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Networks are useful tools to represent and analyze interactions on a large, or

genome-wide scale and have therefore been widely used in biology. Many biological

networks—such as those that represent regulatory interactions, drug-gene, or

gene-disease associations—are of a bipartite nature, meaning they consist of two

different types of nodes, with connections only forming between the different node sets.

Analysis of such networks requiresmethodologies that are specifically designed to handle

their bipartite nature. Community structure detection is a method used to identify clusters

of nodes in a network. This approach is especially helpful in large-scale biological network

analysis, as it can find structure in networks that often resemble a “hairball” of interactions

in visualizations. Often, the communities identified in biological networks are enriched for

specific biological processes and thus allow one to assign drugs, regulatory molecules, or

diseases to such processes. In addition, comparison of community structures between

different biological conditions can help to identify how network rewiring may lead to tissue

development or disease, for example. In this mini review, we give a theoretical basis

of different methods that can be applied to detect communities in bipartite biological

networks. We introduce and discuss different scores that can be used to assess the

quality of these community structures. We then apply a wide range of methods to

a drug-gene interaction network to highlight the strengths and weaknesses of these

methods in their application to large-scale, bipartite biological networks.

Keywords: networks, genomic networks, community detection algorithms, community detection analysis,

genomic data analysis, network analysis, biological network analysis, biological network clustering

1. INTRODUCTION

Many processes in biology are linked through complex patterns of physical and functional
interactions, which can be represented in large-scale, genome-wide biological networks. Analysis
of these networks can help our understanding of biology and medicine (Barabási et al., 2011).
For example, a recent analysis of protein-protein interaction networks has helped to map cellular
organization and genome function (Luck et al., 2020). Analysis of gene regulatory (Sonawane
et al., 2017) and expression quantitative trait (eQTL) networks—where Single Nucleotide
Polymorphisms (SNP) are connected to gene expression levels based on the strength of their
association (Platig et al., 2016; Fagny et al., 2017)—have helped to highlight potential disease
associations of genes and SNPs.
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Most of the literature on genome-wide biological network
analysis has focused on unipartite networks—networks with
one type of node, where interactions can in principle form
between all nodes. Examples of such networks are those
that represent protein-protein interactions or gene-gene co-
expression. However, many types of biological networks
are naturally bipartite, meaning that there are two disjoint
types of nodes, and interactions can only form between
the different node types. Examples of genome-wide bipartite
networks are gene regulatory networks (Emmert-Streib et al.,
2014)—which include transcriptional, post-transcriptional, and
post-translational regulatory networks (Koch, 2016; Statello
et al., 2020; Guo and Amir, 2021)—eQTL networks, networks
comprising gene-pathway associations (He et al., 2014), networks
representing gene-disease (Goh et al., 2007; Halu et al., 2019)
or non-coding RNA (ncRNA)-disease associations (Sumathipala
et al., 2019), or drug-target interaction networks (Yildirim et al.,
2007) (see Pavlopoulos et al., 2018 for an extensive overview of
different types of bipartite biological networks).

Community detection is an approach to identify so-called
“communities” or “modules”—sets of nodes that are densely
connected internally (Newman, 2006). Community detection
helps to define the higher-order structure of biological networks
and allows researchers to extract and interpret biological
signals (Pellegrini, 2019). For instance, in a network representing
drug-gene associations, which we use as an example network
in this mini review, one can apply community detection to
identify groups of drugs that affect similar biological processes,
thereby capturing potential new treatment strategies for patients
who experience adverse effects to a specific drug. In eQTL
networks, communities are often enriched for specific biological
functions. SNPs in the center of these communities are
enriched for regulatory elements and associated with disease
phenotypes (Fagny et al., 2017). In regulatory networks,—
which are often bipartite in nature, representing regulatory
molecules and their targets as different types of nodes—
community detection may help improve our understanding of
the functions of specific regulatory molecules, as it places similar
regulatory molecules in the context of their neighborhoods
of targets (Sonawane et al., 2017). Community detection is
particularly helpful in increasing our understanding of the
biological processes that are targeted by relatively understudied
regulatory molecules, for which specific functions are often
unknown. These include, for example, ncRNAs (Kuijjer et al.,
2020) or regulatory molecules that are not evolutionarily
conserved. For a schematic overview of community detection in
large-scale bipartite biological networks and their applications,
please refer to Figure 1.

In this mini review, we discuss different community detection
methods that can be applied to identify modules in large-scale
bipartite biological networks. We start by giving a theoretical
basis of bipartite networks and their community structures in
general. We then discuss so-called “modularity” scores, which
can be used to assess community structure quality. We show
how calculating these modularity scores on bipartite networks
differs from calculating them on unipartite networks. We then
describe five widely used strategies for community detection that

were specifically designed to be applied to bipartite networks.
Finally, we assess the performance of these methods on a large-
scale, near genome-wide, gene-drug interaction network and
discuss the feasibility of applying these methods to genome-wide
networks. We hope this overview will help shed light on the
challenges with community detection in genome-wide networks
in general, as well as on the advantages and disadvantages of
applying some of the most widely-used community detection
methods to large-scale bipartite genomic networks.

2. PROBLEM DEFINITION

We will first discuss the theoretical basis of some of the most
widely used community detection methods that can be applied to
networks in general (Diestel, 2005). We note that most of these
methods were not initially designed for or tested on biological
networks. However, they can be applied to biological networks
and have been widely used in their analysis. We start by defining
what a network is and, in particular, what a bipartite network
represents. We also introduce the notation that we will use in the
rest of this mini review.

Definition 1. A weighted network G = (V ,E,ω) is a triple—
a set of three elements—where V is a set of nodes, E is a set
of edges between nodes in V , and ω is a function that assigns
each edge e ∈ E a weight. We denote n the number of nodes
and m =

∑
e∈E ω(e) the sum of edge weights. If a network is

unweighted, ω = 1 and m is equal to the total number of edges.
A network is said to be bipartite if V can be partitioned into two
sets, V1,V2, such that every edge e ∈ E is connected to a node
in V1 and to a node in V2. From now on, we will use the term
G = (V1 ∪ V2,E,ω) to indicate a bipartite weighted network,
unless otherwise stated.

