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Gene Regulatory Networks (GRNs) allow the study of regulation of gene expression

of whole genomes. Among the most relevant advantages of using networks to depict

this key process, there is the visual representation of large amounts of information and

the application of graph theory to generate new knowledge. Nonetheless, despite the

many uses of GRNs, it is still difficult and expensive to assign Transcription Factors (TFs)

to the regulation of specific genes. ChIP-Seq allows the determination of TF Binding

Sites (TFBSs) over whole genomes, but it is still an expensive technique that can only

be applied one TF at a time and requires replicates to reduce its noise. Once TFBSs are

determined, the assignment of each TF and its binding sites to the regulation of specific

genes is not trivial, and it is often performed by carrying out site-specific experiments

that are unfeasible to perform in all possible binding sites. Here, we addressed these

relevant issues with a two-step methodology using Drosophila melanogaster as a case

study. First, our protocol starts by gathering all transcription factor binding sites (TFBSs)

determined with ChIP-Seq experiments available at ENCODE and FlyBase. Then each

TFBS is used to assign TFs to the regulation of likely target genes based on the

TFBS proximity to the transcription start site of all genes. In the final step, to try to

select the most likely regulatory TF from those previously assigned to each gene,

we employ GENIE3, a random forest-based method, and more than 9,000 RNA-seq

experiments from D. melanogaster. Following, we employed known TF protein-protein

interactions to estimate the feasibility of regulatory events in our filtered networks. Finally,

we show how known interactions between co-regulatory TFs of each gene increase

after the second step of our approach, and thus, the consistency of the TF-gene

assignment. Also, we employed our methodology to create a network centered on the

Drosophila melanogaster gene Hr96 to demonstrate the role of this transcription factor

on mitochondrial gene regulation.
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1. INTRODUCTION

The control of gene expression is one of the key processes that
allow living organisms to adapt to their environment. Different
regulatory mechanisms determine which gene is expressed and
what amount of the product encoded is generated. Among
regulatory mechanisms, Transcription Factors (TFs) are deemed
to be the most relevant players in the control of transcription,
but there are other types of regulation that include ncRNAs
and other proteins (Ramírez-Clavijo and Montoya-Ortíz, 2013).
TFs bind to specific regions in the DNA to attract or repel
RNA polymerase and other components of the transcriptional
machinery to modulate the expression of certain genes. When
studying the regulation in whole genomes, gene regulation is
often represented as a network where nodes represent genes. In
this type of network called Gene Regulatory Network (GRN),
connections between genes indicate that the product of a gene
regulates the expression of another gene, and thus, their direction
is important.

Despite the relevance of the processes represented in a GRN,
the majority of the different regulators for each gene still remain
unknown. For example, in the human GRN there are about
5,400 TF-gene connections of high confidence (Garcia-Alonso
et al., 2019), thus, considering there are over 1,600 TFs in
this species (Lambert et al., 2018), we still need to verify a
large proportion of likely regulators for most of the genes.
This lack of knowledge is even worse for other species to
a varying degree, including most common model organisms
such as Mus musculus (Holland et al., 2020), Caenorhabditis
elegans (Harris et al., 2020),Drosophila melanogaster (Thurmond
et al., 2019), and even Escherichia coli (Santos-Zavaleta et al.,
2019). Recent efforts aim to close this gap of knowledge of
how genes are regulated. For example, the ENCODE project
(Abascal et al., 2020) focuses on the discovery and annotation
of cis regulatory elements in human and mouse genomes
based on experimental evidence such as TF binding sites.
CIS-BP, a database of TF Binding Motifs (TFBMs), employs
evolutionary information to infer binding motifs (Weirauch
et al., 2014). Another approach to determine TFBMs relies on
the detection of motifs from experimentally determined TF
Binding Sites (TFBSs) such as those reported by the ENCODE
project (Matys et al., 2003; Forrest et al., 2014; Khan et al.,
2018; Kulakovskiy et al., 2018). Importantly, even if it is possible
to determine where a TFs binds on the DNA by determining
occurrences of these motifs (Jayaram et al., 2016), the majority
of motifs are not functional (Dror et al., 2015). Even more,
the identification of an actual TFBS does not imply knowing
which gene or genes are regulated by the binding of the TF
to it.

There are several approaches to assign TFs to the regulation of
specific genes based on occurrences of TFBMs or experimentally
determined TFBMs. Experimental methods to identify TFBSs on
DNA are diverse. Non high-throughput methods were initially
implemented like DNA footprinting or electrophoretic mobility
shift assays (Galas and Schmitz, 1978; Garner and Revzin, 1981;
O’Neill and Turner, 1996), these data being a valuable source
of several gene regulation databases. According to the genomics

advance and DNA sequencing technologies, high-throughput
methods were necessary for discovering TFBSs such as Protein
binding microarrays, ChIP-chip or ChIP-Seq experiments (Ren
et al., 2000; Berger and Bulyk, 2006; Johnson et al., 2007). These
methodologies produce large volumes of raw sequence data and
different computational strategies need to be implemented for
preprocessing and filtering data to find DNA motifs. On the
other hand, site-directed mutagenesis (O’Neill et al., 1998) is
based on the introduction of modifications in the nucleotide
bases that are recognized by the TF residues, restriction enzymes
must recognize target sequences with precision to interfere with
DNA binding. Nonetheless, once a TFBS is discovered, it still
remains to assign its binding to this site to the regulation of a
given gene. To do so, one of the techniques is to select targets
for a TF if it binds in the respective regulatory region of a
gene, e.g., its promoter. Another common way to determine
which TFs regulates certain genes is to determine whether
their binding motifs or experimentally determined binding
sites are near the gene or within a certain distance from the
transcription start site (Blatti et al., 2015; Liu et al., 2015;
Garcia-Alonso et al., 2019; Qin et al., 2020; Murgas et al.,
2021).

