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Their Biomarker Potential in Cancer
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Long non-coding RNAs are diverse class of non-coding RNA molecules >200 base
pairs of length having various functions like gene regulation, dosage compensation,
epigenetic regulation. Dysregulation and genomic variations of several INcCRNAs have
been implicated in several diseases. Their tissue and developmental specific expression
are contributing factors for them to be viable indicators of physiological states of
the cells. Here we present an comprehensive review the molecular mechanisms and
functions, state of the art experimental and computational pipelines and challenges
involved in the identification and functional annotation of INcRNAs and their prospects
as biomarkers. We also illustrate the application of co-expression networks on the
TCGA-LIHC dataset for putative functional predictions of INcRNAs having a therapeutic
potential in Hepatocellular carcinoma (HCC).
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INTRODUCTION

Advancement in Next Generation Sequencing (NGS) technologies and genome wide analysis of
gene expression have revealed at least 80% of the human genome is active (Palazzo and Lee, 2015).
However, only up to 1.5% of the genome is translated to protein which implicate RNAs to have
more diverse roles than an intermediate component as templates in the genetic flow of information
from gene to protein. They are categorized into mRNAs which are translated into proteins and non-
coding RNAs (ncRNAs) which have little or no coding potential but are involved in transcriptional
regulatory mechanisms.

The evolutionary development of an organism is associated with the increase in complexity
of the regulatory potential of these ncRNAs which constitute the majority of the transcriptome.
Non-coding RNAs are further categorised as short ncRNAs which include microRNAs (miRNAs),
small RNA (sRNA), piwi-interacting RNAs (piRNAs), siRNAs, and long non-coding RNAs
(IncRNAs) consisting long intergenic non-coding RNAs (lincRNAs), circular RNAs (circRNAs),
and competitive endogenous RNAs (CeRNAs) (Hombach and Kretz, 2016). These RNAs have
known to have functions involved in cellular functions like mRNA translation, alternative splicing
events, RNA editing and also regulatory mechanisms like RNA silencing involving miRNA and
mRNA interference via siRNA (Mattick and Makunin, 2006). LncRNAs have emerged as a latest
class of RNA molecules which are more diverse than short n.cRNAs having complex gene regulatory
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functions in the cells. In this article we present and review the
various biological characteristics and mechanisms of IncRNAs
in transcriptional regulation and the latest development in
experimental and computational methods for their identification,
annotation and putative function prediction.

There are more than 30,000 IncRNAs in humans available in
the GENCODE (Harrow et al., 2012), and more and more new
IncRNAs are being discovered overtime. Long non-coding RNAs
are typically longer than 200 nucleotides of length and sometimes
have similar features to that of protein-coding genes, such as a 5’
cap, exons and poly A tail and are spliced post-transcriptionally,
but don’t possess functional open reading frames and cannot
be translated to functional proteins. (Fang and Fullwood, 2016).
Their varied molecular properties enable them to function in
various methods regulating gene expression at various stages of
cellular development (Hanahan and Weinberg, 2000).

LncRNAs are also not stable in comparison to mRNAs,
localized mainly across the nucleus and cytoplasm and also
not conserved across species, transcribed mostly by RNA
polymerase II and exhibit tissue specific expression. However,
high conservation patterns have been observed in the exonic
regions and promoters regions of the IncRNA. Recently, it has
been discovered that some IncRNAs can in fact translate to small
peptide chains which could have significant biological functions
(Hubé and Francastel, 2018; Li and Liu, 2019).

One way to classify IncRNAs is based on the genomic locations
from where they are transcribed relative to protein coding
genomic regions: (1) lincRNAs: long intergenic non-coding
RNAs which are transcribed from the intergenic regions between
the protein coding genes; (2) Sense IncRNAs: transcribed from
the sense strand of the protein coding genes and may overlap
with a part or the entire sequence of a protein coding gene;
(3) Antisense IncRNAs: transcribed from the antisense strand
of the protein coding genes which may overlap of exons, only
from the intronic region and overlapping the entire gene in
the antisense strand. (Ma et al., 2013); (4) Intronic IncRNAs:
transcribed from the intronic regions between the exomes of a
gene. (5) Bidirectional IncRNAs: transcribed from both sense and
antisense directions of TSS (Hanahan and Weinberg, 2000; He
et al., 2014, 2017).

FUNCTIONS AND MECHANISMS OF LONG
NON-CODING RNAS

The elucidation of the mechanisms of long non-coding RNAs
is mostly based on empirical evidence of the subcellular
localization, developmental stage of the cell and tissue specific
expression. The function of IncRNAs can be stratified into
four types of molecular mechanisms described and illustrated
(Figure 1; Zanella, 2021) below.

Signals

Transcriptional regulation aided by IncRNA where they function
as signals are brought by various factors like developmental
stages, organismal stress, re-programming of cells and state of the
cell at a particular space and time in response to the environment

and their expression could be a phenotypical indicator of these
states (Wang and Chang, 2011). A prominent example is the
chromatin regulation for dosage compensation in females in X-
chromosome inactivation (XCI) (Engreitz et al., 2013; Wasko
etal., 2019). The mechanism includes expression of XIST IncRNA
from one of the X chromosome which coats itself leading to
its silencing, which is also aided by the accumulation of the
IncRNA Jpx. The antisense transcript of XIST, TSIX represses the
activity of XIST in the other chromosome rendering it to be active
(Starmer and Magnuson, 2009; Wang and Chang, 2011; Carmona
etal., 2018). Another example of epigenetic re-programming that
takes place in plants mediated by IncRNAs is to switch between
vegetative to reproductive state. In Arabidopsis thaliana with the
decrease in temperature for an extended period of time during
winter COOLAIR is expressed and accumulated in large amounts
which represses the expression of the FLOWERING LOCUS C
(FLC). This is gene mediated by the PRC2 complex which when
expressed normally in winter stops flowering in the plant. So,
gradually upon the approach of spring and warmer temperatures
COOLAIR enables vernalization of plants (Swiezewski et al.,
2009; Tian et al., 2010; Heo and Sung, 2011; Wang and Chang,
2011).