For a unipartite network, the definition of a “community” is easy
and intuitive: it is a set of nodes that are more connected within
the same set compared to the rest of the network (Girvan and
Newman, 2002). Given a bipartite network G, the problem of
finding bipartite communities is more complex. We say that a
community structure on G is a partition of V1 = ∪l

i=1Ci and

V2 = ∪k
j=1Dj, where Ci are pairwise disjoint subsets of V1 and Dj

are pairwise disjoint subsets ofV2, such that all nodes in a specific
Ci are more connected to a particular subset of V2 than the rest
of nodes in V1 are, and likewise for the partition of V2.

As we discuss below, there are several precise definitions
of what it means to be more connected in a network. Most of
these are based on comparing the network structure to a null
model, where the nodes are randomly connected, respecting the
degree distribution (Barber, 2007; Murata, 2009). This allows
an extension to weighted networks, since the degrees can be
substituted by the sum of edge weights. We can then define
scores, generally called modularities, that precisely measure how
“good” a community structure is, in the sense of how much
more connected the nodes are within communities compared to
the random model. Most community finding strategies identify
communities by maximizing such scores (Lancichinetti and
Fortunato, 2011).
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FIGURE 1 | Schematic visualization of bipartite community detection and its applications to large-scale biological networks. (A) An example of two communities (C1

and C2) detected in a bipartite network. (B) Possible applications of bipartite community detection in the analysis of large-scale biological networks. This includes

pathway enrichment in communities, enrichment analysis of other biological properties by testing against external data, identification of “local hub” genes that are

central to their community, node similarity detection, and community structure comparison between, for example,networks modeled on disease and control samples.

3. MODULARITY SCORES

The definition of bipartite modularity is an adapted version of the
modularity for unipartite networks, which we will describe in the
section below.

3.1. Unipartite Modularity
Let G = (V ,E,ω) be a weighted unipartite network with n
vertices and m =

∑
e∈E ω(e) edges and let this network be

defined by its weighted adjacency matrix A. A is a matrix such
that its ij entry is the weight of the edge that joins vertices i
and j. In case of an unweighted network, ω = 1. If each node
i is assigned to a community gi, we can define the modularity
score (Newman, 2006) of this assignment as follows:

Q =
1

2m

∑

i,j

(Aij − Pij)δ(gi, gj), (1)

where P is a matrix with entries consisting of the expectation that
i and j are connected in the null model, and δ is the Kronecker
delta function. We denote B = A− P the modularity matrix.

If the set of nodes in a given communityC are more connected
within the community itself than would be expected given a
random network with same degree distribution, then, for nodes
i, j ∈ C, their corresponding entry, Bij, in the modularity matrix
will be larger than zero. Per definition, Q ∈ [−1, 1]. When
the given community assignment is not worse than a random
partition of nodes, Q will be larger than or equal to zero. Such a
community structure is said to be stronger when the modularity
score Q is closer to 1.

3.2. Bipartite Modularity Scores
Extending the definition of modularity to adapt to the structure
of bipartite networks is not completely straightforward and
different approaches that do this exist. The most widely

used methods are described below. Please note that these
bipartite modularity scores were developed for general bipartite
networks and can be calculated on any type of bipartite
network, including large-scale bipartite biological networks.
However, the performance of these scores has not been
tested on large-scale biological networks and it is difficult to
assess which method is the best. For an overview of how
optimizing the different modularity scores might influence
the detected community structure, please refer to (Xu et al.,
2015).

3.2.1. Guimerà’s Modularity
The first approach to a define modularity score for a given
community structure on bipartite networks was designed by
Guimerà (Guimerà et al., 2007). Guimerà’s modularity is the
cumulative deviation of the number of edges between nodes that
are members of the same bipartite community from the random
expectation. This score only takes into account nodes that are in
one of the bipartite sets. Because of this, it is not used in any of
the community finding methods that we will explore below and,
thus, we will not discuss it in more detail.

3.2.2. Barber’s Modularity
Barber’s approach to defining bipartite modularity (Barber, 2007)
is a direct adaptation of the unipartite version described in
Equation (1). However, instead of working with the adjacency
matrix, the biadjacency matrix Ã is used. The biadjacency matrix
is the non-zero block matrix in the adjacency matrix, if we
order nodes first in V1 and then in V2. The bimodularity
matrix is defined as B̃ = Ã − P̃, with P̃ being a matrix
of expectations corresponding to a null model where nodes
are randomly connected, respecting the bipartite structure and
degree distribution. This results in a modularity score for
assigning nodes i ∈ V1 to communities gi and nodes j ∈ V2 to
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communities hj, which is defined as

QB =
1

m

p∑

i=1

q∑

j=1

(Ãij − P̃ij)δ(gi, hj), (2)

where p = |V1|, q = |V2|.
Barber’s modularity score takes into account the two node

types and the bipartite structure of the network. However, it
forces a one-to-one correspondence between the partition in V1

and the partition in V2. Thus, each set has to be partitioned into
the same number of communities. This is an overly restrictive
condition, as it limits the number of possible communities to
min(p, q) (Murata, 2009).

3.2.3. Murata Modularity and Murata+ Modularity
Murata andMurata+ are twomodularity scores that build on the
previously defined ones. The Murata modularity score (Murata,
2009) was developed to overcome the restriction mentioned
in the section above and thus does not force a one-to-one
correspondence between the two partitions. It introduces the
concept of a co-cluster of Ci ⊂ V1, which is the community on
V2 that Ci shares the highest sum of edge weights with (or in the
more intuitive, unweighted case, the largest number of edges).

