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High-throughput technologies do not only provide novel means for basic biological

research but also for clinical applications in hospitals. For instance, the usage of

gene expression profiles as prognostic biomarkers for predicting cancer progression

has found widespread interest. Aside from predicting the progression of patients, it is

generally believed that such prognostic biomarkers also provide valuable information

about disease mechanisms and the underlying molecular processes that are causal

for a disorder. However, the latter assumption has been challenged. In this paper, we

study this problem for prostate cancer. Specifically, we investigate a large number of

previously published prognostic signatures of prostate cancer based on gene expression

profiles and show that none of these can provide unique information about the underlying

disease etiology of prostate cancer. Hence, our analysis reveals that none of the

studied signatures has a sensible biological meaning. Overall, this shows that all studied

prognostic signatures are merely black-box models allowing sensible predictions of

prostate cancer outcome but are not capable of providing causal explanations to

enhance the understanding of prostate cancer.

Keywords: prostate cancer, biomarkers, prognostic biomarkers, survival analysis, data science, computational

biology, biostatistics

1. INTRODUCTION

Prostate cancer (PCa) is the second most prevalent cancer among men, the average age of diagnosis
is 66 years, and about 60% of diagnosed cases occur in men over 65 years old. In the United States,
for example, 191, 930 newly diagnosis cases of PCa are estimated in 2020, resulting in about 33, 330
mortalities (Siegel et al., 2020). A substantial proportion of PCa is characterized as slow-growing
and indolent requiring no immediate therapeutic intervention. However, tumor stages T1 and T2,
and tumor stages higher than T2 are more aggressive and invade the surrounding organs and the
patient is more likely to die from the disease (Chen et al., 2020). Specifically, for men with local or
regional PCa, the 5-year survival rate is almost 100%, whereas the 5-year survival rate for men with
metastatic PCa is 31%.
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Since the inception of high-throughput technologies, a large
number of molecular markers have been described in the
literature capable of distinguishing cancer patients with good and
bad prognosis. Nonetheless, few found their way into clinical
decision making. Many biomarker studies have used genome-
wide gene expression analysis to define unique gene expression
signatures related to the prognosis of PCa. For example, Chen
et al. (2012) developed a 7-gene prognostic signature through
a cluster-correlation analysis to identify differentially expressed
genes in various cell types associated with PCa progression.
Likewise, in Liu et al. (2007), the gene expression of CD44+CD24
of low tumorigenic breast and normal breast epithelium cells
were compared. They used the differentially expressed genes
to construct a 186-gene “invasiveness” gene signature. The
signatures were tested for their association with two clinical
endpoints, overall survival and metastasis-free survival, in breast
and other cancer patients. Interestingly, the signature was
substantially correlated with the two survival endpoints in
patients with breast cancer and other types of cancer. Another
study by Ramaswamy et al. (2003) examined the molecular
variations between human primary tumors and metastases. The
gene expression profiles of different types of adenocarcinoma
metastases and unmatched primary adenocarcinomas were
compared, and the analysis identified a gene expression signature
capable of separating primary from metastatic adenocarcinomas
(Ramaswamy et al., 2003).

There are also studies that use more advanced approaches to
derive the gene signatures. In a study by Irshad et al. (2013),
a 19-gene signature enriched in indolent prostate tumors was
identified. Their final signature includes three genes that, through
a further classification of the 19-gene signature, was established
by a decision tree (DT) model. Similarly, a combination of
artificial neural network analysis and data from literature search
and other studies resulted in a panel of PCa progression markers,
which were used in a transcriptomic analysis of 29 radical
prostatectomy samples correlated with clinical outcome (Larkin
et al., 2012).

Aside from such potential success stories, there are several
well-known problems with prognostic signatures. One such
problem relates to the stability of the selection of prognostic
genes. In Michiels et al. (2005), this has been studied for various
cancer types and the authors found that the size of the training
data as well as the patient data both crucially effect the selection
of such genes. For breast cancer, this effect has been quantified
by Ein-Dor et al. (2006). Specifically, the authors showed that
thousands of patient samples are needed for achieving an overlap
of 50% between two predictive sets of prognostic genes. Further
examples of such studies reporting similar results can be found
in Kim (2009), Haury et al. (2011), and Gilhodes et al. (2017).
A well-recognized study by Venet et al. (2011) addressed yet
another problem by showing that many random breast cancer
gene sets have similar prognostic prediction capabilities as
biomarker (BM) signatures. The study by Goh and Wong (2018)
extended this by removing proliferation genes. A conceptual
problem of both studies is that random gene sets could still share
biological similarity on the level of biological processes (BPs).
The reason for this is that no systematic mechanism has been

implemented that would eliminate such a similarity. In contrast,
the study by Manjang et al. (2021) introduced a gene removal
procedure (GRP) that accomplished this.

The purpose of this paper is to test a hypothesis about the
systems behavior of PCa. Specifically, despite well-documented
differences between breast cancer and PCa, e.g., PCa affects men
exclusively, whereas breast cancer commonly affects women,
likewise both tumors arise in different organs involving different
physiological functions, we hypothesize that their functional
similarity, e.g., via the hallmarks of cancer (Hanahan and
Weinberg, 2000, 2011), induces similar results for prognostic
signatures. In order to investigate this, we study 32 published
prognostic PCa signatures from the literature and demonstrate
that random gene sets can be found with similar prediction
capabilities as these signatures but opposite biological meaning.

The paper is organized as follows. In the next section, we
describe our methods and data used for our analysis. Then
we present and discuss our results. The paper completes with
concluding remarks.

2. MATERIALS AND METHODS

In this section, we provide information about the data and
methods used for our analysis.

2.1. Biomarker Signatures
We identified reported PCa gene signatures from a literature
search. From this search, we found 32 signatures from 31
studies that have been published between 2002 and 2020. For
all signatures, the Entrez gene IDs corresponding to the HGNC
gene symbols are determined. All genes without an associated
Entrez gene ID are discarded. Table 1 shows an overview of the
published gene signatures we use for our study.