Guides

As guides IncRNAs bind to proteins and direct them to specific
sites, also leading to expression or silencing of the target genomic
regions. This essentially involves recruitment of chromatin
modifying enzymes which alter the chromatin state with the
formation of complex structures with RNA-RNA, RNA-DNA,
RNA-DNA-effector proteins. For instance, XIST transcription
has also known to be induced by recruiting the Polycomb
Repressive Complex 2 (PRC2) by RepA RNA. Additionally
XIST also interacts with a matrix protein hnRNP U for its
accumulation at the chromosome (Wang and Chang, 2011).
Some other examples of IncRNAs acting as signals and guides
include COLDAIR, HOTTIP, HOTAIR, ROR and some PRC2-
bound RNAs (Rinn et al., 2007; Loewer et al., 2010; Wang et al.,
2011; Kim et al., 2017).

Decoys

LncRNAs can also regulate transcription by acting as endogenous
target mimics (e€TMs) where they bind to intermediary regulatory
proteins, RNA, DNA molecules and sequester them away from
their respective target site. These otherwise known as competitive
endogenous RNA (ceRNA) act as sponges generating a “sponge
effect” by base pairing with target molecules which include
transcription factors, miRNAs, chromatin modifiers (Wang and
Chang, 2011) among others at their active sites and render
them to be unavailable for interaction for their target molecules.
An example of such activity is that of the IncRNA transcribed
at the minor promoter of the DHFR gene which pairs and
forms a complex with the DNA at the promoter region of the
same gene. The complex inhibits formation of the preintiation
complex and also interacts with transcription factor IIB (TFIIB)
which was also further confirmed by siRNA knockdown of
the IncRNA (Martianov et al., 2007; Wang and Chang, 2011).
MALAT1 (Tripathi et al., 2010), TERRA (Redon et al., 2010),
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FIGURE 1 | Mechanisms of IncRNA. (A) Signals, (B) Guides, (C) Decoys, and (D) Scaffolds.
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Gas5 (Kino et al., 2010) are also examples that exhibit the
'sponge’/sequestering mechanism. ceRNA mechanism has been
extensively studied with several computational algorithms and
repositories also being developed in order to identify and store
potential and experimentally verified targets of IncRNA (listed
in Table 1). However, verification of their mechanism have to
be contended with transcriptional levels of miRNA and IncRNA
to be sufficient enough for them to function as competitive
endogenous RNAs (Denzler et al., 2014, 2016; Zhang et al., 2019).

Scaffolds

LncRNAs serve as structural supports where other effector
proteins and DNA/RNA molecules bind to form a functional
complex and are then directed to appropriate localization of
the complex for its function. Gene repression by HOTAIR
forming a complex with the polycomb complex PRC2 for
methylation at H3K27 (Rinn et al, 2007; Wang and Chang,
2011) and also forming a complex with LSD1, CoREST and
REST (Wang and Chang, 2011) exhibits this mechanism. TERC
also assembles the telomerase complex and mediates reverse
transcriptase activity by binding with telomere targeting proteins
(Balas and Johnson, 2018). The IncRNAs ANRIL (Yap et al.,
2010; Kotake et al., 2011), SRP(Signal Recognition component),
LINP1(LncRNA In Nonhomologous End Joining Pathway 1)
(Sakthianandeswaren et al, 2016) are also found to have
similar mechanisms.

IDENTIFICATION AND ANNOTATION

Experimental Approaches
Widely used experimental approaches to identify and annotate
IncRNAs include Microarray, RNAseq, SAGE, CAGE among

others with customized adaptations to identify and annotate
IncRNAs based on their molecular characteristics as described in
the following sections and listed in Table 2.

Adaptations in Microarray Technology
Probesets in conventional microarray platforms do not have
IncRNAs annotations and not suitable for identifying and
measuring IncRNA levels. Some of the mRNAs from these
previous microarrays that have been correctly identified as
IncRNAs have been re-annotated and their expression levels have
been re-analyzed accordingly (Michelhaugh et al., 2011; Ma et al.,
2012). ArrayStar Human LncRNA microarrays (V4.0) has been
designed to profile both IncRNA and mRNA on the same array
with 40,173 IncRNAs with 7,506 gold standard IncRNAs, 20,730
mRNAs among 60,903 distinct probes (Shi and Shang, 2016). As
the expression of IncRNAs indicates the relative physiological
state of a cell, differential expression between samples at
different conditions can provide us information to understand
the regulatory IncRNAs at these conditions. (Zhang et al., 2017)
identified novel circulating IncRNAs: TINCR, CCAT2, AOC4P,
BANCR, and LINC00857 which are differentially expressed in
gastric cancer patients and be detected from the plasma of
patients and hence function as biomarkers. Similarly, it was
found that the IncRNA ENST00000551152 was upregulated and
the IncRNA TCO.NS_00001368 was downregulated in cervical
cancer cell lines (Huang et al., 2018) in a study by Huang et.
al using Agilent DNA microarray. Whole-genome tiling arrays
are used for the sequenced regions which are not annotated for
IncRNA isolation and identification. (Lund et al., 2014) used this
in their experimental design where they used tiled probes from
chr8: 127,640,000-129,120,000 at locus 8q24 to analyze prostate
tissue from prostate cancer patients.
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TABLE 1 | Databases and computational pipelines predicting INcRNAs functioning as ceRNAs.