Let 2M =
∑

e ω(e) be the sum of edge weights. For
communities C ⊂ V1 and D ⊂ V2, we define the normalized
weight of their connection to be eC,D = eD,C = 1

2M

∑
e ω(e),

for e edges from i ∈ C to j ∈ D. Each community contributes
to 2M with a weight of aC = 1

2M

∑
D eC,D. Moreover, we can

define the co-cluster of a community C to be the community
DC ⊂ V2 with the highest concentration of edges from C,
that is DC = argmaxD(eC,D). With these definitions, Murata’s
modularity score for a given partition of V1 and V2 is

QM =
∑

C⊂V1

(eC,DC − aCaDC )+
∑

D⊂V2

(eCD,D − aCDaD). (3)

This score pairs each community in V1 to a community in V2, its
co-cluster, and computes the difference between intra-co-cluster
edges and the expected edges in a randomly generated graph.
This metric is less restrictive than Barber’s modularity, because
it assumes different community structures in each of the sets
V1 and V2 that are related to one another by the co-cluster
correspondences of each community in each of the sets.

In the biLouvain method (Pesantez-Cabrera and
Kalyanaraman, 2016), which we describe in the next section,
the definition of Murata’s modularity is extended so that the
co-cluster relationship is not necessarily symmetric. To do so, the
choice of co-cluster is adapted to use the terms aCaDC and aCDaD.
This allows for even more flexibility, as the co-cluster D ⊂ V2

of a community C ⊂ V1 does not necessarily need to have C as
its co-cluster. Thus, for a given partition, this new modularity
score—which is called Murata+—has the same definition as in
Equation 3, but the co-clusters are chosen as follows:

DC = argmax
D

(eC,D−aCaD) and CD = argmax
C

(eC,D−aCaD).

(4)

3.3. Resolution
Most community finding strategies rely on maximizing a
modularity score (generally Barber’s, see Equation 2). These
approaches have been shown to retrieve true communities
when applied to networks with a ground-truth community
structure (Barber, 2007; Dao et al., 2017). However, there
is a resolution limit when it comes to properly separating
communities, which hampers community detection in large-
scale networks. For unipartite networks, it was shown that
communities with a number of internal edges ≤ O(

√
m) may

not be detected (Fortunato and Barthélemy, 2007). While this
problem was highlighted with unipartite modularity, this also
applies to bipartite networks with Barber’s modularity.

This poses a problem when it comes to working with
large-scale networks, such as genomic networks; certain small,
tightly-knit communities might be too small to detect. This is
particularly relevant in the analysis of biological networks, as this
means that general processes can still be detected, but that the
subtle differences that distinguish, for example, a disease network
from a control network may be below the resolution limit and
thus could be left undetected. This can be adjusted [in the case
of Barber’s modularity (Equation 2)] by introducing a resolution
parameter λ > 0, such that

QB =
1

m

p∑

i=1

q∑

j=1

(Ãij − λP̃ij)δ(gi, hj). (5)

Then if λ > 1, more, but smaller communities are detected and
if λ < 1, fewer, but larger communities are found.

4. COMMUNITY DETECTION STRATEGIES

Most community finding methods, both in unipartite and
bipartite networks, are based on optimizing a modularity
function. There are several strategies to do this in a fast and
optimal manner (Newman, 2016), but there is no consensus on
what method is best. However, all of these strategies are greedy—
at each step the program tries to find the optimal next step. Thus,
there is always the possibility to detect a local maximum instead
of the global maximum, and therefore not the best structure.
This can be an issue in large-scale biological network analysis,
specifically if one aims to use the community structure to, for
example, find similarities between drug targets in a drug-gene
interaction network, or to get insights in potential regulatory
functions of ncRNAs by analyzing a ncRNA-gene network.

Some of the most widely used strategies for optimizing
modularity are discussed below.

4.1. Spectral Optimization (SO)
Spectral optimization methods are algorithms that take
advantage of the structure of the various matrices (e.g. the
adjacency matrix or the modularity matrix) associated to a
network. The most widely used spectral optimization method
for bipartite networks is Bipartite Recursively Induced Modules
(BRIM) (Barber, 2007). BRIM uses the fact that, if B is the
bimodularity matrix of a network, R is a community membership
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matrix for the nodes in V1, and T a community membership
matrix for the nodes in V2, then the formula in Equation (2) can
be written as follows:

QB =
1

m
Tr(RT B̃T), (6)

where Tr is the trace of the matrix. Then, given an initial
community structure on V1, the community assignment in
V2 that maximizes modularity can be calculated. This is done
recursively using the new assignment as initial community
structure, until the modularity cannot increase further.

BRIM is considerably fast, because uses matrix
multiplications, which are optimally implemented in several
programming languages. However, it has the drawback that it
strongly depends on the initial community structure assignment.
In addition, it requires one to know the total number of
communities beforehand. In large-scale biological networks, the
number of communities is usually unknown (Sah et al., 2014;
Gaiteri et al., 2015).

4.2. Projections and Adapted Unipartite
Methods
A bipartite network can be projected onto one of its sets
of nodes, for example V1. Its projection is a new unipartite
network that has as nodes those in V1, and weighted edges
corresponding to the number of shared neighboring nodes i, j ∈
V1 have. This projection retains part of the information about
the topology of the network and can then be used to find a
community structure using unipartite methods. Projections are
often applied to large networks, where unipartite methods, such
as Louvain (Blondel et al., 2008) or Leiden (Traag et al., 2019)
can work very effectively. However, a drawback of projecting a
network is that it will lead to a loss in resolution which, as we
discuss above, is not ideal when analyzing biological networks.
In addition, the relationship between a bipartite network and
its projection is not one-to-one. Significantly different bipartite
networks can have the same projection and, thus, could result in
the same community structure. This could, for example, hamper
the identification of differences between networks modeled on
disease and control samples.