There is a fourth approach that aims to assign TFs to genes by
identifying regulatory relationships from transcriptional profiles
using computational approaches such as GENIE3 (Huynh-Thu
et al., 2010) and ARACNE (Margolin et al., 2006). Both tools
rely on a relatively large number of transcriptomic experiments,
benefiting from the presence of various experimental conditions,
and arguable reliability (Marbach et al., 2012; Mochida et al.,
2018). While most of these approaches are validated using
knowledge driven GRNs such as RegNetwork (Liu et al., 2015),
some of the most recent ones employ ChIP-Seq determined
TFBSs to estimate their performance (Janky et al., 2014; Desai
et al., 2017). Other approaches perform noise reduction in
GRNs not only with experimentally determined TFBSs, but also
applying GWAS SNPs which are known to alter TF-binding
affinities (Chen et al., 2020). Pioneering work in this area related
TFBSs to the logfold changes observed inmicroarray experiments
(Bussemaker et al., 2001) or TFs instead of their binding sites
once TFBSs were used to assign TF to genes (Gao et al., 2004).

Nowadays, the number of experimentally determined TFBSs
keeps steadily growing. This growth is specially relevant for
TFBSs determined by high-throughput techniques and made
available in general repositories such as GEO (Barrett et al.,
2013) and ArrayExpress (Athar et al., 2019) or in specialized
portals such as ENCODE (Contrino et al., 2012). Even so,
it is still difficult and expensive to prove that any TFBS is
involved in the regulation of a gene. To overcome the lack of
tools to assign TFs to the regulation of their target genes, we
propose a two-step approach to both improve and automate
the assignation of TF to the regulation of target genes. The
first step of our methodology assigns TF to genes employing
a distance threshold between ChIP-Seq derived TFBSs and
genes, creating a GRN that over-estimates targets for each TF
(Chen et al., 2020). Then, in a second step, this initial GRN
is filtered by using a large collection of RNA-Seq data and
GENIE3, but instead of using this tool to select regulators
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FIGURE 1 | Workflow of our approach. We first gathered a collection of TFBS from ENCODE and FlyBase determined with ChIP-Seq experiments and used them to

assign TF to the regulation of specific genes according to their distance to genes. We then used GENIE3 to prune TFs for each gene. We employed as input for

GENIE3 all gene counts available for Drosophila melanogaster at the ARCHS4ZOO repository for all TFs assigned to the same gene in the first step. We then

demonstrated how the results of pruning TF-gene assignments improved the resulting gene regulatory networks by increasing the connectance in the TF-TF interaction

networks made of all regulators for the same gene. We employed TF-TF interactions from a curated yeast two hybrids collection, from TF-TF interactions obatined at

the STRING database and from TF-TF coexpresion networks calculated from ARCHS4ZOO gene counts. Additionally we also demonstrated that genes sharing more

than one TF tend to have expression patterns more correlated after the second step of our approach than by simply using distance cut-offs to assign TF to genes.

from all TFs in the genome for each gene, we use it to
select regulators from all TFs assigned to a gene in the
first step.

To demonstrate the improved consistency of resulting
networks we employed D. melanogaster because of its relatively
small genome and the availability of experimentally determined
TFBS for many TFs. Based on that, TFs that regulate the same
gene tend to interact between them (Shokri et al., 2019), forming
the so called transcriptional complex (Ogata et al., 2003), we
will show how our approach provides an effective method to
increase the reliability of TF target assignments. In this way,
one expects an increase on the connectance in interaction
networks made of all TFs regulating the same gene after using
our approach. In addition, as a case example to show the
utility of our approach, we studied the role of D. melanogaster
gene Hr96 (UniProt Q24143) in the transcriptional control
of mitochondrial genes. Hr96 is a TF orthologous to the
human Vitamin D receptor (Fisk and Thummel, 1995). Hr96
is activated by small lipophilic compounds from dietary
signals and metabolic intermediates, acting in the regulation
of developmental pathways and cellular metabolism (McKenna
and O’Malley, 2002). It is mainly expressed during the mid-
embryogenesis stages in the metabolic fat body, excretory
organs, and in the central nervous system (Wilk et al., 2013),
mostly induced by the ecdysone hormone, the main factor that
coordinates molting and metamorphosis (Fisk and Thummel,
1995). Hr96 plays a role in xenobiotics detection such as the
pesticide DDT and phenobarbital, inducing the expression of
detoxification and clearance genes (King-Jones et al., 2006).
Furthermore, Hr96 has a key role in lipid metabolism, sensing

triacylglycerol levels to facilitate their breakdown, and regulating
cholesterol catabolism through modulation of genes involved in
its storage, uptake, and trafficking (Horner et al., 2009; Sieber
and Thummel, 2009). However, despite these features, little is
still known about the role of Hr96 on the regulation of gene
expression associated with mitochondrial function to directly
modulate lipid and energy metabolism.