Databases/Computational pipeline  Description

References

DIANA-LncBase v3
StarBase v2.0
spongeScan
InCeDB
LncCeRBase
Linc2GO

Database dedicated to cataloging miRNA and IncRNA interactions, includes ceRNABase
RNA-RNA and protein-RNA interactions from CLIP-Seq experiments predicting ceRNA function
predicts miRNA target sites in INcCRNAs

Karagkouni et al., 2020
Lietal, 2014
Furio-Tari et al., 2016

stores INcCRNAs acting as ceRNAs with targets from StarBase and TargetScan Grimson et al., 2007 Das et al., 2014

INcRNA-miRNA-MRNA interactions collected from literature
predicts linc RNAs functions using miRNA and mRNA interactions based ceRNA hypothesis

Pian et al., 2018
Liuetal., 2013

TABLE 2 | Experimental approaches in INcRNA profiling.

Experimental Features

approaches

RNA-seq Identifies on novel INcRNA transcripts

Microarray Reannotations of existing microarrays
Arrays specifically designed for IncRNAs

Tiling arrays Ability to profile transciptome for specific
regions(whole) in the genome.

SAGE Accurate quantification and novel transcript
identification

CAGE Identification of transcription start points

PARE, degradome-seq
GRO-seq

RIP, CLIP
TIF-seq
Selective 2’-hydroxyl

Used in RNA degradome analysis

Measures nascent RNA regulating gene
transcription

LncRNA-protein interaction identification
Identification of isoforms of INCRNA
LncRNA structure prediction

acylation by primer
extension (SHAPE)

PARS LncRNA structure prediction in vitro

FragSeq Transcript structure prediction from RNA
fragments

nextPARS Adaptation of PARS to lllumina technology

RNA-Seq Technologies

RNA-seq is the most prevalent technique used to identify
and annotate novel long non-coding transcripts that are less
abundant including the isoforms of IncRNAs. RNA-seq offers a
broad spectrum of transcript identification with novel transcripts
detection and de novo assembly as probes are not required
in order to hybridize and capture transcripts from samples.
Modifications in the RNA-seq pipeline facilitate identification
of specific type of IncRNAs, for instance strand-specific RNA-
seq allows labeling of origin of strand information on the
transcripts which allows sense/antisense IncRNA segregation and
identification (Mills et al., 2013; Liu et al., 2019).

Wang et al. identified 2895 novel IncRNA in endometrial
tissue of pigs; of which 301 were differentially expressed and
functionally annotated to be involved in several biological
pathways including immune system process and other cellular
process of which TCONS_01729386 and TCONS_01325501 have
a major functions in embryo pre-implantation (Liu et al., 2017).
Functional attributes of IncRNA are validated with qRT-PCR

experimental pipelines in which siRNA, GAPmers are designed
to knockdown the IncRNA and the resulting change in gene
expression is analyzed to identify its effector genes/molecules.
However, in order for in vitro studies to correlate with vivo
studies several contributing factors involved in the knockdown of
IncRNA and its effect on resulting varying gene expression need
to be considered. Features of the IncRNA to consider while design
of the knockdown strategy is the sub-cellular localization of the
IncRNA, along with the developmental stage of the cells. Lennox
et al. were able to decipher that nuclear IncRNAs were knocked
down at higher levels using antisense strands and cytoplasmic
IncRNAs were better knocked down using RNAi (Lennox and
Behlke, 2016). In a recent study by Nicola Amod et al. a
MALAT1-targeting 16mer LNA gapmeR g#5 showed significant
anti-tumor activity in humanized murine model. Inference
from transcriptome analysis showed proteasome expression was
repressed by g#5 and was instead enriched increased in vivo in
MALAT1 murine model patients (Amodio et al., 2018). RNA
CaptureSeq (Mercer et al., 2011), another derivative of RNA-
seq involves tiling arrays prepared for specific target regions of
the genome. cDNAs against these regions are hybridized and
sequenced. This method supports the identification of novel
unannotated IncRNAs along with high fold coverage.

SAGE, CAGE

Serial Analysis of Gene Expression (SAGE) (Velculescu et al.,
1995) and Cap Analysis of Gene Expression (CAGE) are based
on short sequences tags which are complementary to a given
RNA of interest (Kashi et al, 2016). In SAGE these cDNA
tags are biotinylated, captured on streptavidin beads (Wang
and Chekanova, 2019). They are further ligated and later
PCR amplified followed by concatenation and sequencing by
mapping to reference genes. This method like RNA-seq facilitates
discovery to novel transcripts and enables accurate measurement
of expression levels of IncRNAs but has a drawback of small
cDNA sequences mapping to multiple genes in the reference
genome. Gibb et al. analyzed 272 SAGE libraries normal(26)
and cancer(19) tissues from human which elucidated the tissue
specific and aberrant expression IncRNAs in cancer tissues
implicating them in disease development (Gibb et al., 2011).
In a study by Jia et al. (2018) SAGE datasets of OPL(Oral
premalignant lesions) from GEO were analyzed to identify
10 differentially expressed IncRNAs among with the IncRNA
NEAT1 was the highly expressed in OPL. NEAT1 has been
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also implicated in lung cancer metastasis and hepatocellular
carcinoma (Dong et al., 2018).