Some unipartite methods can be adapted to deal with bipartite
networks by having a resolution/distance parameter set to two,
which forces the method to compare nodes from the same
bipartite set. This is a not an optimal approach, as it does not
take into account the bipartite structure of the network. In large-
scale bipartite biological networks, this structure is important,
as we are often interested in understanding how two different
types of components, such as transcription factors and their
target genes, or diseases and genes, relate to one another. In
addition, this approach is not valid for weighted networks,
where the distance between the two sets is not uniformly two.
Edges in large-scale bipartite biological networks are generally
weighted as they are often based on effect sizes or probabilities.
For example, in regulatory networks, one often estimates the
likelihood of a transcription factor or ncRNA to regulate a
target gene. eQTL networks can be built on the strength of
SNP-gene associations. While these weighted networks can be

transformed into unweighted networks by thresholding them on
the edge weights, this approach is not ideal, as subtle changes
in edges weights can drive biological differences (Lopes-Ramos
et al., 2020). Therefore, methods that can only be applied to
unweighted networks are generally not ideal for community
structure detection in genomic biological networks.

4.3. Label Propagation (LP)
In label propagation (Liu and Murata, 2009b), each node is
initialized in its own community. Then, for each community, the
modularity that would be gained if the community were to be
merged with another community is computed. Thosemerges that
maximize modularity gain are then applied, and this process is
repeated until the modularity cannot increase any further. When
this point is reached, a condensation step is applied that generates
a new network. In this new network, each node represents a
community from the former network. The edges are interactions
between the communities, which are weighted, for example,
using the sum of weights from all nodes in a community to all
nodes in the other. Label propagation can then again be applied to
this network to find a new level of community structure. Further
condensations can be applied until the modularity gain stabilizes.
This is how the unipartite method Louvain works.

For bipartite networks this approach is adapted [for example
in LPA (Costa andHansen, 2014), DIRTLPAwb+ (Beckett, 2020),
LP-BRIM (Liu andMurata, 2009a), biLouvain (Pesantez-Cabrera
and Kalyanaraman, 2016)] to take the two different types of nodes
in the modularity gain function into account.

It should be noted that these methods can have a stochastic
component to solve ties in modularity gain. Therefore, it
is possible that different runs of the method on the same
network result in slightly different community structures. This
could be a problem if one wants to compare community
structures to, for example, detect phenotype-driven transitions
in regulatory networks (Padi and Quackenbush, 2018), as it is
difficult to distinguish differences caused by this stochastic
component from those that arise due true biological differences
in network structure. Also, as mentioned before, this can lead to
detecting a local instead of the global maximum, and thereby not
detecting the best community structure. Some algorithms, such
as DIRTLPAwb+ run this approach several times and then keep
the structure with the highest modularity. However, this comes
with additional computational load, and may thus not be ideal
for analysis on genome-wide networks.

4.4. Node Similarity (NS)
Node similarity algorithms, such as ComSim (Tackx et al., 2018)
are different from the methods described above as they are
not designed to optimize modularity. They define a similarity
function between nodes, for example the number of common
neighbors or the Jaccard similarity. They then use this function
to find cycles in the network—so-called core communities—that
have high similarity. These core communities do not contain all
available nodes, as some nodes are left unassigned. To obtain a
community structure that includes all nodes, these unassigned
nodes are then added to the core community with which they
have the highest similarity score.
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4.5. Overlapping Community Detection
Overlapping methods for bipartite networks aim to give a
covering of the bipartite sets that is not disjoint. This means
that some nodes can be present in more than one community.
This property makes sense in, for example, regulatory networks,
because a transcription factor may regulate different biological
functions that could be represented in different communities.

The main strategy for finding overlapping community
structures in bipartite networks consist of finding bicliques—
sets of nodes that form a complete bipartite graph—and then
merging those based on a similarity function (see above). Two
methods that implement this strategy for unweighted networks
are BiTector (Du et al., 2008) and maxBic (Alzahrani and
Horadam, 2019).

4.6. Limitations and Strengths of Published
Methods in Their Applications to Genomic
Networks
As discussed above, several methods for community detection
in bipartite networks exist. In Table 1, we list the community
detection algorithms described in this mini review, together with
their community detection strategy (which we describe above),
the modularity scores or similarity measures they maximize
(objective function), whether they can be applied to weighted
networks, and the programming language that these methods are
available in.

Bipartite biological networks all have the same basic
properties—two disjoint types of nodes, with interactions only
forming between the different node types. Therefore, in principle,
any bipartite community detection algorithm can be applied
to any type of large-scale bipartite biological network. There is
no consensus on what method is best, and to our knowledge
no benchmarking study has been performed to evaluate which
methods are most appropriate for different types of bipartite
genomic networks. However, as we also describe above, certain
limitations can hamper community detection in these networks.
We describe the most important limitations below.

Some community detection methods can only handle
unweighted networks and thus can not be applied to all large-
scale bipartite biological networks. Most biological networks can
be both modeled in weighted or unweighted form. Gene-disease
networks, drug-target networks, or pathway-gene networks have
previously mostly been constructed and analyzed in unweighted
form Goh et al. (2007), He et al. (2014), and Halu et al.
(2019). However, they can also be estimated in weighted
form by including, for example, information on predictions
or associations in the edge weights (Sumathipala et al., 2019).
While regulatory networks and eQTL networks are sometimes
unweighted, they are more often based on likelihoods or
associations. Weighted networks include more information and
allow one to compare the strength, intensity, or capacity of
interactions within a network or between different types of
networks (Horvath, 2011). Thus, when possible, we recommend
to use methods that can be applied to weighted networks.

The high computation load of many community detection
methods is also a limitation and will influence the feasibility
of applying community detection to genomic networks. This is

particularly important in very large genomic networks, such as
eQTL networks, which can include hundreds of thousands of
SNPs in one of the node sets, and tens of thousands of genes in the
other node set. For genome-wide bipartite networks with fewer
nodes, such as gene-disease networks or pathway-gene networks,
this may be less of a challenge. All methods we reviewed here
have worst-case complexity O(n3), except in special cases where
particular properties of the network—for example the presence
of nodes in V2 that are mainly connected to a single node in
V1—can be taken advantage of to reduce complexity to O(n2).
However, this would require a specific implementation of the
method for each particular network. The complexity of these
methods means that they can be challenging to run on genome-
wide biological networks, as we show in the example below.

