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Cancer is one of the most threatening diseases to humans. It can invade multiple
significant organs, including lung, liver, stomach, pancreas, and even brain. The
identification of cancer biomarkers is one of the most significant components of cancer
studies as the foundation of clinical cancer diagnosis and related drug development.
During the large-scale screening for cancer prevention and early diagnosis, obtaining
cancer-related tissues is impossible. Thus, the identification of cancer-associated
circulating biomarkers from liquid biopsy targeting has been proposed and has become
the most important direction for research on clinical cancer diagnosis. Here, we
analyzed pan-cancer extracellular microRNA profiles by using multiple machine-learning
models. The extracellular microRNA profiles on 11 cancer types and non-cancer
were first analyzed by Boruta to extract important microRNAs. Selected microRNAs
were then evaluated by the Max-Relevance and Min-Redundancy feature selection
method, resulting in a feature list, which were fed into the incremental feature selection
method to identify candidate circulating extracellular microRNA for cancer recognition
and classification. A series of quantitative classification rules was also established for
such cancer classification, thereby providing a solid research foundation for further
biomarker exploration and functional analyses of tumorigenesis at the level of circulating
extracellular microRNA.

Keywords: circulating extracellular microRNA, signature, rule, cancer, subtype

INTRODUCTION

Cancer is one of the most threatening diseases to humans in the 21st century (Jemal et al., 2011;
Siegel et al., 2019). Cancer is regarded as the second most deadly disease following cardiovascular
diseases as it can invade multiple significant organs, including lung, liver, stomach, pancreas, and
even brain. According to the World Health Organization’s statistics in 2018 (Bray et al., 2018), more
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than 18 million new cases and about 1 million deaths due to
cancer exist globally. Accordingly, numerous studies have been
conducted on the pathological mechanisms, clinical diagnosis,
and treatment of cancer. Indeed, great achievements have been
made in this field.

In particular, the identification of cancer biomarkers is
regarded as one of the most significant parts of cancer studies as
the foundation of clinical cancer diagnosis (Griffith et al., 2008;
Ribaut et al., 2017) and related drug development (Jørgensen,
2019). Previously, researchers have revealed multiple cancer-
subtype specific biomarkers by using genomics, transcriptomics,
proteomics, or even multi-omic datasets (e.g., specific biomarkers
of different cancer subtypes) at different biological omic levels.
At the genomic level, specific biomarkers such as EGFR (Blakely
et al., 2017) and KRAS (Arbour et al., 2018) exist for lung cancer,
TP53 (Long et al., 2019) and LRP1B (Wang et al., 2019) for liver
cancer, and BRAF (Ribas et al., 2019) and TP53 (Xiao et al., 2018)
for skin melanoma. At the transcriptomic level, apart from the
transcripts of already identified genomic biomarkers, multiple
noncoding transcripts including microRNAs (e.g., hsa-miR-195-
5p) (Li L. et al., 2020) and long non-coding RNAs (e.g., FOXE1
and HOXB13-AS1_2) for lung cancers have also been confirmed
to be effective biomarkers for cancer diagnosis and classification
(Li et al., 2019). With the development of biotechnology and
biostatistics, cancer biomarkers at the proteomic level or even
at the integrated multi-omic level have also been identified.
For instance, in 2014, a systematic multi-omic analyses (Li
et al., 2014) on lung cancer have revealed a group of potential
multi-omic biomarkers for lung cancer, including EGFR and
CCT6A. Analyzing data at different omics can improve accuracy
and efficacy for potential biomarker identification. However,
almost all such studies are based on cancer tissue in situ. In
fact, during the large-scale screening for cancer prevention and
early diagnosis, obtaining cancer-related tissues is impossible.
To solve this problem, cancer-associated circulating biomarkers
from liquid biopsy targeting have been presented, which has
become one of the most important directions of clinical cancer
diagnosis studies.