Cap analysis gene expression (CAGE), was a development
upon SAGE to over come its drawbacks where cDNA tags can
be generated from the 5 end of the RNA of interest. The
cap structure of the transcripts are biotinylated in the CAP-
trapper method followed by cDNA tag generation, cleaving
by restriction enzymes, PCR, ligation and cloning of tags and
mapping to reference genome (Shiraki et al., 2003). CAGE allows
the expression analyzes at promoter regions but is restricted
only to capped RNAs. CAGE method has better throughput
with the use of sequence tags and is also cheap in comparison
to ¢cDNA library (Shiraki et al., 2003). Hon et al. (2017)
collated 27,919 human IncRNAs from 1,829 datasets from CAGE
and other methods in the FANTOMS5 project. HeliScopeCAGE
(Kanamori-Katayama et al., 2011) nanoCAGE (Poulain et al,
2017) CAGEscan (Bertin et al., 2017), DeepCAGE (Valen et al.,
2009) are also protocols based on the CAGE technology for
profiling the mammalian transcriptome.

Other Approaches

Parallel analysis of RNA-ends (PARE) (German et al., 2008),
genome-wide mapping of uncapped transcripts (GMUCT)
(Gregory et al, 2008), degradome-seq are among other
techniques developed to map transcripts that are not stable and
get degraded i.e., they act as templates for other non-coding
RNAs like miRNA. RNA-seq measures transcripts at equilibrium
conditions where as on the other hand Gro-seq (Global run-on
sequencing) is able to sequence nascent RNA. This has revealed
genome wide view of the transcripts by measuring half life
of transcripts at various time points. RNA-seq and GRO-seq
analyzes have revealed that divergent transcription occurs at the
promoter regions of protein-coding genes (Kashi et al., 2016).
5’-bromo-uridine immunoprecipitation chase—deep sequencing
analysis (bric-seq) method involves labeling of transcripts with
5’-bromo-uridine (BrU) which are isolated at sequential time
intervals and recovered by immunopurification followed by RT-
qPCR (Tani et al., 2012; Kashi et al., 2016). TIF-seq, an approach
developed by Pelechano et al. (2013), jointly sequences both 5’
and 3’ ends of RNA molecules enabling characterization isoform
heterogeneity of RNA molecules.

Other than perturbation by silencing of IncRNAs by
RNA interference as mentioned in above section, functional
characterization of IncRNA also involves methods like RNA
centric purification methods when the RNA is pulled down
exogenously based on in vitro affinity capture methods or
endogenously under native or ultraviolet (UV) cross-linking
conditions (Cipriano and Ballarino, 2018). On the other hand
protein centric purification involves immunoprecipitation of
IncRNAs and their target proteins with specific antibodies. RNA
immunoprecipitation (RIP) is used to functionally characterize
the IncRNA by purifying RNAs associated with target proteins.
Cross-linking immunoprecipitation (CLIP), combination of
CLIP with high-throughput sequencing (HITS-CLIP or CLIP-
seq) and Photo Activatable Ribonucleotide-enhanced (PAR-
CLIP) (Spitzer et al., 2014) been developed to analyze interactions
of RNA binding proteins but these methods carry disadvantages

like loss of c¢cDNAs and de-crosslinking along with being
expensive (Barra and Leucci, 2017). Chromatin isolation by
RNA purification (ChIRP) has been used to identify IncRNAs
and their interactions with chromatin during gene regulation
(Chu et al., 2011; Kashi et al., 2016). Further more, techniques
have been developed to probe the RNA structures, such as
Selective 2’ -hydroxyl acylation by primer extension (SHAPE)
[67], parallel analysis of RNA structure (PARS) (Kertesz et al.,
2010) and FragSeq (Underwood et al., 2010) which can provide
an extensive evidence on mode of action and interactions with
other regulatory molecules (Guo et al., 2016). More recently, Saus
et al. described nextPARS an adaptation to PARS technique on
the Illumina’s sequencing technology where parallel execution of
highly specific enzymatic digestion of single an double stranded
genomic regions make the “capable of tagging both all the
bases in single and double-stranded conformation at a genome-
wide scale” making it cost effective with better throughput
(Saus et al., 2018). CRISPRInc, containing manually curated and
validated 2184 CRISPR/Cas9 sgRNAs for 335 IncRNAs from
different species, (Chen et al., 2019) was developed by Chen et al.
which would further help design CRISPR/Cas9 experiments to
investigate IncRNAs functions.

Computational Approaches

Novel Computational tools and pipelines are quintessential in
combination with novel experimental techniques to identify
putative transcripts as IncRNAs and further elucidate their
functional roles involving interactions with other DNA, RNA
and proteins. Computational pipelines to process NGS data
are modified for the annotation of putative IncRNAs from
novel transcripts. For the genome wide identification of IncRNA
transcripts from data sets generated by the most widely RNA-
seq techniques for novel IncRNA identification typically involves
the following steps: alignment of reads from the experiment
to the target regions in reference genome. This is followed
by transcripts assembly and isoform identification and scoring
the transcripts for protein coding potential (Coding Potential
Calculator) (Jalali et al., 2015) and also include attributes like
presence of open reading frames, poly-A tails and exonic
regions and strand information into consideration. Standard
programs like HISAT?2, (Trapnell et al., 2009), STAR (Dobin and
Gingeras, 2015) are used for mapping and StringTie (Ghosh and
Chan, 2016), Scripture (Schoenbeck, 2016) for assembly. After
transcripts of length >200 bp are filtered out, other types of
transcripts such as tRNA, rRNA, snoRNA, miRNA, siRNA etc
are searched in different databases and removed. Following this,
based on their homology scores using programs like BLAST,
BLAT the candidate IncRNAs are annotated with information
from IncRNA databases. Sequence alignment and similarity
search methods such as BLASTX and HMMER3 (Eddy, 2009)
search against data repositories like UniProt, PDB and filter RNA
transcripts which have similar homologous domains and can
be translated to proteins (Gish and States, 1993; Eddy, 2011;
Jalali et al., 2015). On comparing the performance of various
alignment methods (Zheng et al., 2019) Kallisto or Salmon in
combination with full transcriptome annotation performed best
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for IncRNA detection on both un-stranded and stranded RNA-
Seq datasets.