In addition, as we describe in the section above, detecting
communities using methods that rely on maximizing a
modularity score may be hampered by the resolution limit.
Again, this will be particularly relevant for very large networks,
such as those based on eQTLs.

Finally, some community detection algorithms, including
biTector and maxBic, the code to run the method is not publicly
available. Thus, these methods may be challenging to run as the
user would need to implement the code themselves or contact the
authors to obtain it.

5. APPLICATION TO A GENE-DRUG
INTERACTION NETWORK

In general, most community detection algorithms are tested
on small benchmark networks (Lancichinetti et al., 2008) and
tests on large-scale bipartite genomic networks are lacking.
We therefore wanted to test the performance of community
detection methods on a near genome-wide network. As an
example, we used a gene-drug interaction network from the
The Drug Gene Interaction Database (DGIdb) (Cotto et al.,
2018). We selected this network, because it is a well-known
example of a large-scale biological network that is known to
be modular (Pesantez-Cabrera and Kalyanaraman, 2016). This
allows us to showcase the different methods retrieving, as we
show below, significant communities.

5.1. Preparation of the Network
We downloaded the interactions.tsv file from DGIdb (Cotto
et al., 2018) (accessed August 14, 2020). We removed all missing
and duplicate data and kept only the confirmed gene-drug
interactions. We built an unweighted bipartite network from
these data representing the interactions between genes and drugs.
Because all methods require the network to be connected, we
kept the largest connected component (99% of the network in
terms of nodes). This resulted in a network consisting of 22,693
interactions between 2,336 genes and 6,049 drugs.

5.2. Application of the Methods
We applied those community detection methods that had a
functioning and available implementation to the gene-drug
interaction network. As a means to consistently use the same
score, we computed the Murata+ score for all of the methods.
For each method, we obtained a partition of the set of genes and
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TABLE 1 | Community detection methods with their respective strategies of community detection, the used objective function, whether they allow for weighted networks,

and their availability in different programming environments.

Method Strategy Objective function Weighted Available

BRIM (Barber, 2007) SO Bimodularity Yes R, Python

LP-BRIM (Liu and Murata, 2009a) LP + SO Murata Yes R

LPA (Costa and Hansen, 2014) LP Bimodularity Yes R

DIRTLPAwb+ (Beckett, 2020) LP Bimodularity Yes R

CONDOR Platig et al., 2016 LP + SO Bimodularity Yes R, Python

ComSim (Tackx et al., 2018) NS Common neighbors, Jaccard Yes C++
biLouvain (Pesantez-Cabrera and Kalyanaraman, 2016) LP + SO Murata+ Yes C++
biTector (Du et al., 2008) Overlapping – No Unavailable

maxBic (Alzahrani and Horadam, 2019) Overlapping – No C++ (not public)

SO, spectral optimization; LP, label propagation; NS, node similarity.

FIGURE 2 | (A) Modularity, runtime of the method with default settings on a high-performance computing server (128 Intel Haswell cores, 1 Tb RAM), and number of

communities obtained with running different community detection methods on the gene-drug interaction network. *Number of communities with more than four

members/total number of communities in the gene node set. (B) Example “shell plot” of the ten largest communities detected in the drug-gene network using

CONDOR. Communities are indicated with different colors.

a partition of the set of drugs into communities. We focused on
the structure in the gene node set, so that we could explore Gene
Ontology enrichment and assess the significance of enriched
gene sets in the different communities. Some of the communities
revealed by the methods included less than four genes (see
Figure 2A). We excluded these from the following analysis
because they were too small to apply GO term enrichment
analyses on.

The obtained modularities are shown in Figure 2A, together
with the runtime and number of detected communities on the
gene node set. We note that ComSim results in a significantly
lower modularity score. This does not necessarily mean that the
community structure is poorly defined. It is simply a result of the
fact that this method does not work to optimize a modularity
score. The quality of the community structure might, thus, not
be captured by such scores.

An example of the ten largest communities detected with
CONDOR is shown in Figure 2B. As can be seen, more edges
are detected within communities compared to between different
communities. However, there are also intra-community edges,
indicating that community detection in large-scale networks is
a complex problem.

5.3. Results
5.3.1. Information Comparison
Because we lack a ground-truth for this network, we cannot
assess the quality of results in terms of discovering a previously

known community structure. However we can compare how
similar the results are across the different methods. Given
two community assignments on the same set of genes, we
compared the information they share with the Normalized
Mutual Information (NMI) score. This score ranges from 0 to 1,
with scores closer to 1 indicating higher similarity. We computed
pairwise NMIs between each of the methods. We found that the
scores were similar, and contained within the [0.6077, 0.7746]
range, indicating that the community assignments share a high
amount of information.

5.3.2. GO Enrichment
We wanted to evaluate whether the communities we discovered
were enriched for specific biological processes. For each method
we ran GO enrichment analysis (Klopfenstein et al., 2018) on the
selected communities. All methods resulted in communities that
were significantly (pfdr < 10−8) enriched for biological pathways.
This high level of enrichment confirms that the retrieved
communities likely represent true biological information. A t-test
concluded that there was no difference between the significance
of the results for each method.

5.3.3. Co-cluster Analysis
The final community structure obtained by biLouvain with
Murata+ offers a relationship between communities of each of
the bipartite sets. Above, we mentioned that this relationship
is not necessarily one-to-one, as the co-cluster D ⊂ V2 of a
community C ⊂ V1 does not necessarily need to have C as

Frontiers in Genetics | www.frontiersin.org 7 April 2021 | Volume 12 | Article 649440

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Calderer and Kuijjer Community Detection in Bipartite Networks

its co-cluster. This allows for higher flexibility when it comes
to splitting particular communities in one of the sets without
affecting the other. In this particular network, however, we found
that the relationship was one-to-one. This might be because the
network is already very modular, or the corrections in Murata+
are subtle and do not influence the final community structure
strongly enough.