2.2. Gene Expression Data
We collected RNA-seq data (HTSeq-FPKM and HTSeq-FPKM-
UQ) of patients with PCa from the TCGA-PRAD project.
We obtained the data from the UCSC Xena GDC data
hub (https://xenabrowser.net/datapages/) on September 7, 2020.
FPKM stands for Fragments Per Kilobase of transcript per Million
mapped reads (Trapnell et al., 2010). It accounts for a situation in
which only 1 end of a pair-end read is mapped. The FPKM of a
gene is estimated as follows:

FPKM

=
109 × number of reads mapped to the gene

(number of reads mapped to all protein−coding genes

×length of the gene in base pairs)

(1)

Similarly, FPKM-UQ means Fragments Per Kilobase of
transcript per Million mapped reads upper quartile. It is a
modified estimate of FPKM where the total protein-coding read
count is replaced by the 75th percentile read count for a sample.
A notable difference between the two is the values of FPKM-UQ
tends to be much higher due to the significant disparity between
the total mapped number of reads in an alignment and the
mapped number of reads to one gene.
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The gene expression data set used in our study contains
551 samples, of which 498 are primary solid tumors, 52 are
solid tissue normal, and one is metastatic. We exclude the
metastatic and solid tissue normal samples from the data set.
From these data, we used only protein-coding genes without
missing information for the HTSeq-FPKM data cohort. Likewise,
from the HTSeq-FPKM-UQ data we used only genes with < 2%
missing information across all samples. The final HTSeq-FPKM
data set contains 498 samples and 16, 428 genes, whereas the
HTSeq-FPKM-UQ data set contains 498 samples and 15, 165
genes. Lastly, patient survival information for each sample
was derived from Liu et al. (2018). Specifically, we used the
progression-free interval end-points. In this paper, we refer to
the HTseq-FPKM and HTSeq-FPKM-UQ in our analysis as GDC
cohort A and GDC cohort B, respectively.

2.3. Outcome Association
In order to determine the prognostic importance of a random
gene set, we perform a survival analysis. We estimate Kaplan–
Meier survival curves and compare these with aMantel–Haenszel
test (Emmert-Streib and Dehmer, 2019). That means each
comparison provides a p-value from such a hypothesis test.

The patients are stratified into two classes (low and high
risk) by using the PC1 method. This method categorizes patients
according to a particular gene set. Hence, the resulting survival
analysis is a function of the gene set used to categorize the
patients. Overall, our study consists of three main steps: first,
the selection/construction of random gene set; second, the
classification of patients samples; and third, the survival analysis.

In the next section, we explain our method we use as GRP for
constructing random gene sets.

2.4. Gene Removal Procedure
OurGRP entails the removal of both the BM signatures and genes
that belong to the same BPs as the genes in the BM signatures.
The gene ontology (GO) is hierarchical (Ashburner et al., 2000).
Hence, we approach this analysis iteratively by removing genes of
BPs successively from the same hierarchy level. The GRP we use
is defined as follows:

1. G: the genes in the PCa data set (16, 425 and 15, 165 for GDC
cohort A and B, respectively).

2. BMi : gi, . . . , gm. BMi is the gene signature i (i range from 1 to
32) and gi, . . . , gm are the genes in the respective signatures.

3. Removing biomarker genes in signature BMi from G. This
produces a new set of genes G′

i with G′
i = G\BMi.

3∗ Optional step: Remove the proliferation genes, PG from G.
This gives a new set of genes G′∗

i with G′∗
i = G′\PG.

4. Map the genes in BMi to GO-terms and the corresponding
hierarchy levels. This gives: BMi = {gi, . . . , gm} → R =

{(GO1, L1), . . . , (GOt , Lt)}(Manjang et al., 2020).
Note, each gene can be connected to more than one GO-

term. For this reason,m ≤ t.
5. Map each GO-term in R, i.e., GOi with i ∈ {1, . . . , t}, to its

gene set GSi.
6. For each biomarker set i: Loop-over the elements in set R.

TABLE 1 | Overview of published and evaluated prognostic signatures for

prostate cancer used for our study.

Acronym of a

study

Number

of genes∗

Cancer type Reference

AGELL 12 Prostate cancer Agell et al., 2012

BIBIKOVA 16 Prostate cancer Bibikova et al., 2007

BISMAR 12 Prostate cancer Bismar et al., 2006

CHEN 4 Prostate cancer Chen et al., 2020

CHEN_CC 7 Prostate cancer Chen et al., 2012

CHEVILLE 2 Prostate cancer Cheville et al., 2008

CHU 8 Prostate cancer Chu et al., 2018

CUZICK 31 Prostate cancer Cuzick et al., 2011

GLINSKY 11 Multiple cancers Glinsky et al., 2005

IRSHAD 19 Prostate cancer Irshad et al., 2013

IRSHAD_1 3 Prostate cancer Irshad et al., 2013

LARKIN 7 Prostate cancer Larkin et al., 2012

LI 6 Prostate cancer Li et al., 2019

LIU 167 Multiple cancers Liu et al., 2007

LONG 12 Prostate cancer Long et al., 2011

NAKAGAWA 17 Prostate cancer Nakagawa et al., 2008

PENNEY 157 Prostate cancer Penney et al., 2011

RAMASWAMY 16 Multiple cancers Ramaswamy et al., 2003

REDDY 16 Prostate cancer Reddy and Balk, 2006

ROSS-ADAMS 100 Prostate cancer Ross-Adams et al., 2015

ROSS 6 Prostate cancer Ross et al., 2012

SAAL 162 Multiple cancers Saal et al., 2007

SHARMA 15 Prostate cancer Sharma et al., 2013

SINGH 5 Prostate cancer Singh et al., 2002

SONG 15 Prostate cancer Song et al., 2019

STEPHENSON 10 Prostate cancer Stephenson et al., 2005

TALANTOV 3 Prostate cancer Talantov et al., 2010

TANDEFELT 36 Prostate cancer Tandefelt et al., 2013

TRUE 86 Prostate cancer True et al., 2006

WANG 43 Prostate cancer Wang et al., 2017

WU 29 Prostate cancer Wu et al., 2013

YU 14 Multiple cancers Yu et al., 2007

Number of genes∗ corresponds to the number of genes in a signature after conversion

from HGNC gene symbols to Entrez gene IDs.

a. Delete all the genes associated with the GO-terms in set R.
This results in a new set given by G′′ = G′\D, where D is
the set of genes having GO-terms in R, i.e., D = ∪t

i=1GSi.

7. From G′′, we loop from 1 to 1, 000:

a. We sample new sets of biomarker genes of size |BMi ∈ G|
and perform the prognostic task. We repeat this for 1, 000
times.

b. Application of a Bonferroni correction to the p-values.
c. Set G′ = G′′. Stop if l = Lmin(i) or |G

′′| < 2× |BMi ∈ G|.

In the above procedure, the optional step called 3∗ involves the
removal of the 664 genes that are related to proliferation (this
gene set is called PG). We extracted the genes in PG from Goh
and Wong (2018).
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The prediction results are assessed using the p-values obtained
from the survival analysis. We call a random gene set with a
significant p-value, a surrogate gene set.

2.5. Unsupervised Classification
The patient samples are categorized using the PC1 stratification
method, which is based on a principal component analysis
(PCA). Briefly, PCA is a dimension reduction technique (this
involves reducing the size of the data set). The goal is to
transform a large data set into a smaller ones having a lower
dimensional representation. This method trades a little accuracy
for simplicity, thus achieving interpretability as well as minimal
loss of information (Lever et al., 2017). For performing the PC1
method, we use the R function "prcomp" to obtain the first
principal component (PC1) of a signature. The patients are then
divided into two groups according to the median of the PC1, i.e.,
a sample is either categorized as group −1 if the PC1 is below
the median or as group +1 if the PC1 is above the median value.
Hence, the PC1 method is used to classify (or group) the patients
into two classes, whereas this separation depends on a signature
gene set. This approach has been previously used (see, e.g., Venet
et al., 2011).