2. MATERIALS AND METHODS

The general workflow of our approach is described graphically in
Figure 1. Each of the steps described in the figure and how we
obtained data is explained in detail below.

2.1. Reference Gene Regulatory Networks
We created reference gene regulatory networks for
D. melanogaster by combining TFBS information from the
ChIP-Seq available at the ENCODE data repository (Contrino
et al., 2012) and FlyBase (Thurmond et al., 2019) as were
available on July 2019 and March 2020, respectively. In this
way, we inferred regulatory relationships based on the distance
between the ChIP-Seq determined TFBSs for a total of 350 TFs
and the Transcription Start Site (TSS) of each gene in the genome
of the fruit fly version 6.32. To determine whether a TF regulates
a gene, we chose distance thresholds between TFBSs and the TSS
of each gene, so if the TFBS falls within this distance, we assumed
it regulates the respective gene. We created three reference
networks with different distance thresholds: 1,500, 2,000, and
5,000 nucleotides inspired by other approaches (Dupuy et al.,
2004; Blatti et al., 2015) and described in Table 1. Further details
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TABLE 1 | Description of the networks analyzed in this work.

Threshold

(kb)

Genes Edges Avg.

Indegree

Avg.

Outdegree

Reference networks

1.5 15,576 1,094,130 44.50 3,126.09

2 15,899 1,190,168 45.43 3,400.48

5 16,665 1,679,173 47.61 4,797.64

Filtered networks

1.5 11,635 147,203 33.24 420.58

2 11,968 369,346 34.19 1,055.27

5 12,994 467,442 37.13 1,335.55

Reference networks were created by assigning TFs to the regulation of specific genes

based on a distance threshold between the TFBS and the gene. Filtered networks were

created by selecting the TFs for each gene that better predict its expression levels with

GENIE3. All networks described in the table contain the same 350 TFs.

on ChIP-Seq data employed and the procedure used are available
in Murgas et al. (2021).

2.2. Gene Expression Profiles and Network
Inference
To obtain a comprehensive dataset of transcriptomic data,
we employed all RNA-Seq experiments of D. melanogaster
available at ARCHS4ZOO version update 8/2018 (Lachmann
et al., 2018) as was available on April 2020 at https://maayanlab.
cloud/archs4/archs4zoo.html. This dataset comprises 9,924 RNA-
seq samples belonging to 368 series and gene counts were
used as available from the data repository without further
processing as previously recommended (Aibar et al., 2017).
This dataset of gene expression profiles was then employed
with GENIE3 (Huynh-Thu et al., 2010) to remove TF-gene
regulations from the regulators assigned to each gene in the
reference networks. GENIE3 employs a random forest algorithm
to select the subset of TF for each gene whose expression
better predicts the expression of the gene, assigning them
those TFs as regulators of that gene. In our case, we created
subsets of expression data with all samples for each gene
and for all TFs that were assigned as its regulators using
each of the three distance thresholds, and employed GENIE3
to determine which TFs better predicted the expression of
the gene, and thus, were actually regulating it. GENIE3 does
not use a preset cut-off to select regulators and reports the
relevance of each TF sorted by decreasing values. To remove
the most unlikely regulators, we implemented a dynamic
threshold by which for each gene we removed all TFs with
a relevance lower than 10% of that reported for the most
relevant TF.

2.3. Improvement of TF-Gene Assignment
We measured connectance in interaction networks made of
all TFs that regulate the same gene in networks before
and after using GENIE3 and counted for how many genes
connectance increased. We define the connectance of a network,
or connectivity density, as the fraction of connections present
in a network divided by the total number of edges that
could take place in the network. The connectance (ρ) lies in
the range [0,1], with greater values indicating that nodes are

more interconnected between them than with values closer
to 0. This way, to estimate the quality of a GRN relies
on the fact that TFs controlling the expression of a gene
are more likely to interact between them (Shokri et al.,
2019).

To validate our approach, we employed several types of TF
interaction networks: a curated Protein-Protein Interaction (PPI)
network (Shokri et al., 2019); a correlation network calculated
with Pearson’s correlation coefficient on the same expression
data used with GENIE3 with edges defined with different
thresholds; and STRING functional networks (Szklarczyk et al.,
2019) created querying this database with all 350 TFs on
September 2020 and filtering the resulting network at different
confidence thresholds for combined score and several evidence
types on its own. These networks are described in Table 2.
Additionally, we also calculated average gene co-expression for
all pairs of genes regulated by at least the same two TFs.
This is based on the idea that co-regulated genes should have
more similar expression patterns than those which are not
regulated by the same TFs (Martyanov and Gross, 2010). We
calculated average Pearson correlation on the ARCHS4ZOO
RNA-Seq data between pairs of genes that share more than
one TF in filtered and reference networks. We assumed
normality and used a two samples T-test to compare if
the difference between the average for genes sharing the
same number of regulators before and after GENIE3 was
significant.