The co-cluster relation between communities of genes and
communities of drugs is biologically significant. For example,
the three largest co-clusters (based on node size) contained
a co-cluster of a gene-community containing GABA genes
with a drug-community that contains several benzodiazepines,
which enhance the effect of GABA neurotransmitters at GABAA

receptors. There are several other examples of co-clusters
between communities of genes of well-known pathways and
communities of drugs that are known to act on those pathways
(see Supplementary Table 1).

6. DISCUSSION

While unipartite community detection has been widely applied
to large-scale biological networks, community detection on
bipartite networks and, in particular, on genome-wide bipartite
networks, has been less studied. However, as many types of
biological networks are bipartite, it is important to review
community detection approaches that are specifically designed
for such networks. Here, we reviewed several community
detection strategies, discussed their strengths and weaknesses
in the context of their application to genomic bipartite
networks, and applied these to a near genome-wide gene-drug
interaction network.

Dealing with large-scale networks is a computationally
expensive task, and thus not all software packages can deal with
the data in a fast manner. Although the communities detected by
different methods were highly similar, the modularity scores and,
in particular, their runtimes were rather different. Thus, methods
that run fast could be prioritized for genomic bipartite networks.
For example, as can be seen in Figure 2A, CONDOR is relatively
fast on such large networks.

We would like to note that the gene-drug interaction network
we included in our evaluation is indeed highly modular, and
that the advantages and drawbacks of the different community
detection methods might be more visible with networks with
lower structure. However, there is a lack of large-scale bipartite
networks with ground-truth (Peel et al., 2017) and it is very

difficult to identify a large biological network that does not suffer
from the resolution limit.

The Murata+ score is versatile and the communities detected
by the method respect the bipartite structure of the network.
However, the onlymethod that implements it is biLouvain, which
can be very slow to run on genome-wide networks. We believe
that a method that uses a spectral optimizer, such as BRIM, to
maximize Murata+ modularity scores would be highly useful in
large-scale bipartite biological network analysis and could be a
potential direction for future research.

Finally we note that, as most of the algorithms designed
for bipartite community detection are focused on optimizing
modularity, they may reach the resolution limit. This may render
it difficult to detect communities in large-scale genomic networks
and is a problem that is currently unsolved and one that warrants
further investigation.

AUTHOR CONTRIBUTIONS

GC and MK: conceptualization, investigation, and writing—
review and editing. GC: methodology, formal analysis, and
writing—original draft. MK: resources, supervision, and
funding acquisition.

FUNDING

This work was supported by the Norwegian Research Council,
Helse Sør-Øst, and University of Oslo through the Centre for
Molecular Medicine Norway (NCMM).

ACKNOWLEDGMENTS

We would like to thank Annabel Darby for help with language
editing and all members from the Kuijjer and Mathelier groups
for helpful discussions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.649440/full#supplementary-material

Supplementary Table 1 | Co-clusters in the drug-gene network, detected using

biLouvain and Murata+. Rows represent the co-clustered communities (detected

on the gene node set in column 1, on the drug node set in column 2), as well as

the genes and drugs present in those communities (columns 3 and

4, respectively).

REFERENCES

Alzahrani, T., and Horadam, K. (2019). Finding maximal bicliques

in bipartite networks using node similarity. Appl. Netw. Sci. 4:21.

doi: 10.1007/s41109-019-0123-6

Barabási, A. L., Gulbahce, N., and Loscalzo, J. (2011). Network medicine: a

network-based approach to human disease. Nat. Rev. Genet. 12, 56–68.

doi: 10.1038/nrg2918

Barber, M. J. (2007). Modularity and community detection in bipartite networks.

Phys. Rev. E 76:66102. doi: 10.1103/PhysRevE.76.066102

Beckett, S. J. (2020). Improved community detection in weighted bipartite

networks. R. Soc. Open Sci. 3:140536. doi: 10.1098/rsos.140536

Blondel, V. D., Guillaume, J. L., Lambiotte, R., and Lefebvre, E. (2008). Fast

unfolding of communities in large networks. J. Stat. Mech. Theory Exp.

2008:P10008. doi: 10.1088/1742-5468/2008/10/P10008

Costa, A., and Hansen, P. (2014). A locally optimal hierarchical divisive

heuristic for bipartite modularity maximization. Optimiz. Lett. 8, 903–917.

doi: 10.1007/s11590-013-0621-x

Cotto, K. C., Wagner, A. H., Feng, Y. Y., Kiwala, S., Coffman, A. C., Spies, G., et

al. (2018). DGIdb 3.0: a redesign and expansion of the drug–gene interaction

database. Nucleic Acids Res. 46, D1068–D1073. doi: 10.1093/nar/gkx1143

Dao, V. L., Bothorel, C., and Lenca, P. (2017). “Community detection methods

can discover better structural clusters than ground-truth communities,”

in 2017 IEEE/ACM International Conference on Advances in Social

Frontiers in Genetics | www.frontiersin.org 8 April 2021 | Volume 12 | Article 649440

https://www.frontiersin.org/articles/10.3389/fgene.2021.649440/full#supplementary-material
https://doi.org/10.1007/s41109-019-0123-6
https://doi.org/10.1038/nrg2918
https://doi.org/10.1103/PhysRevE.76.066102
https://doi.org/10.1098/rsos.140536
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1007/s11590-013-0621-x
https://doi.org/10.1093/nar/gkx1143
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Calderer and Kuijjer Community Detection in Bipartite Networks

Networks Analysis and Mining (ASONAM) (Sydney, NSW: IEEE), 395–400.

doi: 10.1145/3110025.3110053

Diestel, R. (2005). Graph Theory, 3rd Edn. Graduate Texts in Mathematics. New

York, NY: Springer-Verlag Heidelberg.