Formally, our analysis is based on a gene expression matrix of
the form X ∈ R

m × R
n, wherem is the number of genes and n is

the number of samples. Importantly, here m corresponds to the
number of genes in a particular signature gene signature and not
to all genes that are available in a data set.

2.6. Survival Analysis
For evaluating the prognostic value of gene sets, we conduct
a survival analysis. Specifically, we estimate a Kaplan–Meier
survival curve for each patient group and compare different
groups with the Mantel–Haenszel test (Emmert-Streib and
Dehmer, 2019). Hence, each comparison is characterized by a p-
value resulting from a statistical hypothesis test. For the survival
analysis, we use the progression-free interval as endpoint.

We would like to remark that due to the fact that the PC1
method provides a categorization of the patients, the resulting
survival analysis depends on the gene set used for obtaining the
first principal component of the signature.

2.7. Measuring of Biological Meaning
In order to have a well-defined meaning of the term “biological
meaning,” we use information from the GO (Ashburner et al.,
2000). Specifically, GO defines the biological meaning of a gene
by a list of GO-terms associated with this gene. For a list of genes,
the biological meaning of this set can be defined by the union of
the sets of GO-terms of the individual genes. For instance, given
three genes, g1, g2, g3, with associate GO-terms the biological
meaning (M) of these genes is given by

M(g1) = {GO1(1),GO1(2), . . .GO1(m)} (2)

M(g2) = {GO2(1),GO2(2), . . .GO2(n)} (3)

M(g3) = {GO3(1),GO3(2), . . .GO3(o)} (4)

with m, n, o ∈ N. Here, the GO-terms are from a category, e.g.,
BP. Similarly, the biological meaning of the set of genes {g1, g2, g3}

is given by

M({g1, g2, g3}) = M(g1) ∪M(g2) ∪M(g3) (5)

whereas ∪ is the union of the individual sets. Hence, the
biological meaning of {g1, g2, g3} is given by the set of GO-terms
M({g1, g2, g3}).

From this follows that, e.g., the similarity of two sets of genes,
{g1, g2, g3} and {g4, g5, g6}, is zero if

M({g1, g2, g3}) ∩M({g4, g5, g6}) = ∅. (6)

Importantly, our GRP defined above constructs random gene sets
(RGS) with this property, i.e.,

M(RGS) ∩M(BM) = ∅ (7)

with RGS a set of random genes and BM a set of biomarker genes.

3. RESULTS

In this section, we present the results of our analysis. First, we
study published prognostic biomarkers of PCa individually and
comparatively. Then we study random gene set and show results
for prognostic outcome.

3.1. Prognostic Biomarkers of Prostate
Cancer
3.1.1. Size of Biomarker Sets and GO-Terms in

Signatures
In Table 1, we show an alphabetically ordered overview of all
32 prognostic BM signatures included in our analysis. The
smallest signature is from Cheville consisting of 2 genes only,
whereas the signature from Liu is the largest containing 167
genes. Interestingly, there are some signatures that have the same
number of genes. Specifically, the signatures of Irshad_1 and
Talantov have 3 genes, the signatures of Li and Ross have 6 genes,
the signatures of Chen_cc and Larkin have 7 genes, the signatures
of Agell, Bismar, and Long have 12 genes, the signatures of
Sharma and Song have 15 genes, and the signatures of Bibikova,
Ramaswamy, and Reddy have 16 genes in their BM sets. An
overall summary of the size distributions of all BM signatures is
shown in Figure 1A.

In Figure 1B, we show information about the GO-terms
associated with the genes in the signatures. The three colors
correspond to the three GO categories: BP shown in cyan,
molecular function (MF) shown in red, and cellular component
(CC) shown in yellow. For each of these three categories, we
show the absolute number of GO-terms in each study. Overall,
from Figure 1B one can see that the present GO-terms in the
signatures differ significantly from each other. That means some
signatures are very specific because they contain only a very small
number of different GO-terms, e.g., the signatures from Talantov,
Cheville and Li, while others are rather generic containing many
GO-terms, e.g., Penney, Liu and Saal. For GO-terms of BP (cyan),
this variation is particularly large.
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FIGURE 1 | (A) Distributions of the number of biomarker genes in each study. (B) Number of gene ontology (GO)-terms associated with the signature genes in each

study. The cyan points correspond to BP, the red points to molecular function (MF), and yellow points to cellular component (CC).
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3.1.2. Pairwise Similarity of Signatures
In order to study differences between the 32 signatures, we
conduct a pairwise comparison of these BM sets. Specifically, we
study two different types of overlap. We study (i) the number
of common genes and (ii) the number of common GO-terms
among pairs of signatures. Formally, we define these two overlap
measures as follows. Let Si and Sj be two signature sets consisting
either of genes or GO-terms. Then we find the percentage zi ∈
[0, 1] of common elements in Si that are also present in Sj by

xi = Si ∩ Sj (8)

zi =
|xi|

|Si|
(9)

Here, zi can assume values between zero and one and |z|
corresponds to the number of elements in set z. We would like
to remark that the way we define the overlap is asymmetric, i.e.,
zi 6= zj if |Si| 6= |Sj|. That means the percentage of the overlap is
taken with respect to the first signature set Si on the right-hand
side of Equation (8).

The two heatmaps in Figures 2A,B show the results of
this analysis. From this analysis of the gene overlap, we find
that the signatures of Chen_cc and Chu do not overlap with
other signatures at all, i.e., both have a zero overlap with any
other signature. This implies that the genes in the signatures
of Chen_cc and Chu are unique concerning the genes in
their corresponding BM sets. Every other BM signature has at
least some overlap with another signature; see the last column
in Figure 2A (red numbers) providing information about the
number of signatures with a non-zero overlap.

The signature of Cheville, which has the smallest number of
genes, has a gene overlap with the three signatures of Cuzick, Li,
and Penney. Surprisingly, the signature of Liu, which contains
the highest number of genes, has only genes in common with 9
other signatures. Irshad_1 is the only signature that completely
overlaps with another signature (Irshad); however, we would like
to note that both signatures are from the same study (Irshad
et al., 2013). Finally, we find that the signature of Penney has
the highest gene overlap with other signatures (it has genes in
common with 20 signatures). From this analysis, we see that
there is a wide range of behaviors for the gene overlap reaching
from zero overlap (for Chen_cc and Chu) to an overlap with 20
signatures (for Penny) corresponding to an overlap with 64.5%
(= 20/31) of all signatures. This implies that all signatures are
unique to a certain extend because this percentage would be
much higher.

In contrast to these findings, Figure 2B shows the overlap
of GO-terms among the signatures. Again, the overlap between
the signatures varies considerably. For instance, the signatures of
Saal and Penney share the highest overlap with 490 GO-terms.
Interestingly, all the signatures have a non-zero overlap in their
biological meaning.