In the field of cancer-associated liquid biopsy, many research
subdirections target biomarkers of different levels, such as cell-
free DNA, plasma protein, and circulating RNAs. In particular,
circulating RNAs have been extensively reported to be effective
for cancer diagnosis or even classification. In 2004, researchers
have shown that circulating plasma RNA may be a potential
source of biomarkers for cancer screening (El-Hefnawy et al.,
2004). In 2012, a systematic review has summarized the
specificity and sensitivity of extracellular circulating RNAs to
diagnosis and monitor different cancer subtypes (Zen and
Zhang, 2012). In 2018, a study (Yokoi et al., 2018) integrating
extracellular microRNA from serum for the diagnosis of
ovarian cancer has demonstrated that extracellular microRNA
biomarkers may distinguish one cancer subgroup from normal
controls and contribute to the detailed cancer classification by
comparing different cancer subgroups. These findings indicates
that circulating extracellular microRNA may also be a specific
“level/omics” of data that are sufficiently effective for cancer
diagnosis and classification.

TABLE 1 | Statistic of samples used in this study.

Index Class Sample size

1 Benign ovarian disease 29

2 Borderline ovarian tumor 66

3 Breast cancer 115

4 Colorectal cancer 115

5 Esophageal cancer 88

6 Gastric cancer 115

7 Hepatocellular carcinoma 81

8 Lung cancer 115

9 Non-cancer 2759

10 Ovarian cancer 333

11 Pancreatic cancer 115

12 Sarcoma 115

In total 4046

In the present study, based on shared data from a previous
study (Yokoi et al., 2018), we performed an effective feature-
selection procedure to identify candidate biomarkers for
cancer recognition and classification by using multiple
machine-learning models. The data was first analyzed by
the Boruta (Kursa and Rudnicki, 2010) method to extract
important microRNAs. Then, Max-Relevance and Min-
Redundancy (mRMR) (Peng et al., 2005) feature selection
method followed to evaluate the importance of each selected
feature and ranked them in a feature list. Such list was fed
into the incremental feature selection (IFS) (Liu and Setiono,
1998) method, incorporating one of the four classification
algorithms, to extract latent microRNA biomarkers and
build efficient classifiers. Additionally, a series of quantitative
classification rules for cancer classification was established.
This re-analysis on the extracellular microRNA dataset enabled
the identification of a group of potential biomarkers for
qualitative or quantitative cancer classification and laid a
solid research foundation for further biomarker exploration
and functional analyses of tumorigenesis at the circulating
extracellular microRNA level.

MATERIALS AND METHODS

Data
We downloaded the extracellular microRNA profiles of various
cancers and non-cancer samples from Gene Expression Omnibus
with accession number GSE1068171 (Yokoi et al., 2018); 4046
samples were included in such dataset and classified into
12 classes, including 11 cancer types and non-cancer class.
The sample size of each class is given in Table 1. For each
sample, the expression levels of 2565 microRNAs were measured
with 3D-Gene Human miRNA V21_1.0.0. To accelerate the
precision diagnosis of pan-cancer, we built a computational
pipeline for extracellular microRNA-based cancer detection
and classification.

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106817
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Boruta Feature Filtering
In the investigated dataset, lots of microRNAs (features) were
involved. Evidently, not all microRNAs are related to the
investigated cancer types. It is necessary to extract important
ones and discard others. Here, we employed Boruta (Kursa and
Rudnicki, 2010) method to quickly select relevant features with
particular class labels (e.g., cancer types or non-cancer class).
This method has been applied to deal with different biological
and medical problems (Pan et al., 2020; Yuan et al., 2020;
Zhang et al., 2021a).

Boruta is a random forest (RF)-based feature filtering method.
Its computation steps included the following steps: (1) creation
of shuffled data with shuffling original features in the original
dataset, (2) evaluation of feature importance by comparing the
RF on the original and shuffled data, (3) calculation of Z score
for each feature depending on the feature’s importance score, (4)
determination of the important feature by comparing its Z score
with those of the shadow features, and (5) the above procedures
stop until one of the following conditions was satisfied: (i) each
feature is tagged as either “important” or “unimportant” and (ii)
a predefined number of iterations is reached. The features tagged
by “important” were kept for further analysis.

