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N6-methyladenosine (m6A), the most common posttranscriptional modification in
eukaryotic mRNAs, plays an important role in mRNA splicing, editing, stability,
degradation, etc. Since the methylation state is dynamic, methylation sequencing needs
to be carried out over different time periods, which brings some difficulties to identify the
RNA methyladenine sites. Thus, it is necessary to develop a fast and accurate method
to identify the RNA N6-methyladenosine sites in the transcriptome. In this study, we use
first-order and second-order Markov models to identify RNA N6-methyladenine sites
in three species (Saccharomyces cerevisiae, mouse, and Homo sapiens). These two
methods can fully consider the correlation between adjacent nucleotides. The results
show that the performance of our method is better than that of other existing methods.
Furthermore, the codons encoded by three nucleotides have biases in mRNA, and a
second-order Markov model can capture this kind of information exactly. This may be
the main reason why the performance of the second-order Markov model is better than
that of the first-order Markov model in the m6A prediction problem. In addition, we
provide a corresponding web tool called MM-m6APred.

Keywords: RNA N6-methyladenine sites, second-order Markov model, codons biases, transfer probability matrix,
web tool

INTRODUCTION

To date, more than 160 types of RNA modifications have been discovered (Zhao et al., 2019).
In these modifications, N6-methyladenosine (m6A) is the most common and abundant one
existing in various species. It is closely associated with diverse biological processes, such as RNA
localization and degradation (Wang et al., 2014), RNA structural dynamics (Roost et al., 2015),
alternative splicing (Liu et al., 2015), and primary microRNA processing (Alarcón et al., 2015).
Thus, identification of m6A sites is of great importance for better understanding their function
and mechanisms (Chen et al., 2015). In the past few years, high-throughput experimental methods,
such as MERIPP (Geula et al., 2015) and M6ASeq (Meyer et al., 2012), have been used to identify
m6A modifications, but these methods have some limitations: (1) The location of the m6A site
cannot be accurately located; (2) the cost is high; and (3) they are not applicable for the large-scale
identification of m6A sites. Hence, it is highly desirable to develop a fast and accurate computational
method for the identification of m6A sites (Dominissini et al., 2012).

Currently, there are several effective methods for predicting m6A sites based on machine
learning, mainly including iRNA-Methyl (Chen et al., 2015), SRAMP (Zhou et al., 2016),
M6AMRFS (Qiang et al., 2018), M6APred–EL (Wei et al., 2018), pm6A-CNN (Roost et al., 2015),
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and iN6-Methyl (Nazari et al., 2019) etc. The above methods
actually use the physical and chemical properties of nucleotides
in various species, such as the nucleotide frequency at specific
locations and the chemical properties of nucleotides, to extract
features and predict m6A sites. However, none of these methods
can capture the correlation between adjacent nucleotides well,
while the Markov model can model this kind of correlation.
In fact, Pian et al. (2020) used a first-order Markov model to
predict the DNA N6-methyladenine sites. Recently, we proposed
a method to predict DNA 4mC sites based on the second-order
Markov model (Yang et al., 2020). Later, we found that the
second-order Markov model is more suitable for predicting the
methylation sites of RNA m6A because of the biases of the triplet
codons in mRNA. The main purpose of this article is to provide a
more accurate prediction tool of m6A.

Based on this idea, we used a second-order Markov model
to identify the m6A sites of RNA. The m6A data of the three
species of Saccharomyces cerevisiae, mouse, and Homo sapiens,
were used to evaluate our model. The results show that the
prediction performances of the first-order Markov model and the
second-order Markov model are significantly better than those of
the other four existing prediction tools. In addition, the second-
order Markov model outperforms the first-order Markov model,
which indicates that the second-order Markov model can capture
the codon bias in mRNA well. This suggests that second-order
Markov may be able to characterize the codon bias in mRNA.