Importantly, a difference to the gene overlap (see Figure 2A)
is that for a GO-term overlap, all signatures share at least one GO-
term with 26 other signatures (see last column in Figure 2B) and
most signatures (25) have at least one common GO-term with
all other signatures. This implies that on a GO-term level, the

signatures are much more similar to each other than on a gene
level. This underlines the importance of a systems-view on PCa.

3.2. Prediction Abilities of Random Gene
Signatures
Next, we systematically investigated the prognostic prediction
capabilities of the 32 BM signatures and random gene sets. We
begin by systematically removing BM signature genes from the
available gene expression gene pool. Subsequently, we also omit
hierarchically genes that share a biological meaning with the
respective published signatures.We randomly sample 1,000 set of
the same size as the BM signature from the gene set left to create
random gene signature. The results are as follows:

The outcome of the study is given in three parts. First, from the
gene pool, we systematically remove the published signatures and
the genes that share a similar biological meaning with them and
compute the outcome association. Next, we correct the obtained
p-values by conservative Bonferroni correction and report the
results. And finally, the analysis is repeated by omitting the
proliferation genes from the gene pool, we correct the p-values
by conservative Bonferroni correction, and present the results.

3.2.1. GDC Cohort a Data
The results for the GDC cohort A data are shown in Figure 3.
The light/dark red points represent the outcome of the published
signatures (without any gene removal), whereas light red
indicates significant results and dark red non-significant one.
The blue colored distributions are the result of random gene
sets, whereas the shaded cyan bars correspond to the lower third
percentile of the distributions and the bold black points are
the median values of these distributions. The blue vertical line
corresponds to a significant level of α = 0.05. We would like to
note that the p-values are on a logarithmic scale (i.e., log10).

First, from Figure 3 we observed that not all published
signatures (red points) lead to significant results. In order to
highlight this, we show significant results by points in light red,
whereas non-significant results are shown in dark red. A possible
reason for this observation is that our analysis uses a different
data set than the original studies and, hence, the observed
results indicate to the well-known instability of biomarkers
(lack of robustness) (Drier and Domany, 2011). Specifically, for
our analysis 24 of the 32 biomarker signatures are significant
and the remaining published signatures lack robustness for the
independent validation data set.

Figure 3A shows results without a Bonferroni correction.
This analysis is similar to the study by Venet et al. (2011),
which also did not use a multiple testing correction even though
many comparisons were conducted. Interestingly, in Figure 3A

all lower third percentiles (cyan shaded bars) are significant.
That means for all random gene sets we find at least 3%
of these to be significant. When compared to the published
signatures (red points), the lower third percentile of random gene
sets outperform even 26 signatures. Five published signatures
performed as well as the lower third percentile of random sets, or
the random sets slightly outperformed them. Only one signature
(Song) achieves a more significant outcome than the lower third
percentile of the random gene sets. Two signatures Ross and
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FIGURE 2 | Pairwise overlap between prognostic biomarkers. (A) Overlap in the number of genes. (B) Overlap in the number of gene ontology (GO)-terms. The last

column in both heatmaps (red numbers) gives the number of signatures with a non-zero overlap.
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FIGURE 3 | Shown are the prognostic prediction results of random gene sets for 32 signatures using the GDC cohort A data. (A) Results for uncorrected p-values.

(B) Bonferroni corrected p-values. (C) Proliferation genes are removed and the p-values are Bonferroni corrected. The significance level is α = 0.05 (vertical blue line)

and the light/dark red points represent the outcome of the published signatures. The blue-colored distributions are the results of the random gene sets, whereas the

shaded cyan bars correspond to the lower third percentile of the distributions and the bold black points are the median values.

Ross-Adams perform as worse as the median of the random sets
and three signatures (Singh, Bismar, and Yu) perform even worse
than the median of the random gene sets. The median of the
random sets (bold black points) are all non-significant.

In Figure 3B, we repeated the analysis applying a conservative
Bonferroni correction. With a Bonferroni correction, four
signatures (Singh, Ross, Bismar, and Yu) performed worse than
the lower third percentile of random signatures. Likewise, five
published signatures, Chu, Song, Bibikova, Cuzick, and Saal,
outperformed the random signatures. As one can see from
Figure 3B, not all the lower third percentile are significant.
However, for all random signatures (such as Penney and Liu),
we find at least some significant random signatures. Interestingly,
many smaller random signatures perform better in comparison
to larger ones. For instance, Cheville, Talantov, Irshad_1, Chen,
Singh, etc., all performed better than the top 5 largest signatures
(True, Ross-Adams, Penney, Saal, and Liu).

In a previous breast cancer study (Goh and Wong, 2018),
it has been found that the removal of proliferation genes from
random signatures leads to diminishing results of the prognostic
performance of random signatures. In order to study this effect,

we removed additionally all proliferation genes from the gene
pool and repeated our analysis with a Bonferroni correction. The
results of this are shown in Figure 3C. Qualitatively, the results in
Figures 3B,C are similar. Overall, for all results in Figures 3A–C,
one can see that for all random signatures there are at least some
that are statistically significant. We would like to emphasize that
all random gene sets share per construction no biological meaning
with the published signatures yet can perform prognosis as well
as the BM signatures or better.

3.2.2. GDC Cohort B Data
In order to study the influence of the data processing, we repeat
our analysis for the GDC cohort B data. The results of this
analysis are shown in Figures 4A–C. In these figures, there are
in addition to the dark and light red points, light green points
indicate the BM signatures. These correspond to significant BM
signatures, whereas the median values of the random gene sets
(black points) are non-significant.

Again, we observe that not all BM signatures lead to a
significant outcome. Specifically, we find 22 of the 32 signatures
to be significant (Figure 4). Interestingly, we find also non-robust

Frontiers in Genetics | www.frontiersin.org 8 July 2021 | Volume 12 | Article 649429

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Manjang et al. Prognostic Biomarkers of Prostate Cancer

FIGURE 4 | Shown are the prognostic prediction results of random gene sets for 32 signatures using the GDC cohort B data set. (A) Results for uncorrected

p-values. (B) Bonferroni corrected p-values. (C) Proliferation genes are removed and the p-values are Bonferroni corrected. The significance level is α = 0.05 (vertical

blue line) and the light/dark red points represent the outcome of the published signatures. The blue colored distributions are the results of the random gene sets,

whereas the shaded cyan bars correspond to the lower third percentile of the distributions and the bold black points are the median values.

results. For instance, Cheville, Irshad_1, Reddy, Ramaswamy,
and True failed to predict the outcome in the GDC cohort B data
set, but these signatures were significant for the GDC cohort A
data (see Figure 3). Similarly, Chen, Stephenson, and Sharma are
significant for GDC cohort B (see Figure 4) but not GDC cohort
A (see Figure 3).