2.4. Hr96 and Its Role in D. melanogaster

Mitochondrial Function
2.4.1. Selection of Mitochondrial Genes and

Functional Characterization
We first assigned all D. melanogaster genes as mitochondrial if
sub-cellular localization GO terms associated to them available
at FlyBase (Thurmond et al., 2019) contained the term
“mitochondria.” Following, we created GRNs formed by these
mitochondrial genes and all TFs in the networks using the
regulations present in the global networks.

2.4.2. Network Analysis, Visualization and Hr96

Centered Subnetworks
All network analyzes were carried out using Cytoscape (Shannon
et al., 2003). This platform was also employed to create
subnetworks using its graphical interface as follow. Subnetworks
centered on Hr96 were created by selecting its node in each
network before and after applying our procedure, and then using
Cytoscape to select all nodes connected to Hr96 by edges arising
from it, i.e., regulated by Hr96.

3. RESULTS

We first show how our approach improves the consistency of
TF-gene assignment created by assigning TFs to genes if a TFBS
is near the gene. Following, we demonstrate how using the
improved version of the networks leads to edges that are more
likely to take place, and which, in fact, allow interpretation and
analysis that are precluded in unpruned networks.
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TABLE 2 | Description of TF-TF interaction networks employed to verify our

approach.

Network Nodes Edges

Corr 0.25 349 30,915

Corr 0.45 340 16,584

Corr 0.65 288 6,912

Corr 0.85 137 353

Curated_PPI 271 796

STRING (combined ≥ 0.5) 260 1,065

STRING (combined ≥ 0.8) 150 241

STRING (textmining ≥ 0.4) 265 1,351

STRING (textmining ≥ 0.6) 196 502

STRING (textmining ≥ 0.8) 139 223

STRING (database_annotated ≥ 0.4) 53 69

STRING (experimentally_determined ≥ 0.5) 117 120

STRING (experimentally_determined ≥ 0.7) 65 49

STRING (experimentally_determined ≥ 0.9) 26 15

Correlation networks were created using different thresholds of positive Pearson’s

correlation coefficient. Curated PPI is the subnetwork of the 350 TFs employed to create

our reference GRN verified experimentally in (Shokri et al., 2019). Interaction networks

obtained from STRING (Szklarczyk et al., 2019) differ on the criteria employed to define

edges: STRING (combined score ≥ 0.5) is the functional interaction network retrieved

querying the STRING web with the 350 TF and by default parameters, i.e., combined

score ≥ 0.5. All other STRING networks were created by employing different thresholds

with single evidence types and thresholds applied.

3.1. Characterization of Networks Before
and After Applying Our Approach
Table 1 shows different properties of the networks created using
three distance thresholds (1.5, 2, and 5 kb) to assign TFs to the
regulation of genes. First, all networks before and after applying
our approach contain edges arising from all the 350 different TFs
employed in this work. We then looked at the average outdegree
and indegree, respectively for TF and non-TF genes in each
network. These metrics, averaged connectivity for each node
type, serve as indicator of how dense the networks are. While
unfiltered networks have average outdegree ranging from 3,126
in the network with the more restrictive distance threshold of
1.5 Kb–4,797 in the 5 kb threshold network, the networks after
using our approach have smaller values (420 with 1.5 kb–1,335
with 5 kb), evidencing a significant reduction on the number of
genes regulated by the same TFs. Regarding the number of nodes
that are connected by at least one edge, there is also a decrease of
about 4,000 in the number of genes in the three networks and a
reduction in the average indegree.

Regarding the number of TF and nodes, networks made
with shorter distance thresholds are included in reference GRNs
made with longer distance cut-offs before filtering. For filtered
networks, this is not the case. All nodes with at least one
connection in the 1.5 kb filtered network are in the networkmade
with the 2 kb threshold, and the same occurs with nodes in the
2 and 5 kb cut-off. Nonetheless, some of the edges in the 1.5
kb network are not present in the 2 kb and the same occurs for
edges in the 2 and 5 kb networks (see Figure 2). This is caused

FIGURE 2 | Conservation of edges in GRNs after filtering unlikely edges. Venn

diagram showing edges in GENIE3 networks for each of the three distance

thresholds employed, 1.5, 2, and 5 kb. Edges were defined by their source

and target node IDs.

by the dependence of each edge on the expression patterns of all
regulatory nodes for each gene and howGENIE3 combines them.

3.1.1. Connectance Analysis on TF-TF Interaction

Networks
Considering the connectance in all TF-TF subnetworks made
with all regulators for each gene, there is a clear trend after
applying our approach. We observe a greater number of genes
with increased connectance in the TF-TF interaction network for
all the regulators of each gene, seeTable 3. Employing the curated
PPI network, more genes show an increase in the TF connectance
than genes showing a decrease in their TF connectance for all
three distance cut-offs. Using the curated PPI the network with
the 2 kb distance threshold has the smaller proportion of genes
with decreased connectance. Using co-expression networks made
at different thresholds of Pearson’s correlation, the number of
genes with greater connectance is notoriously larger than the
number of genes with lower. As the correlation threshold used
to define edges increases, the proportion of genes with smaller
connectance increases as genes with greater values decrease.
With STRING interaction networks and the reference network
created with the 1.5 kb threshold, our approach produced TF-
TF interaction subnetworks with lower values of connectance
for most of the genes. In contrast, with the other two reference
networks (2 and 5 kb) we also see the general trend of better
connectance after our approach.