This study adopted the Boruta program obtained from
https://github.com/scikit-learn-contrib/boruta_py, which was
implemented by Python. For convenience, default
parameters were used.

Max-Relevance and Min-Redundancy
Feature Selection
For the features selected by the Boruta method, mRMR (Peng
et al., 2005) feature selection method was adopted to evaluate
their importance. This method has wide applications in tackling
several biological and medical problems (Chen et al., 2018, 2020;
Zhao et al., 2018; Li M. et al., 2020; Pan et al., 2021).

mRMR method employed the Max-Relevance and Min-
Redundancy to assess the importance of features. Features with
high relevance to class labels and low redundancy to other
features were termed to be important. To quantify the relevance
and redundancy, it uses mutual information (MI). For two
variables x and y, the MI score between them is defined by:

I(x, y) =

x
p(x, y) log

p(x, y)
p(x)p(y)

dxdy (1)

where p(x)/p(y) and p(x,y) represent the marginal probabilistic
density of x/y and joint probabilistic density of x and y,
respectively. The mRMR method evaluates the importance of
features by listing them in a feature list. A loop procedure is
performed to produce the list. At first, this list is empty. For
each feature not in the list, calculate its relevance to class labels,
measured by the MI score of it and class label variable, and its
redundancy to features in the list, measured by the average MI
scores between it and features in the list. The feature with highest
difference of relevance and redundancy is picked up and added to
the list. When all features are in the list, the loop stops. This list
was called mRMR feature list in this study. The combination of

some top features can be the optimum feature space for a given
classification algorithm.

The current study adopted the mRMR program retrieved
from http://penglab.janelia.org/proj/mRMR/. Likewise, default
parameters were used.

Incremental Feature Selection
mRMR method only provided a feature list. It was still a
problem for selecting optimum features for a given classification
algorithm. Thus, we employed the IFS method (Liu and Setiono,
1998; Zhang et al., 2021b).

Using the mRMR feature list from the above mRMR, a series
of feature subsets can be produced with a step interval as one. For
example, the first feature subset includes the first feature in the
list, and the second feature subset includes the first two features,
and so on. Each classifier is then trained on the training data, in
which samples are represented by features in one feature subset.
Then, each classifier is evaluated by 10-fold cross-validation
(Kohavi, 1995). The classifier with the best performance is
selected and termed as the optimum classifier. The corresponding
feature subset is determined as the optimal one.

Synthetic Minority Oversampling
Technique
Considering the used extracellular microRNA dataset has
remarkably different numbers of samples (see Table 1), synthetic
minority oversampling technique (SMOTE) (Chawla et al., 2002)
was performed to produce sufficient new samples for minor
classes. When evaluating the performance of a classifier with ten-
fold cross-validation, we used SMOTE to create a new dataset
with an equal sample number of different classes. For this
analysis, the “SMOTE” tool in Weka software2 (Frank et al., 2004;
Witten and Frank, 2005) was used.

Classification Algorithm
To execute the IFS method, one classification algorithm is
necessary. In this study, we tried four classification algorithms:
RF (Breiman, 2001), support vector machine (SVM) (Cortes
and Vapnik, 1995), k-nearest neighbor (kNN) (Cover and Hart,
1967), and decision tree (DT) (Safavian and Landgrebe, 1991).
These algorithms have wide applications in tackling different
problems (Ben-Hur et al., 2008; Ahmed et al., 2013; Chen et al.,
2017; Sankari and Manimegalai, 2018; Baranwal et al., 2019; Jia
et al., 2020; Liang et al., 2020; Liu H. et al., 2020; Zhou et al.,
2020a,b; Zhu et al., 2021). For convenience, these algorithms were
performed with their default parameters, which are set in the
corresponding platform.