MATERIALS AND METHODS

Benchmark Datasets
In this study, we used three benchmark datasets from three
different species: S. cerevisiae (Chen et al., 2015), mouse
(Dominissini et al., 2012), and H. sapiens (Chen et al., 2017). The
corresponding number of positive samples was 1,300, 725, and
1,130. There were as many negative samples as positive samples.
Table 1 shows the details of these data. For the three benchmark
datasets, the positives were the sequences centered with true
m6A sites, while the negatives were the sequences centered with
adenines but without any m6A peaks detected. The datasets can
be downloaded from the following website1.

Model Construction
A Markov model is a stochastic process where the next variable
depends on only the most recent variable(s) instead of all
the previous variables. In this sequence information study, we
first model a sequence as a first-order Markov chain, and the

1http://server.malab.cn/M6AMRFS/

TABLE 1 | Details of benchmark datasets.

Type Positive Negative Total Length

Yeast cells 1,300 1,300 2,600 51 nt

Mouse 725 725 1,450 41 nt

Homo sapiens 1,130 1,130 2,260 41 nt

current nucleotide depends on the previous nucleotide only.
More specifically, for the m6A sequences of positive samples
in the training data, we first calculate the initial probability
PPS1

(PPA, PPG, PPC, PPU) of the initial state S1 nucleotide being A,
G, C or U, respectively. Then, we need to calculate the transfer
probability PPnSn−Sn+1

of the current nucleotide state to the next
state individually from the initial state S1 (for example, PP2

G−A
represents the probability that nucleotide G in state S2 transfers
to nucleotide A in state S3).

Thus, we can obtain the probability of the occurrence
of the four nucleotides in the initial state and the transfer
probability matrix of each state except the last one. Similarly,
for the negative sequences of non-m6A, the probability of
the occurrence of the corresponding four nucleotides in the
initial state and the transition probability matrix can also be
obtained. Therefore, two Markov models are trained based
on the m6A sequences and non-m6A sequences in the
training dataset.

In the process of prediction, we need to select the probability
values according to the nucleotide arrangement of the sequence,
including the initial state probability and the corresponding
transfer probability from the positive and negative Markov
models in the previous step. Then, we calculate the products
of positive and negative probability values. Finally, we calculate
the ratio of the positive product and negative product. If the
ratio is greater than 1, the sequence is considered a m6A sample.
Otherwise, it is considered a non-m6A sample.

Since there is a bias in the codon of mRNA (Kurland,
1991; Quax, 2015), we consider using a second-order
Markov model to capture this bias. The flowcharts of the
training and testing of the second-order Markov model
are shown in Figure 1. For the m6A sequences, we first
calculate the initial probability PPS1S2

(PPAA, PPAG, ..., PPUU)
of the first dinucleotide. Then, we need to calculate the
transfer probability PPnSnSn+1−Sn+2

of the current dinucleotide
(Sn Sn+1) to the next nucleotide (Sn+2) (for example,
PP1
AA−A represents the probability of state S1S2 transferring

to S3, where the nucleotide of state S1S2 is AA, and
the nucleotide of state S3 is A). Thus, 39 transfer
probability matrices with 16 rows and four columns can
be obtained. Similarly, the initial probability and transfer
probability can be obtained for non-m6A sequences.
Therefore, two Markov models (MP and MN) are similarly
trained based on the m6A sequences and non-m6A
sequences in the training dataset. Taking the sequence
“seq = GUAUAUAACUUUUUUCUUCAAGGAGCAGGUGUC
UGCCUAA” as an example, the probabilities P(seq|MP)
and P(seq|MN) of the sequence “seq” under models MP
and MN are obtained, respectively. Then, the value of
Ratio = P(seq|MP)/P(seq|MN) can be used to determine the
class of “seq,” where

P(seq|MP) = PPGU × PP1
GU−A × PP2

UA−U × ...× PP39
UA−A,

and

P(seq|MN) = PNGU × PN1
GU−A × PN2

UA−U × ...× PN39
UA−A,
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FIGURE 1 | The flow chart of m6A site prediction. (A) The construction of second-order Markov model (MP and MN ) based on m6A sequence and non-m6A
sequence. (B) The prediction for a test sequence. The sequence “GUAUAUAACUUUUUUCUUCAAGGAGCAGGUGUCUGCCUAA” is used as an example to explain
the prediction process.