3.1.2. Co-expression Analysis of co-regulated Genes
We compared the mean co-expression correlation between all
pairs of genes that share at least two TFs in networks before
and after filtering them with GENIE3 on the three cut-offs (See
excel file provided in Supplementary Material). We found a
decrease in the number of genes corregulated by the same TFs
after filtering the networks, the maximum number of shared TFs
between at least five pairs of genes is 25 in the filtered network
at 1.5 kb while there are seven pairs of genes sharing 322 TFs
before using GENIE3. Greater number of shared TFs between
genes are also seen with 2 and 5 kb thresholds, but again there
are less shared regulators after filtering the networks. Considering
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TABLE 3 | TF interaction connectance comparison between networks before and after using our approach.

Genie3_1,500 Genie3_2,000 Genie3_5,000 Reference network

Better Worse Equal Better Worse Equal Better Worse Equal #edges #nodes

Curated PPI 0.373 0.333 0.294 0.346 0.222 0.433 0.381 0.255 0.364 796 271

A
R
C
H
S
4

corr_0.25 0.620 0.093 0.286 0.511 0.065 0.424 0.546 0.099 0.355 30,915 344

corr_0.45 0.603 0.111 0.287 0.492 0.084 0.425 0.520 0.125 0.355 16,584 326

corr_0.65 0.569 0.143 0.287 0.462 0.112 0.425 0.482 0.161 0.356 6,912 256

corr_0.85 0.492 0.187 0.321 0.412 0.145 0.443 0.430 0.194 0.377 353 95

S
T
R
IN
G

combined_0.5 0.352 0.355 0.293 0.306 0.264 0.43 0.341 0.298 0.361 1065 260

combined_0.8 0.297 0.392 0.311 0.336 0.225 0.439 0.362 0.265 0.373 241 150

textmining_0.4 0.344 0.366 0.29 0.285 0.287 0.428 0.317 0.323 0.36 1351 265

textmining_0.6 0.299 0.392 0.309 0.291 0.274 0.435 0.332 0.302 0.366 502 196

textmining_08 0.191 0.461 0.348 0.275 0.273 0.452 0.315 0.305 0.38 223 139

experimental_05 0.184 0.468 0.348 0.3 0.241 0.459 0.333 0.278 0.388 120 117

experimental_07 0.1 0.48 0.419 0.233 0.27 0.498 0.255 0.315 0.43 49 65

experimental_09 0.047 0.428 0.525 0.148 0.281 0.571 0.165 0.336 0.499 15 26

database_04 0.228 0.434 0.337 0.334 0.208 0.459 0.358 0.249 0.392 69 53

This table shows the percentage of genes with greater connectance in the interaction network for all its TFs in all interaction networks employed to test how using GENIE3 to filter the

networks improved the three GRN based on distance TF assignment (1.5, 2, and 5 kb at maximum between the TFBS and its target gene).

the statistical significance (p ≤ 0.0005) of the difference between
the means, we found that in the 1.5 kb networks, pairs of genes
sharing at least 2, at least 3, 4, 5, 6, 7, 8, 9, and up to 10 TFs are
significantly more correlated after filtering the networks. At 2 kb
cut-off, means of correlated co-expression are greater for pairs
of genes sharing from 2 to 18 regulators and from 2 to 20 at 5
kb.

3.2. Hr96 and Its Role in D. melanogaster

Mitochondrial Function
Here we report the results of studying the subnetwork centered
onHr96.We first looked at the overall changes in this subnetwork
before and after filtering it with GENIE3 at the three selected
distance thresholds used to assign TFs to genes.We then focus on
the analysis of the genes in these subnetworks. The decrease in the
number of edges and nodes in the subnetworks centered onHr96
is evident in Table 4. This reduction in network elements is more
notable regarding the number of edges, which show a reduction
of more than 90% in all three networks compared to the 58–
76% reduction in the number of nodes. Accordingly to what we
saw on whole genome GRNs (see Table 1), there is also a large
decrease in the average outdegree for TFs in the Hr96 centered
subnetworks. As to differences on the three distance thresholds,
2 and 5 kb GRNs behave more similarly between them than when
compared with the 1.5 kb GRN. There are six edges exclusively in
the 1.5 kb filtered subnetwork of Hr96 which are absent in the 2
and 5 kbGRNs, and 52 nodes are present only in the 2 kb network
and 167 in the 5 kb (see Figure 3). However, there is yet a trend
of fewer edges in GRNsmade with more stringent thresholds that
in their majority appear in more relaxed cutoffs.

Based on its reduced number of nodes and edges (see
Supplementary Material), we selected the subnetwork centered
on Hr96 made with the 1.5 kb threshold to study the function
of this TF on the regulation of mitochondrial genes, shown in

TABLE 4 | Description of subnetworks centered on Hr96.

Before After

Network Nodes (TFs) Edges Nodes (TFs) Edges

1.5 kb 191 (81) 8,840 47 (14) 135

2 kb 201 (84) 9,859 84 (17) 384

5 kb 253 (109) 17,652 98 (21) 478

Number of nodes and edges in the subnetworks created starting from Hr96 for each of

the GRNs created at different distance thresholds before and after applying our approach.

The number of nodes depicting TF coding genes is between brackets.