OREF is also among the features which help categorization of
novel transcripts as IncRNAs; for example ORF length predicted
by EMBOSS tools (Itaya et al., 2013) (getORF). ORFs of length
greater than 100 codons categorised as mRNAs are filtered out as
coding transcripts but it is not a definite threshold with certain
exceptions like XIST, H19 among others which having ORFs
longer than 100 amino acids (Dinger et al., 2008; Jalali et al.,
2015).

Another approach is use of machine learning based tools
developed on SVM, logistic regression models use sequence
features to compute the protein coding potential which predict
the transcript to be a IncRNA/mRNA. ORF conservation of
the exonic regions of the transcript, nucleotide composition,
sequence motif and codon usage are inclusive feature vectors
from the transcript sequences to train the models. In order to
compute transcript’s coding potential two methods have been
developed CPC (Coding Potential Calculator) (Altschul et al.,
1997; Kong et al., 2007; Ma et al., 2012) based on SVM models
with sequence features and the comparative genomics features
and ii) A later faster version CPC2 that can be for novel
transcripts of organism which have improper genome assembly
and poorly annotated (Kang et al., 2017). CONC (for coding
and non coding) (Liu et al., 2006) also trains SVM models based
on a comprehensive set of RNA features like the peptide length
and composition, secondary structure, compositional entropy
among others to classify transcripts as IncRNAs and mRNAs.
Lu et al. have further integrated quantitative properties like a
GC content, conservation patterns, level of expression which is
lower of IncRNAs in comparision to mRNAs to predict IncRNAs
in C. elegans in their machine learning model (Lu et al,, 2011;
Ma et al,, 2012). The pipeline employed by Sun et al. IncRScan-
SVM (Sun et al, 2015), which after a standard processing
of RNASeq transcripts identifies transcripts as IncRNAs by a
SVM model trained on GTF positive and negative samples.
iSeeRNA is also a similar tool that identifies putative lincRNAs
by on SVM based classifier (Sun et al., 2013). COME, a coding
potential calculator, developed by Hu et al. (2017) integrated
multiple features from both sequences and experiments like
poly(A) enrichment, methylation taken from RNA-seq data sets
had more accuracy over transcripts of different lengths. In the
COME method, an index for the whole genome splitting it into
bins of 100-nucleotide(nt) on which the feature vectors were
generated and subsequently a balanced random forest (BRF)
was trained.

Attempts to functionally characterize novel IncRNAs by
computational methods have been challenging. In the case
of protein-coding genes a putative function is assigned to
transcripts based on their similarity with already characterized
proteins (de Hoon et al,, 2015); as they have highly conserved
regions across species which is not the same with IncRNAs.
Their tissue specificity and low abundance along with
varied mechanisms involved with various other biological
molecules further add to the complexity of modeling their
functionality in-silico.

Co-expression Evidence Analysis and Network
Inference

Data analysis of microarrays and tiling experiments include
identification of differential expressed transcripts followed by
network analysis based on co-expression patterns. To infer the
putative function of a IncRNA ’guilt by association’ algorithm
has been developed based on the co-expression patterns of
IncRNA and protein coding genes (PCGS) which suggest their
functional relatedness and regulatory relationships. The tissue
and condition specific expression, subcellular localization are
distinctive attributes of IncRNA expression which are combined
with differential expression to infer putative functions and
target proteins interactions of the IncRNA and their role in
disease development (Li et al., 2016; Gao et al, 2019a). The
correlation scores between expression profiles of IncRNAs and
PCGs at a given condition/tissue/time series are calculated which
represents a network by a transformed correlation-adjacency
matrix. From these networks, clusters of co-expressed IncRNAs
and mRNAs are identified. The functional regulation of IncRNAs
are annotated based on the functional enrichment of the PCGs in
the clusters with which it is co-expressed.

Co-IncRNA is one such tool/database developed by Wu
et al. (2016) where they were able to analyze IncRNA-
mRNA co-expression patterns, consistent with previous
established related IncRNA-mRNAs like HOTAIR, BRCA2,
MMP9 and MMPI11 and also novel IncRNA RP11-118E18
validated by TANRIC. Such network based clustering
approaches have also been further extended to include other
non-coding RNAs and regulatory proteins like miRNAs
to predict more specific mechanisms like cis-regulatory
relationships where whole transcriptomic data is analyzed
(Signal et al., 2016).

Several studies have been done to understand the pathogenesis
of complex diseases from available data of IncRNA and their
interacting proteins (Sumathipala et al., 2019). The approaches
consist of Machine learning (ML) based models trained over
expression profiles to extract patterns from which IncRNA
functionality and disease associations are predicted, random walk
based models on networks representing the similar expression
patterns or a combination of both. (Chen and Yan, 2013) included
disease information into identify IncRNA disease associations
from IncRNA expression levels by developing a semi-supervised
learning model Laplacian Regularized Least Squares for LncRNA
Disease Association (LRLSLDA).