RF
It is an assembly classification algorithm that contains several
DTs. Each DT is built by randomly selecting samples and features
from the original dataset. For a query sample, each DT provides
the prediction class. RF integrates these prediction classes with
majority voting, i.e., the class receiving most votes is the predicted
class of RF. Although DT is a relatively weak classification

2https://www.cs.waikato.ac.nz/ml/weka
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algorithm, RF is much stronger. The current study adopted the
Scikit-learn package to implement RF.

SVM
It can transform data with a nonlinear pattern from original
low-dimensional data space to a new high-dimensional data
space, where the data display a linear pattern. Then, it divides
the data points in such high-dimensional space, requiring data-
interval maximization among different data classes/groups. It
could predict the class or group of a new sample by determining
the interval to which this new sample data belongs. Here, the tool
“SMO” in Weka was adopted to construct SVM classifiers. The
training procedure of this SVM is optimized by the sequential
minimal optimization algorithm (Platt, 1998).

kNN
It is one of the most classic classification algorithms. For a
test sample, it initially computes the distance between it and
the training samples. Then, it ranks all training samples with
the increasing order of the distances. Next, it selects the k
high-ranked training samples (i.e., nearest k neighbors) and
further estimates the label distribution of these k samples. The
label distribution is then used to help predict the class of test
sample, i.e., the class label with the highest frequency in the label
distribution. The tool “IBk” in Weka was performed for kNN
classifier building.

DT
Different from the above three classification algorithms, which
can only be used to construct black-box classifiers, DT can
construct human understanding classification and regression
models by using interpretative rules. Generally, it indicates
individual features’ roles and weights in classification or
regression models by using the IF–TEHN format. Here, the
CART algorithm with the Gini index in the Scikit-learn package
was used for DT classifier construction.

RESULTS AND DISCUSSION

In this study, we gave a computational investigation on the
extracellular microRNA dataset of multiple cancer types. Some
feature selection methods and classification algorithms were
adopted. The entire procedures are illustrated in Figure 1.
This section first introduced the results and then gave an
extensive discussion.

Results of Boruta and mRMR Methods
We first applied the Boruta method to the extracellular
microRNA dataset for discarding non-essential features
(microRNAs). As a result, 1849 features were excluded and 716
features were kept. These remaining features are provided in
Supplementary Table S1.

For the remaining 716 features, they were further analyzed by
the mRMR method. As mentioned in Section “Max-Relevance
and Min-Redundancy Feature Selection”, a feature list, mRMR
feature list, was generated, in which features were ranked
according to their importance. This list is also provided in
Supplementary Table S1.

Results of IFS Method With Different
Classification Algorithms
The mRMR feature list generated by mRMR method was fed
into the IFS method. Using an interval step of 1, many feature
subsets were extracted, e.g., the first feature subset contained
the top-ranked feature, and the second feature subset contained
the two top-ranked features. For each feature subset and one
of the four classification algorithms (SVM, RF, kNN, and DT),
a classifier was built on samples represented by features in the
subset. Ten-fold cross-validation (Kohavi, 1995) was adopted to
evaluate the performance of each classifier. Notably, SMOTE
was applied when assessing the performance of each classifier.
Results were counted as the following measurements: accuracy
on each class, overall accuracy (ACC) and Matthew correlation
coefficient (MCC) (Matthews, 1975; Gorodkin, 2004). These
measurements are available in Supplementary Table S2. For an
easy observation, one IFS curve was plotted for each classification
algorithm, in which MCC was set as the Y-axis and number of
used features was set as the X-axis, which is shown in Figure 2.
For kNN, the highest MCC was 0.957 when top 12 features were
used. Accordingly, the optimum kNN classifier was built using
these 12 features. The highest MCC of RF was 0.931, which was
obtained by the top 14 features. The optimum RF classifier with
these top 14 features can be set up. As for SVM, the highest MCC
was 0.987 when top 552 features were adopted. It was higher
than that of the optimum kNN or RF classifiers. The ACCs of
above three optimum classifiers are listed in Table 2. The ACC
of the optimum SVM classifier was also highest. The accuracies
on 12 classes yielded by these optimum classifiers are illustrated
in Figure 3. Evidently, the optimum SVM classifier was also best.
Because the partition of the 10-fold cross-validation can influence
the evaluation results, we further tested the performance of the
optimum SVM classifier with ten-fold cross-validation 20 times.
Obtained ACCs and MCCs are illustrated in Figure 4. The ACCs
varied between 0.990 and 1.000, whereas MCCs were between
0.980 and 1.000, indicating that such optimum classifier was quite
stable and above results can be believable.