Du, N., Wang, B., Wu, B., and Wang, Y. (2008). “Overlapping community

detection in bipartite networks,” in 2008 IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology, Vol. 1

(Sydney, NSW: IEEE), 176–179. doi: 10.1109/WIIAT.2008.98

Emmert-Streib, F., Dehmer, M., and Haibe-Kains, B. (2014). Gene

regulatory networks and their applications: understanding biological

and medical problems in terms of networks. Front. Cell Dev. Biol. 2:38.

doi: 10.3389/fcell.2014.00038

Fagny, M., Paulson, J. N., Kuijjer, M. L., Sonawane, A. R., Chen, C. Y., Lopes-

Ramos, C.M., et al. (2017). Exploring regulation in tissues with eQTL networks.

Proc. Natl. Acad. Sci. U.S.A. 114, E7841–E7850. doi: 10.1073/pnas.1707375114

Fortunato, S., and Barthélemy, M. (2007). Resolution limit in community

detection. Proc. Natl. Acad. Sci. U.S.A. 104:36. doi: 10.1073/pnas.0605965104

Gaiteri, C., Chen, M., Szymanski, B., Kuzmin, K., Xie, J., Lee, C., et al.

(2015). Identifying robust communities and multi-community nodes by

combining top-down and bottom-up approaches to clustering. Sci. Rep.

5:16361. doi: 10.1038/srep16361

Girvan, M., and Newman, M. E. J. (2002). Community structure in

social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99:7821.

doi: 10.1073/pnas.122653799

Goh, K. I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., and Barabási, A. L. (2007).

The human disease network. Proc. Natl. Acad. Sci. U.S.A. 104, 8685–8690.

doi: 10.1073/pnas.0701361104

Guimerà, R., Sales-Pardo, M., and Amaral, L. A. N. (2007). Module

identification in bipartite and directed networks. Phys. Rev. E 76:36102.

doi: 10.1103/PhysRevE.76.036102

Guo, Y., and Amir, A. (2021). Exploring the effect of network topology, mRNA and

protein dynamics on gene regulatory network stability. Nat. Commun. 12:130.

doi: 10.1038/s41467-021-21415-w

Halu, A., De Domenico, M., Arenas, A., and Sharma, A. (2019). The

multiplex network of human diseases. NPJ Syst. Biol. Appl. 5, 1–12.

doi: 10.1038/s41540-019-0092-5

He, L., Wang, Y., Yang, Y., Huang, L., and Wen, Z. (2014). Identifying the gene

signatures from gene-pathway bipartite network guarantees the robust model

performance on predicting the cancer prognosis. Biomed Res. Int. 2014:424509.

doi: 10.1155/2014/424509

Horvath, S. (2011). Weighted Network Analysis: Applications in Genomics and

Systems Biology. New York, NY: Springer Science & Business Media.

Klopfenstein, D. V., Zhang, L., Pedersen, B. S., Ramírez, F., Warwick

Vesztrocy, A., Naldi, A., et al. (2018). GOATOOLS: a Python library

for gene ontology analyses. Sci. Rep. 8:10872. doi: 10.1038/s41598-018-

28948-z

Koch, L. (2016). A global view of regulatory networks.Nat. Rev. Genet. 17, 252–252.

doi: 10.1038/nrg.2016.36

Kuijjer, M. L., Fagny, M., Marin, A., Quackenbush, J., and Glass, K. (2020).

PUMA: PANDA using microRNA associations. Bioinformatics 36, 4765–4773.

doi: 10.1093/bioinformatics/btaa571

Lancichinetti, A., and Fortunato, S. (2011). Limits of modularity

maximization in community detection. Phys. Rev. E 84:066122.

doi: 10.1103/PhysRevE.84.066122

Lancichinetti, A., Fortunato, S., and Radicchi, F. (2008). Benchmark graphs

for testing community detection algorithms. Phys. Rev. E 78:046110.

doi: 10.1103/PhysRevE.78.046110

Liu, X., and Murata, T. (2009a). “Community detection in large-scale bipartite

networks,” in 2009 IEEE/WIC/ACM International Joint Conference on

Web Intelligence and Intelligent Agent Technology (Milan), Vol. 1, 50–57.

doi: 10.1109/WI-IAT.2009.15

Liu, X., and Murata, T. (2009b). “How does label propagation algorithm work in

bipartite networks?” in 2009 IEEE/WIC/ACM International Joint Conference

on Web Intelligence and Intelligent Agent Technology (Milan), Vol. 3, 5–8.

doi: 10.1109/WI-IAT.2009.217

Lopes-Ramos, C. M., Chen, C. Y., Kuijjer, M. L., Paulson, J. N., Sonawane,

A. R., Fagny, M., et al. (2020). Sex differences in gene expression

and regulatory networks across 29 human tissues. Cell Rep. 31:107795.

doi: 10.1016/j.celrep.2020.107795

Luck, K., Kim, D. K., Lambourne, L., Spirohn, K., Begg, B. E., Bian, W., et al.

(2020). A reference map of the human binary protein interactome. Nature 580,

402–408. doi: 10.1038/s41586-020-2188-x

Murata, T. (2009). “Detecting communities from bipartite networks

based on bipartite modularities,” in 2009 International Conference on

Computational Science and Engineering (Vancouver, BC), Vol. 4, 50–57.

doi: 10.1109/CSE.2009.81

Newman, M. E. (2016). Equivalence between modularity optimization and

maximum likelihood methods for community detection. Phys. Rev. E

94:052315. doi: 10.1103/PhysRevE.94.052315

Newman, M. E. J. (2006). Modularity and community structure in networks. Proc.