FIGURE 3 | Conservation of edges in Hr96 centered subnetworks after

filtering unlikely edges. Venn diagram showing edges in GENIE3 networks for

each of the three distance thresholds employed, 1.5, 2, and 5 kb. Edges were

defined by their source and target node IDs.

Figure 4A as well as the subnetwork generated in the same way
for the 1.5 kb before applying GENIE3 as a filter (top left inset).
There are only 14 TFs (all regulated byHr96) that form a densely
connected regulatory cascade together with 33 non-TF coding
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FIGURE 4 | Subnetwork centred on Hr96 depicting its involvement on the regulation of mitochondrial genes. (A) depicts the whole subnetwork after applying GENIE3

and before (inset on the top left side of the panel); (B) represents the inter-regulation of the 14 TFs present in this subnetwork; and (C) is the TF-TF interaction network

formed by the same 14 TFs where edges represent Pearson correlation calculated on the 9,924 samples for D. melanogaster obtained from the ARCHS4ZOO

[thickness is proportional to the value of positive correlation coefficients, all in the range (0.46, 0.88)]. Orange diamonds depict TFs, blue rectangles non-TF genes and

the red diamond is Hr96.

genes. Figure 4B displays how these 14 TFs are interconnected
maintaining the same layout as above, while edges between these
TFs in Figure 4C represent Pearson’s correlation calculated using
the same expression data previously employed with GENIE3,
with their thickness indicating higher coefficients. There are 66
edges in the correlation network, 20 more than in the GRNmade
with the same TFs, indicating a strong co-expression pattern
between these related TFs. The same network generated before
applying GENIE3 is formed by 81 TFs and 110 non-TF coding
genes (top left of Figure 4A). Using 2 kb, the network filtered with
GENIE3 centered onHr96 contains three more TFs and 34 more
non-TF genes, while before GENIE3 it has 84 TFs and 117 genes
(See Supplementary Material). With the less stringent cut-off of
5 kb, the network filtered with GENIE3 is formed by 21 TFs, the
17 included in the 2 kb network plus another 4, and 77 non-TF.
Before using GENIE3 on the 5 kb GRN, the subnetwork has 109
TF and 144 non-TF genes (See Supplementary material).

We then studied the function carried out by those 33
genes in the Hr96 1.5 kb GRN filtered with GENIE3. Among
these, there are several carboxylic acid-related genes, especially
involved in its transport and metabolism. This result indeed
highlights the Hr96 regulation of lipid metabolism-related
targets in the mitochondria. In the glutamate and fatty acid
metabolic and carboxylic catabolic processes, we found that
the Hr96-mitochondrial network mainly links enzymes such as
dehydrogenases, oxidoreductases, and a short-chain enoyl-CoA
hydratase (Echs1).

4. DISCUSSION

The control of gene transcription is one of the key processes
in living organisms. Despite its relevance, we still do not know
most of the specific TFs that determine which gene is expressed
and which is not. Currently, high throughput techniques such as
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ChIP-Seq are routinely employed to annotate TFBSs, but even
if this type of knowledge becomes widespread, it still remains
to assign TF binding each site to the regulation of target genes.
However, even if TF target assignment is carried out routinely
in a low-throughput fashion for some TF-gene pairs, whole
genome TF target identification remains an expensive and almost
impossible task using experimental verification. Here, we propose
a two step approach to address this issue: first TFs are assigned to
the regulation of certain genes if ChIP-Seq derived binding sites
fall within a distance cut-off to the gene. Then, in a second step,
for each gene, we remove improbable regulations by using a large
collection of RNA-seq data (Lachmann et al., 2018) as input for
GENIE3 (Huynh-Thu et al., 2010). Instead of feeding GENIE3
with the expression of all TFs and genes, for each gene we
only employed its expression and the expression of all regulators
assigned to it in the first step. By doing this, we changed the
purpose of GENIE3 from whole genome GRN inference to GRN
pruning.

Most eukaryotic genes are regulated by more than one TF
that, acting simultaneously, determine whether their target gene
expresses or not. TFs, thus, interact forming transcriptional
complexes (Ogata et al., 2003) in a cooperative fashion (Hancock
et al., 2019) to actively control transcription. Consequently, we
assumed that the actual regulatory TFs of each gene would
need to interact forming an interconnected TF-TF interaction
network. And thus, that the connectance of this TF-TF
interaction network would increase if wrongly assigned TFs were
removed from the regulation of each gene. We took advantage
of a recently released, high confidence, TF-TF PPI network of
D. melanogaster (Shokri et al., 2019) to test if the connectance
between all TFs assigned to each gene increased as expected
after using our approach. In addition, to demonstrate the
improvement in TF-target assignment deemed to our approach,
we also employed several other interaction networks obtained
from STRING functional networks (Szklarczyk et al., 2019) and a
co-expression network calculated with Pearson’s correlation on
the same transcriptional dataset employed to remove TF-gene
pairs with GENIE3.