Chen et al. further developed novel IncRNA functional
similarity calculation models (LNCSIM) by associating the
semantic similarity between IncRNA and disease groups (Chen
and Yan, 2013; Chen, 2015a,b). Guo et al. (2019) developed
LDASR to identify IncRNA-disease associations where Guassian
profile similarities and neural network for dimensional reduction
and finally rotating forests were used to predict disease
associations (Guo et al.,, 2019). DislncRF also uses random
forest models trained over IncRNA-disease associated protein
coding genes in order to score the association of IncRNA for
a particular disease (Pan et al, 2019). Liao et al. developed
a method called GrwLDA which is based on global network
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random walk model in order to predict IncRNA and their
associated diseases (Gu et al., 2017). Xuan et al. (2019)
also recently proposed a tool graph convolutional network
and convolutional neural network (GCNLDA) to explore
network and come up with IncRNA-disease candidate pairs.
Bipartite Network inference (LPBNI), a computational pipeline
developed by Ge et al. (2016) used two-step propagation in
the bipartite network to rank target proteins for IncRNAs;
BPLLDA developed to predict IncRNA-disease links from a
network of heterogenous IncRNAs and associated diseases
based on their node interaction paths (Xiao et al, 2018).
TPGLDA also had been developed to predict IncRNA-disease
from IncRNA-disease-gene tripartite graph constructed base on
was developed by Ding et al. (2018) where they could predict
IncRNAs like GAS5, UCA1, implicated in lung, hepatocellular,
ovarian cancer (Ding et al, 2018). The above mentioned
tools are all based on network propagation and inference.
Recently, a similar network diffusion algorithm called LION
was developed to infer key candidate IncRNAs (Sumathipala
et al, 2019) by Sumathipala et al. with better prediction
results for cardiovascular diseases and cancer. Another recent
approach IDHI-MIRW by Integrating Diverse Heterogeneous
Information(IDHI) with positive pointwise Mutual Information
and Random Walk(MIRW) was also proposed by Fan et al.
(2019) which integrates IncRNA-miRNA/protein and expression
profiles along with disease ontology information.

Conservation and Structure Prediction
Although the conservation scores of IncRNA molecules are
lower than mRNA, when used within awareness of biological
context including information about potential interactions with
other RNA, DNA, proteins, can decipher evidences to categorise
novel transcripts to IncRNAs. Algorithms like BLAST (Altschul
et al., 1990), ClustalW (Thompson et al., 2002), MAFFT (Katoh
et al., 2009), ConSurf (Glaser et al., 2003), MUSCLE (Edgar,
2004) among others perform multiple sequence alignment.
Furthermore tools like RNAz 2.0 (Gruber et al., 2010), Evofold
(Pedersen et al., 2006) can predict conserved RNA structures
from multiple sequence alignment. RNAstructure (Reuter and
Mathews, 2010), GTFold (Swenson et al., 2012), CentroidFold
(Sato et al., 2009), RNAfold (Denman, 1993), Mfold (Zuker,
2003), CentroidHomfold-LAST (Hamada et al., 2011), and
Seqfold (Ouyang et al., 2013), FARNA (Alam et al., 2017),
iFOldRNA (Sharma et al, 2008) are among the tools to
predict RNA secondary and tertiary structures, respectively
from primary sequence. The RNA-RNA interaction prediction
methods mainly employ alignment algorithms, comparative
(homology) methods and in silico energy calculations (Umu and
Gardner, 2017). Minimum Free Energy based methods are based
on computation of the minimum free energy of the RNA-RNA
molecules taking the inter- and/or intra molecular base-pairing
into account. On the other hand, as perceivable, alignment and
homology based methods include algorithms using tools for
multiple sequence alignment and seed match-extension.
IntaRNA (Mann et al, 2017), RNAhybrid (Kriiger and
Rehmsmeier, 2006), Pairfold (Andronescu et al., 2003), RNAplex
(Tafer and Hofacker, 2008), RIsearch (Wenzel et al., 2012),
RIblast (Fukunaga and Hamada, 2017), Bindigo (Hodas and

Aalberts, 2004), and GUUGIe (Gerlach and Giegerich, 2006) are
some examples of tools used to predict RNA-RNA interactions.
These are also integrated in pipelines to predict IncRNA-
RNA interactions in humans. For instance, (Terai et al., 2016),
developed a pipeline using RACCESS (Kiryu et al.,, 2011) to
extract accessible regions from RNA molecules followed by
masking tandem repeats using TanTan (Frith, 2011) and finding
seed match using LAST and then calculate the interaction
energy between two RNA molecules using IntaRNA and finally
predict the joint secondary structure (RactIP) (Kato et al,
2010) to predict IncRNA-mRNA interactions (Szczesniak and
Makatowska, 2016) proposed a similarity based method to
predict RNA-RNA interactions using LAST (Kielbasa et al,
2011), miRanda (Betel et al., 2010) tools in some pipelines.
Similarly, RNA-protein interactions are also be predicted from
sequence based methods which use physiochemical properties
of amino/nucleic acids in tools like IncPRO (Lu et al., 2013)
and catRAPID (Bellucci et al,, 2011). Along with these sequence
features, secondary structures of RNA are incl in tools like RPI-
Pred (Suresh et al., 2015). PARIS (Lu et al.,, 2016), SPLASH
(Aw et al.,, 2016), LIGR-seq (Sharma et al., 2016), and MARIO
(Nguyen et al., 2016) to identify RNA-RNA interactions based on
proximity ligation in vivo (Fukunaga and Hamada, 2017).