Natl. Acad. Sci. U.S.A. 103, 8577–8582. doi: 10.1073/pnas.0601602103

Padi, M., and Quackenbush, J. (2018). Detecting phenotype-driven

transitions in regulatory network structure. NPJ Syst. Biol. Appl. 4, 1–12.

doi: 10.1038/s41540-018-0052-5

Pavlopoulos, G. A., Kontou, P. I., Pavlopoulou, A., Bouyioukos, C., Markou,

E., and Bagos, P. G. (2018). Bipartite graphs in systems biology and

medicine: a survey of methods and applications. GigaScience 7:giy014.

doi: 10.1093/gigascience/giy014

Peel, L., Larremore, D. B., and Clauset, A. (2017). The ground truth about

metadata and community detection in networks. Sci. Adv. 3:e1602548.

doi: 10.1126/sciadv.1602548

Pellegrini, M. (2019). “Elsevier Reference Module in Life Sciences,” in Community

Detection in Biological Networks, (Amsterdam: Elsevier).

Pesantez-Cabrera, P., and Kalyanaraman, A. (2016). “Detecting communities in

biological bipartite networks,” in Proceedings of the 7th ACM International

Conference on Bioinformatics, Computational Biology, and Health Informatics,

BCB ’16 (New York, NY: Association for Computing Machinery), 98–107.

doi: 10.1145/2975167.2975177

Platig, J., Castaldi, P. J., DeMeo, D., and Quackenbush, J. (2016). Bipartite

community structure of eQTLs. PLoS Comput. Biol. 12:e1005033.

doi: 10.1371/journal.pcbi.1005033

Sah, P., Singh, L. O., Clauset, A., and Bansal, S. (2014). Exploring community

structure in biological networks with random graphs. BMC Bioinformatics

15:220. doi: 10.1186/1471-2105-15-220

Sonawane, A. R., Platig, J., Fagny, M., Chen, C. Y., Paulson, J. N., Lopes-Ramos,

C. M., et al. (2017). Understanding tissue-specific gene regulation. Cell Rep. 21,

1077–1088. doi: 10.1016/j.celrep.2017.10.001

Statello, L., Guo, C. J., Chen, L. L., and Huarte, M. (2020). Gene regulation by

long non-coding rnas and its biological functions. Nat. Rev. Mol. Cell Biol. 22,

96–118.

Sumathipala, M., Maiorino, E., Weiss, S. T., and Sharma, A. (2019).

Network diffusion approach to predict lncRNA disease associations

using multi-type biological networks: LION. Front. Physiol. 10:888.

doi: 10.3389/fphys.2019.00888

Tackx, R., Tarissan, F., and Guillaume, J. L. (2018). “ComSim: a bipartite

community detection algorithm using cycle and node’s similarity,” in Complex

Networks & Their Applications VI, eds C. Cherifi, H. Cherifi, M. Karsai,

and M. Musolesi (Cham: Springer International Publishing), 278–289.

doi: 10.1007/978-3-319-72150-7_23

Traag, V. A., Waltman, L., and van Eck, N. J. (2019). From Louvain

to Leiden: guaranteeing well-connected communities. Sci. Rep. 9:5233.

doi: 10.1038/s41598-019-41695-z

Xu, Y., Chen, L., Li, B., and Liu, W. (2015). Density-based modularity for

evaluating community structure in bipartite networks. Inform. Sci. 317, 278–

294. doi: 10.1016/j.ins.2015.04.049

Yildirim, M. A., Goh, K. I., Cusick, M. E., Barabasi, A. L., and Vidal, M. (2007).

Drug-target network. Nat. Biotechnol. 25, 1119–1127. doi: 10.1038/nbt1338

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Calderer and Kuijjer. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 9 April 2021 | Volume 12 | Article 649440

https://doi.org/10.1145/3110025.3110053
https://doi.org/10.1109/WIIAT.2008.98
https://doi.org/10.3389/fcell.2014.00038
https://doi.org/10.1073/pnas.1707375114
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1038/srep16361
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.0701361104
https://doi.org/10.1103/PhysRevE.76.036102
https://doi.org/10.1038/s41467-021-21415-w
https://doi.org/10.1038/s41540-019-0092-5
https://doi.org/10.1155/2014/424509
https://doi.org/10.1038/s41598-018-28948-z
https://doi.org/10.1038/nrg.2016.36
https://doi.org/10.1093/bioinformatics/btaa571
https://doi.org/10.1103/PhysRevE.84.066122
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1109/WI-IAT.2009.15
https://doi.org/10.1109/WI-IAT.2009.217
https://doi.org/10.1016/j.celrep.2020.107795
https://doi.org/10.1038/s41586-020-2188-x
https://doi.org/10.1109/CSE.2009.81
https://doi.org/10.1103/PhysRevE.94.052315
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1038/s41540-018-0052-5
https://doi.org/10.1093/gigascience/giy014
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1145/2975167.2975177
https://doi.org/10.1371/journal.pcbi.1005033
https://doi.org/10.1186/1471-2105-15-220
https://doi.org/10.1016/j.celrep.2017.10.001
https://doi.org/10.3389/fphys.2019.00888
https://doi.org/10.1007/978-3-319-72150-7_23
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1016/j.ins.2015.04.049
https://doi.org/10.1038/nbt1338
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Community Detection in Large-Scale Bipartite Biological Networks
	1. Introduction
	2. Problem Definition
	3. Modularity Scores
	3.1. Unipartite Modularity
	3.2. Bipartite Modularity Scores
	3.2.1. Guimerà's Modularity
	3.2.2. Barber's Modularity
	3.2.3. Murata Modularity and Murata+ Modularity

	3.3. Resolution

	4. Community Detection Strategies
	4.1. Spectral Optimization (SO)
	4.2. Projections and Adapted Unipartite Methods
	4.3. Label Propagation (LP)
	4.4. Node Similarity (NS)
	4.5. Overlapping Community Detection
	4.6. Limitations and Strengths of Published Methods in Their Applications to Genomic Networks

	5. Application to a Gene-Drug Interaction Network
	5.1. Preparation of the Network
	5.2. Application of the Methods
	5.3. Results
	5.3.1. Information Comparison
	5.3.2. GO Enrichment
	5.3.3. Co-cluster Analysis


	6. Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