Also for the distributions of the results for the random gene
sets, we observe very similar results as for the GDC cohort A data
in Figure 3. Hence, overall, the results in Figures 4A–C confirm
our analysis, which means there are always random gene sets
leading to significant results.

4. DISCUSSION

Our hypothesis for the present study was that prognostic
signatures of prostate cancer are lacking a sensible biological
meaning. In order to investigate this, we used a GRP
introduced in Manjang et al. (2021). This GRP allows
to systematically construct random gene sets by omitting
all biological similarities between published signatures and
the genes in a gene pool from which random gene sets
are drawn. These random gene sets are not assigned any

particular (biological) meaning or role. Importantly, such
random gene sets do not necessarily have predictive capabilities
as assessed by predicting progression-free survival as outcome
variable. For this reason, we distinguish between random gene
sets that are predictive (indicated by a significant p-value
from a survival analysis) and non-predictive by calling the
former ones surrogate gene sets. A published BM signature
(see Table 1), on the other hand, is a gene set that is
obtained in a targeted and non-random manner indicative of
disease progression.

For testing our hypothesis, we studied 32 published BM
signatures of prostate cancer from the literature (see Table 1).
As a result, for all studied 32 signatures we found random gene
sets with better or similar prognostic capabilities but no overlap
in the biological meaning. In order to see if the preprocessing
of the data has any effect on this, we extended our analysis
by examining the effect of different data processing techniques.
Regarding this, we conducted further analysis by using a data
set with different processing methods applied to the raw data
leading to a data set we call GDC cohort B. As a result from this
analysis, we found no systematic influence of a particular data
processing technique on the surrogate gene sets or the overall
results (see Figures 3, 4). Finally, we also removed proliferation
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genes (for both data sets, i.e., GDC cohort A and GDC cohort B)
and found also for this setting no difference in our results (see
Figures 3C, 4C).

As a conclusion from all these analyses, we can infer that
any biological rationale provided for selecting the genes in the
published gene signatures, as shown in Table 1, is anecdotal.
This is taking into account the meaning of random gene sets
arising from the GRP because the used GRP eliminates the risk
of accidentally selecting genes for a random gene set that have
the same biological meaning as the published gene signatures.
Consequently, due to the discovery of surrogate gene sets with
the same predictive capability but a completely distinct biological
interpretation, as a result of the zero overlap in the GO-terms of
the genes involved, any biological significance attributed to such
BM signatures is required.

Interestingly, a similar interpretation has been found in a
breast cancer study by Manjang et al. (2021). They showed that
when all signs of the biological meaning of the BM signature
genes are removed, surrogate gene sets can be determined
among the remaining random gene sets with similar prognostic
predictive capabilities but with contrasting biological meaning.
Therefore, the research findings indicated that with regard to
disease etiology, none of the studied signatures have a plausible
biological interpretation or significance. The study concluded
that prognostic signatures are black-box models that can yield
accurate predictions of breast cancer outcome but with no benefit
for disclosing causal, biological relations. Furthermore, this study
also noted a relationship between the predictive accuracy and
the size of the random gene sets by showing that the accuracy
is higher for larger gene sets. It is interesting to note that in the
current study, we could not establish this relationship. A possible
explanation for this may be the relatively small size of published
BM signatures of prostate cancer, which are all smaller than 200
genes (see Figure 1). In contrast, the breast cancer signatures
studied in Manjang et al. (2021) are much larger in average
reaching up to 1345 genes.

It is important to note that a similar study for breast cancer by
Venet et al. (2011) has been unable to arrive at this conclusion
since no GRP was used. As a consequence, BM signatures as
well as genes from associated BP were not removed leaving the
possibility to inadvertently select random genes with a common
biological meaning as the original BM signatures because these
genes belong to the same BPs as indicated by common GO-
terms in the domain BP. Another statement by Venet et al.
(2011) is that most random signatures are significantly associated
with prognostic outcome. With respect to prostate cancer, this
holds only for the random gene sets of Penney and Liu (see
Figure 4A) because 50% of the surrogate gene sets are significant
as indicated by the median values of the distributions (black
points in Figure 4). However, generally, this assertion is not valid
and only applies to some signatures.

To date, many studies investigated prognostic signatures of
prostate cancer. For example, Bibikova et al. (2007) used a 16-
gene expression signature to predict the prognosis of prostate
cancer. They complemented their results by a discussion of the
functional annotation of these genes, which were involved in
proliferation, cell cycle, differentiation, signal transduction and

basic metabolism. Similarly, the studies by Saal et al. (2007),
Sharma et al. (2013), and Song et al. (2019) argued that the
biological importance of their prognostic signatures is based
on the role of PI3K pathway signaling, altered signaling, P53
signaling and cell cycle process pathway respectively. In this
paper, we studied those and other prognostic signatures of
prostate cancer. Our results, however, demonstrate that such
biological interpretations do not offer a causal explanation for
the fundamental biology of prostate cancer since we can always
find surrogate gene sets with no biological relationship to those
signatures but similar or better prognostic prediction capabilities.

Considering that prostate cancer and breast cancer are two
considerably different diseases yet our results demonstrate a
similarity in the lack of biological meaning of both cancers
one may wonder if there is a common factor giving raise
to these findings. This is very difficult to answer, however,
one common factor that comes to mind are the hallmarks of
cancer (Hanahan and Weinberg, 2000). Specifically, the study
by Hanahan and Weinberg (2000) highlighted six hallmarks
of cancer (self-sufficiency in growth signals, insensitivity to
growth-inhibitory (antigrowth) signals, evasion of programmed
cell death (apoptosis), limitless replicative potential, sustained
angiogenesis, and tissue invasion and metastasis), which are
shared by all types of human cancers. Later this has been
extended by four further hallmarks (deregulating cellular
energetics, avoiding immune destruction, genome instability
and mutation, tumor-promoting inflammation) (Hanahan and
Weinberg, 2011). If our findings are actually related to the ten
hallmarks of cancer is currently unclear. However, it seems not
implausible to assume that there might be a connection because
the hallmarks state that cancer is a system disease involving a
multitude of pathways. We want to add that these pathways do
not work in isolation but are connected among each other by
intricate regulatory networks (Emmert-Streib et al., 2014).

On a technical note, we would like to remark that there
could be other metrics for evaluating the prediction capabilities
of random gene sets other than p-values. For instance, one
could use information from pathology about disease states,
which allow to use error measures for binary classifications.
While this establishes sensible metrics, e.g., F-score or AUROC,
such measures do not directly utilize survival information
about the progression of patients. Instead, this is the strength
of survival analysis comparing survival curves quantitatively.
Hence, a regression framework, as provided by survival analysis
(Kleinbaum and Klein, 2005), seems to be favorable over a
classification framework allowing a more nuanced evaluation.