LNCRNA DATABASES

The publicly available datasets from RNA-seq and microarray
experiments have led to rapid increase of annotated IncRNAs
with dedicated databases for IncRNA and their molecular
and disease associations. Many pipelines and tools have been
benchmarked from the data available from these knowledge
bases. NONCODEYS5, the largest database for noncoding
RNAs (majorly IncRNAs) contains 548,640 IncRNA transcripts
from several model organisms (Fang et al, 2018), of which
96,308 IncRNA genes are from humans. The data has
been curated from published literature and annotated with
information from public resources like RefSeq, Ensembl,
GenBank, IncRNAdb, Incipedia. The FANTOM (Functional
ANnoTation Of the Mammalian genome) consortium led by
RIKEN has systematically investigated and annotated about
27,919 human IncRNA genes across 1829 samples in the
FANTOM database (FANTOMS5) (Abugessaisa et al., 2017).
Some of the databases provide experimentally validated and/or
computationally predicted interactions of IncRNAs with other
RNA and proteins. Analysis of data from RNA-seq and
microarray experiments on disease cell lines have also helped
in discovery of the roles IncRNA in disease mechanisms
which have been recorded in disease-association databases.
For instance LNCipedia provides IncRNA from humans with
experimental and putative annotations along with miRNA-
IncRNAs associations (Volders et al., 2013). Similarly, IncRNAdb
is repository for functionally annotated IncRNAs along with TF-
IncRNA associations. LncRNome, a IncRNA database for human
complied form GENCODE has IncRNAs with annotations
of their biomolecular interactions and disease associations.
LncATLAS provides information on IncRNA localization in
cells from RNA-sequencing data, from GENCODE (Mas-Ponte
et al., 2017), Inc2CAncer has 1,488 entries of IncRNAs from
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experimentally supported validations which are associated with
cancer (Ning et al., 2016). Table 3 contains a list of databases and
their references.

CASE STUDY: CO-EXPRESSION
NETWORK ANALYSIS IDENTIFYING
PRO-INFLAMMATORY LNCRNAS
IMPLICATED IN HCC

Cancer is caused by continuous accumulation of unfavourable
genetic alterations that cause deregulation of genetic networks
and cellular pathways ultimately (Huarte, 2015) leading to
unceasing growth of cells and tissue. The mechanisms of these

dysregulations are complex, involving altered gene expressions
and molecular interactions which are yet to be discovered
comprehensively; thus leading to the necessity to analyze the
anomalies at all omics levels. In fact, LncRNAs are diversely
associated in most of the hall marks of cancer. Many of the
studies on cancer associated IncRNAs have mainly analyzed
expression profile variations of IncRNA in cancer vs. healthy
tissue and its effects on deregulated pathways and identification
their regulatory targets. Also, approaches to identify RNA folding
and stable complexes to evaluate IncRNA functions have depicted
that genetic alterations like SNPs can also majorly impact the
RNA structure and eventually their function with changes in
active/binding sites of IncRNAs (Wan et al., 2014; Schmitt and
Chang, 2016). Chronic inflammation has known be a vital in

TABLE 3 | Overview of databases of LncRNAs.

Database Description References
NONCODEV5 Knowledge base for ncRNAs Fang et al., 2018
LNCipedia IncRNA with secondary structure prediction, protein coding potential and microRNA binding sites Volders et al., 2013
IncRNAdb v2.0 Manually curated IncRNAs from literature Quek et al., 2015
LNcATLAS IncRNA annotated with subcellular localisatiom Mas-Ponte et al., 2017
IncRNAdisease 2.0 Experimentally supported INcRNA disease association and molecular targets Bao et al., 2019
LncRBase IncRNA with information about their subtypes and interactions Chakraborty et al., 2014
IncRNome IncRNA with interactions with other RNAs Bhartiya et al., 2013
GreeNC v1.1.2 Database for plant INcRNAs Paytuvi Gallart et al., 2016
Lnc2Cancer v2.0 Manually curated database with experimentally supported INcRNA-cancer associations Gao et al., 2019b
EVLNcRNAs Manually curated database with validated with low-throughput experiments Zhou et al., 2018

ChlPBase v2.0
DIANA-LncBase v3
LNCediting

TCLA

MNDR v2.0
INcRNASNP2
Lnc2Meth

DES-ncRNA
LincSNP2.0

LncVar

deepBase v2.0
C-lt-loci
LncRNA2Target v2.0
LncTarD

CRINcRNA
IncRNAKB

Cancer LncRNA
Census (CLC)

IncRNAs and other ncRNA from ChIP seq data

Database dedicated to cataloging miRNA and IncRNA interactions
Information of INcCRNA editing, its impact and interactions with miRNAs
Cancer LncRNome Atlas: IncRNAs predicted from TCGA datasets
Experimental and predicted ncRNA-disease associations

INcRNA variants and their disease associations

Manually curated database of regulatory relationships between long non-coding RNAs and DNA
methylation associated with human disease

Database of human miRNA and IncRNA from literature

disease associated SNPs with INcRNAs

INncRNAs with associated genetic variations

ncRNA database from deep sequencing data

Tissue specific transcriptome data (protein coding genes and ncRNA)

INcRNA and IncRNA-to-target genes after I\cRNA knockdown and over expression
Manually curated database of INcRNAs and target regulations

Cancer related INncRNAs along with associations and interactions

Cancer related INcRNAs along with associations and interactions

IncRNAs from GENCODE involved in cancer

Zhou et al., 2017
Karagkouni et al., 2020
Gong et al., 2017

Yan et al., 2015
Cuietal, 2018

Miao et al., 2018
Zhietal., 2018

Salhi et al., 2017

Ning et al., 2017

Chen et al., 2017

Zheng et al., 2016
Weirick et al., 2015
Cheng et al., 2019

Zhao et al., 2020

Wang et al., 2018
Seifuddin et al., 2020
Carlevaro-Fita et al., 2020

TABLE 4 | Details of datasets used in the case study.