We tested if the connectance between TFs regulating the same
gene increased with three different distance thresholds of 1.5, 2,
and 5 kb for the initial assignation of TFs to genes (Table 3).
For a 2 kb cut-off, our results indicate a consistent increase of
connectance calculated for all regulators that is independent of
how the interactions between TFs are defined. This tendency
is almost as consistent for 5 kb and can also be seen for 1.5
kb, even if there are few exceptions for these improvement on
the connectance. Importantly, these exceptions mainly appear
for very stringent definitions of TF-TF interactions, such as
a STRING combined score ≥0.8, or STRING experimental
score ≥0.9 for all three cut-offs. Nonetheless, using the high
confidence PPI network (Shokri et al., 2019) and all correlated
co-expression, a majority of genes had better connectance among
their regulators after using GENIE3 than without using it. Even
if, biologically, it makes more sense that our approach results
in higher connectance between the regulators of each gene,
experimentally this can only be tested by comparing our results
with a null background. In our case, this would imply the
need to randomly remove TF-gene associations for each gene.

Nonetheless, it is expected that as TF-TF interaction networks are
very sparse, any randomly selected subnetwork is deemed to also
be sparse, unless there is biological significance embebed in the
approach followed to remove edges.

The observed TF-connectance improvement is more
consistent if the TF interaction network has interactions for all
regulators. As shown in Table 2, the network whose edges are
Pearson’s correlation ≥ 0.25 (cor_0.25) contains interactions
for 349 out of 350 TFs for which there were ChIP-Seq data
available and 62% of the genes show better connectance at 1.5
kb (9.3% worse), 51.1% are better at 2 kb (6.5% worse), and
54.6% at 5 kb (9.9% worse). On the other hand, using Pearson’s
≥ 0.85 (cor_0.85) there are only interactions for 137 TFs and
49.2% of the genes showed improved TF connectance at 1.5kb
(18.7% worse), 41.2% are better at 2 kb (14.5%), and 43% at 5
kb (19.4% worse). This previous example indicates that having
TF interaction networks with high confidence interactions for
all regulators is a key factor to consider when estimating the
certainty of the improvement in connectance. It is also very
important to take into consideration that a correlation ≥ 0.25 is
very likely to be significant taking into account it was calculated
with 9,924 expression experiments. It should also be considered
that the yeast two hybrid experiment, used to determine the PPI
curated network, simply does not work for some proteins or it
may produce too many false positive or false negative hits (Koegl
and Uetz, 2007), and thus, careful curation is indispensable.
Similarly, STRING networks are automatically generated and
their scores are calculated without any human intervention,
making it desirable to carry out manual inspection of each edge
and its supporting evidence before using it. Importantly, the
results we obtained from the analysis of co-expression between
gene pairs that share the same number of TF before and after
filtering the networks, also support that our approach does
indeed improve the reliability of TF-gene assignment (see excel
file in the Supplementary Material). These results also showed
a notable decrease in pairs of genes that share large numbers of
regulators (more than 25 shared TFs), which is caused by the
reduction on the number of TF-gene assignments.

We then focused on the subnetwork centered on a specific
TF to showcase the utility of the networks generated by
our approach. Nuclear hormone receptors (NHR) represent a
key hub in the regulation of development, reproduction, and
metabolism (Fahrbach et al., 2012). Most NHRs are ligand-
regulated TFs activated by lipophilic ligands such as steroid
hormones, fatty acids, phospholipids, bile acids, vitamins, and
xenobiotics (Huang et al., 2009). Humans present 48 NHR
that, despite being widely explored in terms of structure and
function, are not fully characterized (Evans and Mangelsdorf,
2014). Approximately half of those remain orphan receptors,
a fact that imposes great difficulty to crack down their
regulatory network (Weikum et al., 2018). In contrast, the
D. melanogaster genome carries only 18 nuclear-receptor
genes, which represent all six NHR mammalian subfamilies,
but importantly showing lower functional redundancy (King-
Jones and Thummel, 2005; Palanker et al., 2006). Among
Drosophila NHRs, Hr96 (UniProt Q24143) is an interesting
case due to its orthology with three vertebrate NHR: Vitamin
D Receptor (VDR) (Fisk and Thummel, 1995), Pregnane X
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Receptor (PXR), and Constitutive Androstane Receptor (CAR)
(Hoffmann and Partridge, 2015).

VDR (UniProt P11473) is widely distributed in mammal
tissues (Eyles et al., 2005) and exerts transcriptional control,
influenced by vitamin D, in over 3% of the human genome
(Ramagopalan et al., 2010; Shirvani et al., 2019). The control that
VDR exerts on gene regulation is significantly enriched over the
immune functions, cell cycle activity, DNA replication, stress
response (Hossein-nezhad et al., 2013) and, also significantly
contributes to mitochondrial transcriptional regulating,
biogenesis, and metabolism (Lee et al., 2008). Specifically, human
skeletal muscle cells treated with the VDR-ligand 1α,25(OH)2D3
showed increased mitochondrial oxygen consumption rate
and network mass by down-regulating fission proteins Drp1
and Fis1, and up-regulating the fusion protein OPA1 and
the mitochondrial biogenesis modulators MYC, mitogen-
activated protein kinase 13 (MAPK13), and endothelial PAS
domain-containing protein 1 (EPAS1) (Ryan et al., 2016).
In contrast, VDR silencing appears to cause a reduction in
cellular respiration, ATP production (Ashcroft et al., 2020)
and induces ROS production by up-regulating cytochrome C
oxidase subunits proteins (COX2; COX4) and ATP synthase
subunits (ATP5B; ATP6), which enhance respiratory membrane
potential leading to protons leakage (Ricca et al., 2018). In
this way, to test the hypothesis that Hr96 has the potential
to regulate mitochondrial function and improves lipid-based
energy production, we used our hybrid protocol to showcase its
ability to improve TF factor target assignments.