Finally, we would like to note that our study has similarities to
recent investigations in Explainable Artificial Intelligence (XAI)
(Xu et al., 2019; Emmert-Streib et al., 2020). Specifically, XAI
explores the dichotomy of predictive and descriptive models
(Emmert-Streib and Dehmer, 2021) in AI and aims to establish
mechanisms for making predictive models also explainable in
a sense that this can enhance our understanding of a system
under investigation. On a wider scope, this discussion has a long
history in the statistics community and refers to the distinction
of black-box models and causal models (Holland, 1986; Breiman,
2001). Our study shows that prognostic biomarkers of prostate
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cancer allow sensible predictions for cancer progression but do
not establish a causal understanding with respect to the biological
meaning of such prognostic signatures. Here, it is important
to extend the considerations to the proposed gene selection
mechanisms used by studies identifying prognostic signatures
(see Table 1). Overall, such models have a predictive utility, e.g.,
for applications in the clinical practice but no biological utility for
enhancing our understanding of cancer biology.

5. CONCLUSION

In this paper, we scrutinized the biological meaning of
prognostic signatures of prostate cancer. Our study utilized a
GRP that results in random gene sets without any overlap
in the biological meaning with biomarker signatures yet a
non-vanishing proportion of these random gene sets, called
surrogate gene sets, achieve similar prediction results. Hence,
our results demonstrate that none of the studied signatures
of prostate cancer has a sensible biological interpretation with
respect to disease etiology. To our knowledge, this is the

first study providing such results for prognostic biomarkers of
prostate cancer.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://xenabrowser.net/datapages/.

AUTHOR CONTRIBUTIONS

FE-S conceived the study. KM performed the analysis. KM and
FE-S analyzed the data and interpreted the results. All authors
wrote the manuscript.

FUNDING

KM has been supported by a fellowship from the Center
for Prostate Cancer, Tampere University. MD thanks
the Austrian Science Funds for supporting this work
(project P30031).

REFERENCES

Agell, L., Hernández, S., Nonell, L., Lorenzo, M., Puigdecanet, E., de Muga, S.,

et al. (2012). A 12-gene expression signature is associated with aggressive

histological in prostate cancer: Sec14l1 and tceb1 genes are potential markers of

progression. Am. J. Pathol. 181, 1585–1594. doi: 10.1016/j.ajpath.2012.08.005

Ashburner, M., Ball, C., Blake, J., Botstein, D., and Butler H., et al. (2000). Gene

Ontology: tool for the unification of biology. The Gene ontology consortium.

Nat. Genet. 25, 25–29. doi: 10.1038/75556

Bibikova, M., Chudin, E., Arsanjani, A., Zhou, L., Garcia, E. W., Modder, J., et al.

(2007). Expression signatures that correlated with gleason score and relapse in

prostate cancer. Genomics 89, 666–672. doi: 10.1016/j.ygeno.2007.02.005

Bismar, T. A., Demichelis, F., Riva, A., Kim, R., Varambally, S., He, L., et al. (2006).

Defining aggressive prostate cancer using a 12-gene model. Neoplasia 8:59.

doi: 10.1593/neo.05664

Breiman, L. (2001). Statistical modeling: the two cultures. Stat. Sci. 16, 199–231.

doi: 10.1214/ss/1009213726

Chen, X., Wang, J., Peng, X., Liu, K., Zhang, C., Zeng, X., et al. (2020).

Comprehensive analysis of biomarkers for prostate cancer based on

weighted gene co-expression network analysis. Medicine 99:e19628.

doi: 10.1097/MD.0000000000019628

Chen, X., Xu, S., McClelland,M., Rahmatpanah, F., Sawyers, A., Jia, Z., et al. (2012).

An accurate prostate cancer prognosticator using a seven-gene signature plus

gleason score and taking cell type heterogeneity into account. PLoS ONE

7:e45178. doi: 10.1371/journal.pone.0045178

Cheville, J. C., Karnes, R. J., Therneau, T. M., Kosari, F., Munz, J.-M., Tillmans,

L., et al. (2008). Gene panel model predictive of outcome in men at high-risk

of systemic progression and death from prostate cancer after radical retropubic

prostatectomy. J. Clin. Oncol. 26:3930. doi: 10.1200/JCO.2007.15.6752

Chu, J., Li, N., and Gai, W. (2018). Identification of genes that predict

the biochemical recurrence of prostate cancer. Oncol. Lett. 16, 3447–3452.

doi: 10.3892/ol.2018.9106

Cuzick, J., Swanson, G. P., Fisher, G., Brothman, A. R., Berney, D. M., Reid, J. E.,

et al. (2011). Prognostic value of an rna expression signature derived from cell

cycle proliferation genes in patients with prostate cancer: a retrospective study.

Lancet Oncol. 12, 245–255. doi: 10.1016/S1470-2045(10)70295-3

Drier, Y., and Domany, E. (2011). Do two machine-learning based prognostic

signatures for breast cancer capture the same biological processes? PLoS ONE

6:e17795. doi: 10.1371/journal.pone.0017795

Ein-Dor, L., Zuk, O., and Domany, E. (2006). Thousands of samples are needed to

generate a robust gene list for predicting outcome in cancer. Proce. Natl. Acad.

Sci. U.S.A. 103, 5923–5928. doi: 10.1073/pnas.0601231103

Emmert-Streib, F., de Matos Simoes, R., Mullan, P., Haibe-Kains, B., and

Dehmer, M. (2014). The gene regulatory network for breast cancer:

integrated regulatory landscape of cancer hallmarks. Front. Genet. 5:15.

doi: 10.3389/fgene.2014.00015

Emmert-Streib, F., and Dehmer, M. (2019). Introduction to survival

analysis in practice. Mach. Learn. Knowl. Extract. 1, 1013–1038.

doi: 10.3390/make1030058

Emmert-Streib, F., and Dehmer, M. (2021). Data-driven computational social

network science: predictive and inferential models for web-enabled scientific

discoveries. Front. Big Data 4:591749. doi: 10.3389/fdata.2021.591749

Emmert-Streib, F., Yli-Harja, O., and Dehmer, M. (2020). Explainable artificial

intelligence and machine learning: a reality rooted perspective. WIREs Data

Min. Knowl. Discov. 10:e1368. doi: 10.1002/widm.1368

Gilhodes, J., Zemmour, C., Ajana, S., Martinez, A., Delord, J.-P., Leconte, E.,

et al. (2017). Comparison of variable selection methods for high-dimensional

survival data with competing events. Comput. Biol. Med. 91, 159–167.

doi: 10.1016/j.compbiomed.2017.10.021

Glinsky, G. V., Berezovska, O., Glinskii, A. B., et al. (2005). Microarray

analysis identifies a death-from-cancer signature predicting therapy failure

in patients with multiple types of cancer. J. Clin. Invest. 115, 1503–1521.

doi: 10.1172/JCI23412

Goh, W. W. B., and Wong, L. (2018). Why breast cancer signatures are no

better than random signatures explained. Drug Discov. Today 23, 1818–1823.

doi: 10.1016/j.drudis.2018.05.036

Hanahan, D., andWeinberg, R. A. (2000). The hallmarks of cancer.Cell 100, 57–70.

doi: 10.1016/S0092-8674(00)81683-9

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next

generation. Cell 144, 646–674. doi: 10.1016/j.cell.2011.02.013

Haury, A.-C., Gestraud, P., and Vert, J.-P. (2011). The influence of feature selection

methods on accuracy, stability and interpretability of molecular signatures.