FIGURE 2 | The heat map of standardized quotient of the transfer probabilities of the three types of species. The heat map of standardized quotient of the transfer
probabilities of the three types of species. (A) Saccharomyces cerevisiae cells, (B) mouse, and (C) Homo sapiens.

FIGURE 3 | Probability density maps of ln(Ratio) values of the three species. The three density maps (A), (B), and (C) correspond to S. cerevisiae, mouse, and
H. sapiens. Red is negative and blue is positive.
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TABLE 2 | Evaluation data comparison table of six methods in (A) S. cerevisiae,
(B) mouse, and (C) H. sapiens.

A Sn (%) Sp (%) ACC (%) MCC

M6APred-EL 72 72.69 72.34 44.68

SRAMP 71.92 71.38 71.65 43.31

iRNA-Methyl 71.69 73.45 72.57 45.15

M6AMRFS 73.45 72.84 73.14 46.29

First order-MM 73.85 71.69 72.30 49.23

Second order-MM 88.46 98.46 93.46 87.36

B Sn (%) Sp (%) ACC (%) MCC

M6APred-EL 77.79 1 88.90 79.79

SRAMP 77.79 1 88.90 79.79

iRNA-Methyl 77.66 99.31 88.48 78.84

M6AMRFS 77.79 1 88.90 79.79

First order-MM 79.98 88.88 83.55 74.85

Second order-MM 87.50 88.88 88.29 77.45

C Sn (%) Sp (%) ACC (%) MCC

M6APred-EL 82.04 99.73 90.89 83.08

SRAMP 79.65 1 89.82 81.35

iRNA-Methyl 80.35 1 90.18 81.95

M6AMRFS 81.95 99.82 90.89 83.11

First order-MM 84.60 87.50 85.00 73.85

Second order-MM 86.46 94.69 90.58 81.43

If the Ratio > 1, “seq” is classified as a m6A sequence; otherwise,
it is classified as a non-m6A sequence.

Performance Evaluation
Ten-fold cross-validation was used to assess the reliability of
the method. In the performance evaluation, the sensitivity (Sn),
specificity (Sp), accuracy (ACC), and Mathew’s correlation
coefficient (MCC) were calculated. They are formulated
as follows:

Sn =
TP

TP + FN
,

Sp =
TN

TN + FP
,

ACC =
TP + TN

TP + TN + FP + FN
,

MCC =
TP + TN − FP × FN

√
(TP + FP)× (TN + FN)× (TP + FN)× (TN + FP)

where TP, TN , FP, and FN denote true positive, true negative,
false positive, and false negative, respectively. Sn measures the
predictive ability of a predictor for positive samples, while
Sp measures the predictive ability of a predictor for negative
samples. ACC and MCC are two metrics measuring the overall
performance of a predictor.

FIGURE 4 | Comparison of the prediction effect of the six methods in
(A) S. cerevisiae, (B) mouse, and (C) H. sapiens.

RESULTS AND DISCUSSION

Representation and Illustration of
(PPn

SnSn+1−Sn+2
/PNn

SnSn+1−Sn+2
)

For the second-order Markov model, the heat map of the
quotient matrix (PPnSnSn+1−Sn+2

/PNn
SnSn+1−Sn+2

) of second-order
transfer probability of m6A samples divided by the second-
order transfer probability of non-m6A samples is shown in
Figure 2. In order to facilitate comparison, the results of
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TABLE 3 | Comparison of the prediction effect of m6A in mice based on the
m6Avar database.