We analyzed all 33 Hr96 targeted genes that do not code for
TF in the curated 1.5 kbHr96 network to further characterize the
role of this TF in any specific process. It is important to highlight
here that 32 of these genes where also present in the 2 and 5
kb curated subnetworks. In addition, we also disregarded other
genes also regulated by the other 13 TFs that are also present in
the subnetwork, trying in this way to emphasize the role of this
NHR.

The Delta-1-Pyrroline-5-carboxylate dehydrogenase 1
(P5CDh1) and Glutamate dehydrogenase (Gdh) are enzymes that
support energy metabolism by glutamate and α-Ketoglutarate
production, to promote the mitochondrial respiration (He
and DiMario, 2011; Hohnholt et al., 2018). As well Adck1,
which is essential to keep mitochondrial structural organization,
energy, and ROS production under control (Yoon et al., 2019).
β-oxidation, the catabolic pathway that breaks down fatty acids
in the mitochondria, is highly represented in the Hr96-network
by different genes. Scully (scu) and Mcad catalyze two different
β-oxidation enzymatic steps and are highly conserved (Torroja
et al., 1998; Lim et al., 2018). The wal gene encodes an electron
transfer flavoprotein subunit that works as a specific electron
acceptor in the mitochondrial fatty acid β-oxidation of fatty acids
(Alves et al., 2012; Chokchaiwong et al., 2019), while ECHS1
is shown to be involved in the second step of mitochondrial
β-oxidation (Hirai et al., 2001; Al Mutairi et al., 2017). All
these targets operate to maintain the respiratory chain and
energy production through carboxylic acid metabolism. To
our knowledge, the activity of these enzymes has not been
related to Hr96 until now. In the same line, Hr96 modulates
the Minotaur (mino) activity, a conserved glycerol-3-phosphate

O-acyltransferase responsible for triglycerides synthesis and lipid
droplets biogenesis (Fantin et al., 2019). It has been shown that
when this enzyme is down-regulated as observed upon bacterial
infection, there is a progressive loss of lipid energy stores
(Dionne et al., 2006), meanwhile, its expression is increased in
the face of starvation (Fujikawa et al., 2009) possibly promoting
a mitochondrial adaptation toward lipid metabolism.

Baldspot (Elovl6) is another fatty acid-related gene regulated
by Hr96. The Elov16 enzyme extends C16 fatty acids to C18.
It has been shown that flies lacking Elovl6 present impaired
mitochondrial respiration by promoting a hyper-fragmentation
of the mitochondrial network through JNK signaling and
mitofusin ubiquitination (Senyilmaz et al., 2015). Regarding
anion transport, to properly regulate the mitochondrial β-
oxidation, Hr96 seems to also coordinate the transcription
of carboxylic acid transport targets such glutamate carrier
(GC1), mitochondrial pyruvate carrier (mpc1), and Cln3, the
Batten disease-associated gene involved in arginine transport
and mitochondrial β-oxidation support (Dawson et al., 1996;
Chan et al., 2009). Among those, MPC1 has an important
role in mitochondrial function since it is found in the inner
mitochondrial membrane, and mutant D. melanogaster formpc1
display impaired pyruvate metabolism, leading to a shortage
of intermediates necessary for the tricarboxylic acid cycle,
ultimately reducing ATP production (Bricker et al., 2012; Tang,
2019; Rossi et al., 2020). These findings are in line with the
most recent research on Hr96 functionality that points toward
its relevance in the regulation of sterol trafficking, housing,
and consumption (Sieber and Thummel, 2012). Considering
our analyzes, it is possible to postulate that Hr96 also regulates
triacylglycerol metabolism by modulating the transcription
of mitochondrial genes to stimulate lipid consumption and
mitochondrial respiration to increase ATP production.

Altogether, this analysis highlights the potential effect of Hr96
on key mitochondrial processes such as the catabolism and
transport of fatty acids and small molecules.

5. CONCLUSION

We created a two-step approach with the main purpose of
helping to assign TF to the regulation of specific genes.
We demonstrated that the consistency of TF-gene assignment
improves by increasing the number of TFs targeting the same
gene that are known to interact between them. In the process of
testing our approach, we investigated several distance thresholds
to assign TFs to genes. Based on how the number of edges in a
GRN varies more by increasing the cut-off distance between the
TSS of each gene and the TFBS from 1.5 to 2 kb than by increasing
it from 2 to 5 kb, we can say that the best cut-off tested was 2
kb, better than to 1.5 or 5 kb. Our results also indicate that the
TF-TF interaction networks are incomplete, and that even if our
current results indicate in improvement in TF-gene assignment,
more complete interaction networks would help in producing
more reliable GRN.

Regarding the example case of Hr96, our analysis
provides a rational framework for further investigations on
Hr96-mitochondrial transcriptional regulation and offers an
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opportunity to explore a better understanding ofDrosophila lipid
metabolism and signaling pathways for disease mechanisms.

As a final remark, our work proves that the integration of
data from different sources is key to produce high quality GRNs,
and thus, public data availability must be mandatory for all
experimental results.
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