In addition to three black-box classification algorithms, we
also employed a white-box algorithm, DT, to do the same test.
The IFS results are also provided in Supplementary Table S2
and the IFS curve was plotted in Figure 2. The optimum DT
classifier produced the MCC of 0.918, which was based on the
top 74 features. The corresponding ACC was 0.955, which is
listed in Table 2. The ACC and MCC were lower than those
of the above-mentioned three optimum classifiers. Furthermore,
the accuracies on 12 classes of the optimum DT classifier are
shown in Figure 3. They were also lower than those of other
three optimum classifiers. Although the performance of the
optimum DT classifier was lower than other three optimum
classifiers, it can provide a clear classification procedure, thereby
providing more insights to investigate different cancer types. In
view of this, we constructed a DT based on the top 74 features,
which were used to build the optimum DT classifier. Then, 333
microRNA rules were extracted from such DT, which are available
in Supplementary Table S3. Each class was assigned to some
rules, where the number of rules (50) on “ovarian cancer” was
most, followed by “non-cancer.” The numbers of rules on “benign
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FIGURE 1 | Flow chart to show entire procedures. The original data are retrieved from Gene Expression Omnibus, which contains 4046 samples and 12 classes. The
extracellular microRNA profiles are analyzed by Boruta and mRMR methods one by one, resulting in a feature list. The list is fed into the IFS method, incorporating
four classification algorithms, SMOTE and ten-fold cross-validation, to extract essential microRNAs, construct efficient classifiers, and set up classification rules.

FIGURE 2 | IFS curves with different classification algorithms on different number of features. Four algorithms yielded the highest MCCs with top 74, 12, 14, and 552
features.

ovarian disease” and “gastric cancer” were least, which were only
17. The number of rules for each class is shown in Figure 5.

Here, a group of qualitative microRNAs (features) and
quantitative microRNA rules were identified to contribute
to detailed cancer-classification recognition. According to
recent publications, the top-ranked optimal features and rules
were supported and validated with the respective cancer-
subtype specific pathological roles, which will be discussed
in Sections “Optimal MicroRNAs Contributing to Cancer

Classification” and “Optimal MicroRNA Rules Contributing to
Cancer Classification”.

Optimal MicroRNAs Contributing to
Cancer Classification
By analyzing the shared extracellular microRNA dataset, we
identified a group of microRNAs that can effectively distinguish
different cancer subtypes but not cancer or controls, reflecting
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TABLE 2 | Performance of IFS with four different classification algorithms.

Classification algorithm Number of features ACC MCC

Decision tree 74 0.955 0.918

k-nearest neighbor 12 0.976 0.957

Random forest 14 0.961 0.931

Support vector machine 552 0.993 0.987

FIGURE 3 | Violin plot to show accuracies on 12 classes yielded by the
optimum classifiers with four different classification algorithms. The optimum
SVM classifier was best.

FIGURE 4 | Violin plot to show ACCs and MCCs yielded by the optimum SVM
classifier under 10-fold cross-validation 20 times. ACC and MCC vary in a
small interval, suggesting the stability of the optimum SVM classifier.

the internal differences among different cancer subtypes. This
section selected the top 10 microRNAs in the mRMR feature list
for detailed analysis, which are listed in Table 3.