Method Sn (%) Sp (%) ACC (%)

M6APred-EL 76.42 77.35 75.49

SRAMP 72.03 72.29 71.77

iRNA-Methyl 73.45 74.72 72.18

M6AMRFS 76.58 76.89 76.27

First order-MM 78.15 80.01 80.14

Second order-MM 86.22 87.13 85.32

The best performance in the respective part appears bold in the table.

heat map were standardized. The results show that there is a
significant difference in the transfer probability of nucleotides at
some positions between the positive and negative samples. This
indicated that the second-order Markov chain is informative for
predicting sequences containing m6A sites.

We also plotted the line charts of transfer probability of
the second-order Markov model (Shown in Supplementary
Material 1). Similar to the first-order Markov model, the
transfer probability of positive samples is significantly different
from that of negative samples in the second-order Markov
model. Furthermore, the number of significant different sits
in the second-order Markov model are obviously greater than
that in the first-order Markov model from the line charts in
Supplementary Material 2. It indicates that more information
is provided in the second-order Markov model to help determine
the type of sequences.

The Distribution of Ratios in the Positive
and Negative Sample Sets
Probability density maps of ln(Ratio) values for three species
based on the second-order transfer probability products are
shown in Figure 3. It can be found that in each species, the
distribution of ln(Ratio) is very different between positive and

negative samples, except for a small amount of overlap in the
probability density graphs. The Ratio value of positive samples is
significantly greater than that of negative samples, which enables
the positive and negative samples to be divided accurately.

Comparison and Analysis
To evaluate our Markov model, we compared the performance of
the two methods based on the Markov model with those of other
m6A classifiers, including iRNA-Methyl, SRAMP, M6AMRFS,
and M6APred-EL. Table 2 and Figure 4 show the prediction
results of various methods (10-fold cross validation was used
in all methods).

It can be found that the two methods based on the Markov
model in m6A types of sequence identification had better or equal
classification effects than several kinds of classifiers and that the
second-order Markov model performed much better than the
first-order Markov model in each aspect. It is noteworthy that
Sp in several other methods is 100% in the species of mouse
and H. sapiens, while the Sp of our method is close to 90%
on average. Therefore, we checked these non-m6A data and
found that the selection of negative sample data in the original
literature [12] is unreasonable. The states S22 of the negative
samples in mouse and human are all C, and the states S20 are
all A or G. This is the reason why Sp of other methods can
reach 100%. To evaluate our method more fairly, we downloaded
725 m6A sequences of mice from the m6Avar database, and
the same number of sequences were randomly selected from
the non-m6A sequences of the dbSNP database as negative
samples. We used these data to retrain new models and carried
out 10-fold cross validation in all methods. The performance
results of all the above methods are shown in Table 3 and
Figure 5. The results indicate that all the performance metrics
based on the two Markov model are high. And the second-
order Markov model still performed much better than the first-
order Markov mode.

FIGURE 5 | Comparison of the prediction effect of m6A in mice based on the m6Avar database.
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Web-Server Implementation
To facilitate the use of the Markov model to identify RNA
m6A sites, the user-friendly web server MM-m6APred has been
provided. It is freely available at2. Our tool can handle RNA
sequences of 41 bp or longer. Users can either paste RNA
sequences into the text area or upload a FASTA format file.

CONCLUSION

Accurate identification of the m6A site is a necessary step in
the study of its biological function. In this study, we used
first-order and second-order Markov models to predict the
m6A sites of three species. The results show that our method
is better than the other four existing prediction tools. This
shows that the Markov model can capture the correlation
between neighboring nucleotides well. Considering the biases
of the codons in mRNA, the second-order Markov model
is used to capture these biases. The results show that the
prediction performance of the second-order Markov model
is significantly better than that of the first-order Markov
model. In addition, we also provide the online prediction
web tool of m6A, with code available to download (see
text footnote 2).
2 http://www.pianlab.cn/m6APred/
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