Dataset Project Number of samples Number of modules Data source

RNA-Seq expression data HCC TCGA-LIHC 372 27 Tomczak et al., 2015
RNA-Seq expression data NAT TCGA-LIHC 50 76 Tomczak et al., 2015
RNA-Seq expression from liver GTEx 208 43 Lonsdale et al., 2013
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cancer progression in case of Hepatocellular carcinoma(HCC).
Some of the pathways known to be chronically upregulated
causing hepatoma cell profileration include JAK/STAT signalling,
NF-Kappa B signalling, PI3K/AKT/mTOR pathway, WNT
pathway, and MAPK pathway (Chen et al, 2018; Yang
et al, 2019). In order to investigate the application of co-
expression network based on the “guilt by association” principle
analysis of RNA-seq data, we applied the Weighted Gene
Co-expression Network Analysis (WGCNA) (Langfelder and
Horvath, 2008) on the following datasets: The RNA-Seq dataset
from The Cancer Genome Atlas (Tomczak et al, 2015)
Liver Hepatocellular Carcinoma (TCGA-LIHC) project and
the GTEx dataset (Lonsdale et al., 2013) (Table4) samples
to identify the pathways dysregulated in HCC with regards
to chronic inflammation in HCC progression. The steps in
the pipeline are illustrated in Figure2. The datasets were
collected and analyzed using the TCGAbiolinks, WGCNA
packages in R.

WGCNA analysis consists of the following steps: correlations
across the normalized expression values of the samples are
computed and raised to a soft threshold power based on the
scale free topology criterion generating an adjacency matrix
representing the co-expression network. This is followed by
hierarchical clustering is used to identify clusters of co-expressed
IncRNAs and protein coding genes among the network, each of
which is labeled with a color/number. Co-expression Network
using WGCNA was generated across all the 3 datasets and
modules obtained in each case were enriched for functional
process by cluster profiler. The modules which were identified
for pathways dysregulated in case of HCC were selected
and the IncRNAs which were highly connected, ie., being
significant for each module were identified for having bio-marker
prognostic potential.

For HCC, NAT and GTEx profiles 27, 76 and 43 modules were
identified, respectively from the hierarchical clustering with the
cut height being selected 0.99, 0.98, 0.98 (Figure 3), respectively.
These includes all the PCGs and IncRNAs transcripts. Each
module was labeled with a color allocated by the WGCNA
function and were enriched for KEGG pathways with threshold
p < 0.05. The red, yellow in TCGA-HCC dataset and turquoise,
green modules in TCGA-NAT dataset were enriched for
the pathways involved in inflammation including JAK-STAT
signaling pathway, cytokine-cytokine receptor interaction, NF-
kappa B signaling pathway, T cell receptor signaling pathway
among others contributing in inflammatory response. The
network properties of all the networks were calculated based on
which the transcripts in these modules were sorted according
to their connectivity. The top highly connected IncRNAs(top
10) putatively having important regulatory mechanisms in
these modules were selected for having biomarker potential
in regards to chronic inflammation both in the tumour and
its is surrounding micro environment proceeding to NAT.
The common IncRNAs among the both phenotypes across
these modules were PCEDIB-AS1, TRG-AS1, MIRI55HG, MIAT,
LINC00996. MIAT has been known to be implicated in several
cancers such as breast cancer, gastrointestinal cancer and NSCLC
and also its silencing has known to inhibit cell proliferation and
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FIGURE 2 | RNA-seq-based co-expression network analysis pipeline for
identification of INcRNAs in pathways dysregulated in HCC from the

TCGA-GTEX datasets.

tumorogenesis in HCC (Zhao et al., 2019). In a recent study by
Peng et al. (2020) it has been postulated that MIAT regulates the
expression of JAK2 among other genes and has an important role
in controlling the tumour microenvironment in HCC.
LINC00996 has also been known to have regulatory
mechanism in the JAK-STAT signalling pathway in colorectal
cancer in a study by Ge et al. (2018). These pathways are
dysregulated in the case of HCC as seen in the clusters from the
TCGA datasets (HCC and NAT) but not the GTEx dataset. This
provides us with corroboration pointing that NAT is subjected
to an inflammatory environment prompted by the malignant
tissue. This is similar to micro tumour environment with
higher proliferation rate than a healthy hepatocyte. Identification
of these modules and IncRNAs provides extended empirical
evidence of IncRNA regulation in inflammation and pertaining
to cancer progression. This analysis provides support to the “guilt
by association” hypothesis of co-expression of IncRNAs with
the genes involving in similar functions. However, few of the
IncRNAs like MEG3, MALAT1, H19, UCA1 which have been
studied for their implications in HCC didn’t show an expression
in the GTEx greater the variance threshold and could not be
characterized in the co-expression networks while comparing to
the TCGA datasets. This could be attributed to the batch effects of
the RNA-Seq experiments across the GTeX and TCGA projects
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FIGURE 3 | Heatmaps of the correlations between IncRNAs-mRNAs with their corresponding cluster dendrograms of the datasets. The colors below the dendrogram
indicate the clusters. (A) NAT tissue TCGA-LIHC project, (B) HCC tissue TCGA-LIHC project, and (C) Liver tissues from GTEXx project.

which can be addressed and corrected while pre-processing the  diseases like cancer exhibiting cell- and/or tissue/tumor-specific
raw reads together from all the datasets. The understanding  expression and hence can be excellent candidate targets for
of such complex networks in which dysregulation of IncRNAs  therapy. It has been demonstrated that silencing of certain
occurs impacting cancer progression and metastasis, which  disease associated IncRNAs exhibited tumor suppression. In
also being tissue specific can set IncRNAs to become excellent — summary, a comprehensive knowledge of IncRNAs shall provide

biomarkers in cancer therapy (Schmitt and Chang, 2016). researchers insights into genotype-phenotype distinction and
genetic disorders leading to more effective therapeutic strategies
CONCLUDING REMARKS for diseases and with emergence of new experimental designs and

computational pipelines we can advance our understanding of
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genome has led to a paradigm shift in the understanding
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