PLoS ONE 6:e28210. doi: 10.1371/journal.pone.0028210

Holland, P. (1986). Statistics and causal inference. J. Am. Stat. Assoc. 81, 945–960.

doi: 10.1080/01621459.1986.10478354

Irshad, S., Bansal, M., Castillo-Martin, M., Zheng, T., Aytes, A., Wenske, S., et al.

(2013). Amolecular signature predictive of indolent prostate cancer. Sci. Transl.

Med. 5:202ra122. doi: 10.1126/scitranslmed.3006408

Frontiers in Genetics | www.frontiersin.org 11 July 2021 | Volume 12 | Article 649429

https://doi.org/10.1016/j.ajpath.2012.08.005
https://doi.org/10.1038/75556
https://doi.org/10.1016/j.ygeno.2007.02.005
https://doi.org/10.1593/neo.05664
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1097/MD.0000000000019628
https://doi.org/10.1371/journal.pone.0045178
https://doi.org/10.1200/JCO.2007.15.6752
https://doi.org/10.3892/ol.2018.9106
https://doi.org/10.1016/S1470-2045(10)70295-3
https://doi.org/10.1371/journal.pone.0017795
https://doi.org/10.1073/pnas.0601231103
https://doi.org/10.3389/fgene.2014.00015
https://doi.org/10.3390/make1030058
https://doi.org/10.3389/fdata.2021.591749
https://doi.org/10.1002/widm.1368
https://doi.org/10.1016/j.compbiomed.2017.10.021
https://doi.org/10.1172/JCI23412
https://doi.org/10.1016/j.drudis.2018.05.036
https://doi.org/10.1016/S0092-8674(00)81683-9
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1371/journal.pone.0028210
https://doi.org/10.1080/01621459.1986.10478354
https://doi.org/10.1126/scitranslmed.3006408
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Manjang et al. Prognostic Biomarkers of Prostate Cancer

Kim, S.-Y. (2009). Effects of sample size on robustness and prediction

accuracy of a prognostic gene signature. BMC Bioinformatics 10:147.

doi: 10.1186/1471-2105-10-147

Kleinbaum, D. and Klein, M. (2005). Survival Analysis: A Self-Learning Text.

Statistics for Biology and Health. New York, NY: Springer.

Larkin, S., Holmes, S., Cree, I., Walker, T., Basketter, V., Bickers, B., et al. (2012).

Identification of markers of prostate cancer progression using candidate gene

expression. Br. J. Cancer 106, 157–165. doi: 10.1038/bjc.2011.490

Lever, J., Krzywinski, M., and Altman, N. (2017). Points of significance: principal

component analysis. Nat. Methods 14, 641–642. doi: 10.1038/nmeth.4346

Li, F., Ji, J.-P., Xu, Y., and Liu, R.-L. (2019). Identification a novel set of 6

differential expressed genes in prostate cancer that can potentially predict

biochemical recurrence after curative surgery. Clin. Transl. Oncol. 21, 1067–

1075. doi: 10.1007/s12094-018-02029-z

Liu, J., Lichtenberg, T., Hoadley, K. A., Poisson, L. M., Lazar, A. J.,

Cherniack, A. D., et al. (2018). An integrated tcga pan-cancer clinical data

resource to drive high-quality survival outcome analytics. Cell 173, 400–416.

doi: 10.1016/j.cell.2018.02.052

Liu, R., Wang, X., Chen, G. Y., Dalerba, P., Gurney, A., Hoey, T., et al. (2007). The

prognostic role of a gene signature from tumorigenic breast-cancer cells. New

Engl. J. Med. 356, 217–226. doi: 10.1056/NEJMoa063994

Long, Q., Johnson, B. A., Osunkoya, A. O., Lai, Y.-H., Zhou, W., Abramovitz,

M., et al. (2011). Protein-coding and microrna biomarkers of recurrence of

prostate cancer following radical prostatectomy. Am. J. Pathol. 179, 46–54.

doi: 10.1016/j.ajpath.2011.03.008

Manjang, K., Tripathi, S., Yli-Harja, O., Dehmer, M., and Emmert-Streib, F. (2020).

Graph-based exploitation of gene ontology using goxplorer for scrutinizing

biological significance. Sci. Rep. 10, 1–16. doi: 10.1038/s41598-020-73326-3

Manjang, K., Tripathi, S., Yli-Harja, O., Dehmer, M., Glazko, G., and

Emmert-Streib, F. (2021). Prognostic gene expression signatures of breast

cancer are lacking a sensible biological meaning. Sci. Rep. 11, 1–18.

doi: 10.1038/s41598-020-79375-y

Michiels, S., Koscielny, S., and Hill, C. (2005). Prediction of cancer outcome

with microarrays: a multiple random validation strategy. Lancet 365, 488–492.

doi: 10.1016/S0140-6736(05)17866-0

Nakagawa, T., Kollmeyer, T. M., Morlan, B. W., Anderson, S. K., Bergstralh,

E. J., Davis, B. J., et al. (2008). A tissue biomarker panel predicting systemic

progression after psa recurrence post-definitive prostate cancer therapy. PLoS

ONE 3:e2318. doi: 10.1371/journal.pone.0002318

Penney, K. L., Sinnott, J. A., Fall, K., Pawitan, Y., Hoshida, Y., Kraft, P., et al. (2011).

mrna expression signature of gleason grade predicts lethal prostate cancer. J.

Clin. Oncol. 29:2391. doi: 10.1200/JCO.2010.32.6421

Ramaswamy, S., Ross, K. N., Lander, E. S., and Golub, T. R. (2003). A molecular

signature of metastasis in primary solid tumors. Nat. Genet. 33, 49–54.

doi: 10.1038/ng1060

Reddy, G. K., and Balk, S. P. (2006). Clinical utility of microarray-derived genetic

signatures in predicting outcomes in prostate cancer. Clin. Genitourin. cancer

5, 187–189. doi: 10.3816/CGC.2006.n.035

Ross, R. W., Galsky, M. D., Scher, H. I., Magidson, J., Wassmann, K., Lee, G.-S. M.,

et al. (2012). A whole-blood rna transcript-based prognostic model in men

with castration-resistant prostate cancer: a prospective study. Lancet Oncol. 13,

1105–1113. doi: 10.1016/S1470-2045(12)70263-2

Ross-Adams, H., Lamb, A., Dunning, M., Halim, S., Lindberg, J., Massie,

C., et al. (2015). Integration of copy number and transcriptomics

provides risk stratification in prostate cancer: a discovery and validation

cohort study. EBioMedicine 2, 1133–1144. doi: 10.1016/j.ebiom.2015.

