all experiments.

DISCUSSION

The FastRR algorithm is a multi-stage flexible approach for
QTNs dissection in GWAS, and displays high power for
detecting QTN of large and minor effects, even under the

8https://www.arabidopsis.org/

ten times polygenic background. We aimed to understand the
performance of regression analysis methods, thus the following
three regression analysis methods, ORR, DRR, and FastRR, are
used to analyze simulation experiment 1 and 2. As the results
show (Supplementary Tables 1, 2A–C), ORR has the worst
detection ability, and even major QTN with large effects are
not identified. This explains why ORR is rarely used in GWAS.
DRR performs well in simulation 1 and 2, and shows slightly
lower power for the major QTNs than FastRR. However, DRR
loses power in detecting QTNs with minor effects, and this
difference becomes more and more obvious with the increase
of the polygenic background. Among three regression analysis
methods, the FastRR performs well in the simulation experiment
and has the highest statistical power.

Currently, the two-stage methodologies (Tamba et al., 2017;
Zhang et al., 2017; Wen et al., 2018) are more popular in GWAS,
which are the alternative approaches to solve the “big P, small N”
problem. The FASTmrEMMA (Wen et al., 2018; Wen et al., 2020)
algorithm is a fast and accurate two-stage methodology for QTNs
detection. We further compare the FastRR and FASTmrEMMA
algorithm in this study. The results of simulation experiment 1
and 2 are listed in Supplementary Tables 1, 2A–C. Observably,
the FastRR and FASTmrEMMA algorithm are powerful in QTNs
detection from the perspective of statistical power. However,
the estimation of FASTmrEMMA is slightly worse than FastRR,
which has a relatively larger MSE. In addition, FASTmrEMMA
consumes a median computing time (∼150 s for each replication)
among all methods, and much more than FastRR. Therefore, the
FastRR algorithm was shown to be a good alternative method for
multi-locus GWAS.

Mixed linear model methodologies are mainstream in GWAS;
most of them treat QTN effects as fixed effects. In this study,
the QTN effects are viewed as random, and it is more consistent
with genetic mechanisms (Wen et al., 2018). In order to avoid
the influence of the increase of computational complexity,
several acceleration techniques have been incorporated into the
algorithm. Firstly, we estimate and fix the polygenic-to-residual
variance ratio, and then transform the phenotypes and genotypes
in the first stage. This technique was adopted in pLARmEB
(Zhang et al., 2017) and FASTmrEMMA (Wen et al., 2018),
avoiding re-estimating this ratio for each marker. Secondly,
the marginal correlation in the second step is similar to the
single marker scanning, which quickly filters the unassociated
SNPs. The number of SNPs reduces from tens of thousands
to hundreds of putative QTNs in the simulation and real data
analysis. Thirdly, in the multi-locus model (6), we assume
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all σγ 2
= φ2, thus only two variance components (φ2 and

σ 2) requires DRR to estimate. The results from simulation
and real data analysis indicate that the estimation under
this simple assumption has achieved better performance
for QTN detection and fast computational speed. Lastly,
multithreaded marginal correlation is implemented in
the FastRR.

Efficient mixed model association and DEMMA as popular
single-locus genome scan approaches have been successfully used
in GWAS to dissect quantitative traits. However, single-locus
approaches ignore the potential information of neighboring
markers and fail to consider the joint minor effect of multiple
genetic markers on a trait. The FastRR algorithm overcomes
this shortcoming. From the results of the simulation, FastRR
is more powerful in the detection of QTNs (Figures 2, 3).
Although the three popular variable selection approaches, lasso,
adaptive lasso, and SCAD, utilize the potential information
of markers, the detection and estimation are not accurate
(Tables 1, 2A–C). This may be due to the over shrinkage of
QTNs, and therefore the effect of QTN is smaller than the
true effect; specifically, the minor effect of QTN is shrunk to 0.
Consequently, the FastRR algorithm is shown to be more robust
in data analysis.

The analysis of large-scale genetic data in GWAS is a hot topic
at present. In this study, the correlation coefficients are employed
to reduce the dimension of potentially related variables, which
are then included in the subsequent multi-locus analysis. The
threshold of the correlation coefficient test is set to 0.01 (Tamba
et al., 2017), and even the slight correlations between predictors
and the response are easily captured. The other thresholds are
used, such as 0.001 and 0.0001, which are more rigorous and
allows the filtering out of the minor effect loci that will not
be included in the multi-locus model. The threshold equal to
0.05 is too loose and includes a large number of SNPs over the
threshold; the putative loci are included in the subsequent multi-
locus analysis, and furthermore, it is time consuming and results

in intractable calculations. Thus, it is reasonable to choose 0.01 as
the threshold value in the selection of variables.
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