07.017

Saal, L. H., Johansson, P., Holm, K., Gruvberger-Saal, S. K., She, Q.-B.,

Maurer, M., et al. (2007). Poor prognosis in carcinoma is associated with

a gene expression signature of aberrant pten tumor suppressor pathway

activity. Proc. Natl. Acad. Sci. U.S.A. 104, 7564–7569. doi: 10.1073/pnas.0702

507104

Sharma, N. L., Massie, C. E., Ramos-Montoya, A., Zecchini, V., Scott, H. E., Lamb,

A. D., et al. (2013). The androgen receptor induces a distinct transcriptional

program in castration-resistant prostate cancer in man. Cancer Cell 23, 35–47.

doi: 10.1016/j.ccr.2012.11.010

Siegel, R., Miller, K., and Jemal, A. (2020). Cancer statistics, 2020. CA Cancer J.

Clin. 70, 7–30. doi: 10.3322/caac.21590

Singh, D., Febbo, P. G., Ross, K., Jackson, D. G., Manola, J., Ladd, C., et al. (2002).

Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1,

203–209. doi: 10.1016/S1535-6108(02)00030-2

Song, Z., Huang, Y., Zhao, Y., Ruan, H., Yang, H., Cao, Q., et al. (2019). The

identification of potential biomarkers and biological pathways in prostate

cancer. J. Cancer 10:1398. doi: 10.7150/jca.29571

Stephenson, A. J., Smith, A., Kattan, M. W., Satagopan, J., Reuter, V. E., Scardino,

P. T., et al. (2005). Integration of gene expression profiling and clinical variables

to predict prostate carcinoma recurrence after radical prostatectomy. Cancer

104, 290–298. doi: 10.1002/cncr.21157

Talantov, D., Jatkoe, T. A., Böhm, M., Zhang, Y., Ferguson, A. M., Stricker,

P. D., et al. (2010). Gene based prediction of clinically localized prostate

cancer progression after radical prostatectomy. J. Urol. 184, 1521–1528.

doi: 10.1016/j.juro.2010.05.084

Tandefelt, D. G., Boormans, J. L., van der Korput, H. A., Jenster, G. W.,

and Trapman, J. (2013). A 36-gene signature predicts clinical progression

in a subgroup of erg-positive prostate cancers. Eur. Urol. 64, 941–950.

doi: 10.1016/j.eururo.2013.02.039

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren,

M. J., et al. (2010). Transcript assembly and quantification by rna-seq reveals

unannotated transcripts and isoform switching during cell differentiation. Nat.

Biotechnol. 28, 511–515. doi: 10.1038/nbt.1621

True, L., Coleman, I., Hawley, S., Huang, C.-Y., Gifford, D., Coleman, R.,

et al. (2006). A molecular correlate to the gleason grading system for

prostate adenocarcinoma. Proc. Natl. Acad. Sci. U.S.A. 103, 10991–10996.

doi: 10.1073/pnas.0603678103

Venet, D., Dumont, J. E., and Detours, V. (2011). Most random gene expression

signatures are significantly associated with breast cancer outcome. PLoS

Comput. Biol. 7:e1002240. doi: 10.1371/journal.pcbi.1002240

Wang, L.-Y., Cui, J.-J., Zhu, T., Shao, W.-H., Zhao, Y., Wang, S., et al. (2017).

Biomarkers identified for prostate cancer patients through genome-scale

screening. Oncotarget 8:92055. doi: 10.18632/oncotarget.20739

Wu, C.-L., Schroeder, B. E., Ma, X.-J., Cutie, C. J., Wu, S., Salunga, R.,

et al. (2013). Development and validation of a 32-gene prognostic index for

prostate cancer progression. Proc. Natl. Acad. Sci. U.S.A. 110, 6121–6126.

doi: 10.1073/pnas.1215870110

Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., and Zhu, J. (2019). “Explainable

AI: a brief survey on history, research areas, approaches and challenges,” in

CCF International Conference on Natural Language Processing and Chinese

Computing (Dunhuang: Springer), 563–574.

Yu, J., Yu, J., Rhodes, D. R., Tomlins, S. A., Cao, X., Chen, G., et al. (2007). A

polycomb repression signature in metastatic prostate cancer predicts cancer

outcome. Cancer Res. 67, 10657–10663. doi: 10.1158/0008-5472.CAN-07-2498

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Manjang, Yli-Harja, Dehmer and Emmert-Streib. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Genetics | www.frontiersin.org 12 July 2021 | Volume 12 | Article 649429

https://doi.org/10.1186/1471-2105-10-147
https://doi.org/10.1038/bjc.2011.490
https://doi.org/10.1038/nmeth.4346
https://doi.org/10.1007/s12094-018-02029-z
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1056/NEJMoa063994
https://doi.org/10.1016/j.ajpath.2011.03.008
https://doi.org/10.1038/s41598-020-73326-3
https://doi.org/10.1038/s41598-020-79375-y
https://doi.org/10.1016/S0140-6736(05)17866-0
https://doi.org/10.1371/journal.pone.0002318
https://doi.org/10.1200/JCO.2010.32.6421
https://doi.org/10.1038/ng1060
https://doi.org/10.3816/CGC.2006.n.035
https://doi.org/10.1016/S1470-2045(12)70263-2
https://doi.org/10.1016/j.ebiom.2015.07.017
https://doi.org/10.1073/pnas.0702507104
https://doi.org/10.1016/j.ccr.2012.11.010
https://doi.org/10.3322/caac.21590
https://doi.org/10.1016/S1535-6108(02)00030-2
https://doi.org/10.7150/jca.29571
https://doi.org/10.1002/cncr.21157
https://doi.org/10.1016/j.juro.2010.05.084
https://doi.org/10.1016/j.eururo.2013.02.039
https://doi.org/10.1038/nbt.1621
https://doi.org/10.1073/pnas.0603678103
https://doi.org/10.1371/journal.pcbi.1002240
https://doi.org/10.18632/oncotarget.20739
https://doi.org/10.1073/pnas.1215870110
https://doi.org/10.1158/0008-5472.CAN-07-2498
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Limitations of Explainability for Established Prognostic Biomarkers of Prostate Cancer
	1. Introduction
	2. Materials and Methods
	2.1. Biomarker Signatures
	2.2. Gene Expression Data
	2.3. Outcome Association
	2.4. Gene Removal Procedure
	2.5. Unsupervised Classification
	2.6. Survival Analysis
	2.7. Measuring of Biological Meaning

	3. Results
	3.1. Prognostic Biomarkers of Prostate Cancer
	3.1.1. Size of Biomarker Sets and GO-Terms in Signatures
	3.1.2. Pairwise Similarity of Signatures

	3.2. Prediction Abilities of Random Gene Signatures
	3.2.1. GDC Cohort a Data
	3.2.2. GDC Cohort B Data


	4. Discussion
	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