The first identified microRNA was hsa-miR-5100
(MIMAT0022259). According to recent publications, this
microRNA has been identified in multiple tumor-related

studies and is functionally correlated with tumorigenesis
(Tang et al., 2014; Wang et al., 2016; Jacob et al., 2018;
Tian et al., 2020). However, it has been confirmed to have a
specific expression level only in plasma in colon cancer (Jacob
et al., 2018) and in extracellular matrix in oral carcinoma
(Kawakubo-Yasukochi et al., 2018). Accordingly, predicting
this microRNA to have discriminative capacity in 11 candidate
cancer subtypes is reasonable.

The next predicted microRNA signature was miR-6088
(MIMAT0023713). It has also been identified in only three cancer
subtypes, namely nasopharyngeal cancer (Li K. et al., 2020),
ovarian cancer (Pandey et al., 2019), and melanoma (Wozniak
et al., 2017), thereby confirming its classification capacity for
ovarian cancer in our dataset. The third predicted signature, miR-
4532 (MIMAT0019071), has also been regarded as a potential
circulating extracellular cancer biomarker according to previous
studies (Fiorino et al., 2016; Pascut et al., 2019; Zhao et al., 2019),
including hepatocellular carcinoma (Fiorino et al., 2016) and
leukemia (Zhao et al., 2019).

As regards the two microRNAs miR-6746 (MIMAT0027392)
and miR-8073 (MIMAT0031000), both reportedly participate
in specific cancer-associated tumorigenesis, corresponding
with our prediction. For miR-6746, it has been shown to
have specific expression level in the plasma of pancreatic
cancer patients but not in those of other patients (Sheng
et al., 2020). For miR-8073, it has been identified in both
pancreatic (Shams et al., 2020) and breast (Cui et al., 2018)
cancers, implying that such microRNA may distinguish
two cancer subtypes from the other cancer subtypes and
normal controls.

The next microRNA, miR-6800 (MIMAT0027500), is also
reportedly a potential biomarker for prostate (Liu H.P. et al.,
2020) and colorectal (Yan et al., 2017) cancers, confirming its
capacity for distinguishing colorectal cancer from 11 other cancer
subtypes and normal controls in this analysis.

The remaining microRNAs, namely miR-1343
(MIMAT0019776), miR-4783 (MIMAT0019947), miR-
221 (MIMAT0000278), and miR-4787 (MIMAT0019957),
have also been confirmed to contribute to specific cancer
subtypes [e.g., lung adenocarcinoma correlated with miR-
1343 (Zhang X. et al., 2020), rectal cancer correlated with
miR-4783 (Mullany et al., 2016), prostate cancer correlated
with miR-221 (Agaoglu et al., 2011), and pancreatic cancer
correlated with miR-4787 (Mody et al., 2016)], thereby further
validating the efficacy and accuracy of our newly established
computational workflow.

Optimal MicroRNA Rules Contributing to
Cancer Classification
In addition to the above identified microRNA si+oldd
gnatures, we recognized and established a series of quantitative
classification rules for more interpretable cancer classification.
Due to the limitation of the manuscript’s length, we selected
one representative rule for each specific cancer classification for
subsequent detailed discussions, including 11 cancer subtypes
and 1 normal control.
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FIGURE 5 | Pie chart to show the number of rules for each class.

TABLE 3 | Top 10 microRNAs identified by Boruta and mRMR methods.

Rank miRbase accession number microRNA (Full name)

1 MIMAT0022259 hsa-miR-5100

2 MIMAT0023713 miR-6088

3 MIMAT0019071 miR-4532

4 MIMAT0027392 miR-6746

5 MIMAT0031000 miR-8073

6 MIMAT0027500 miR-6800

7 MIMAT0019776 miR-1343

8 MIMAT0019947 miR-4783

9 MIMAT0000278 miR-221

10 MIMAT0019957 miR-4787

The first rule for the identification of Benign Ovarian
Disease is rule 58, involving 14 different microRNAs. Among
these microRNAs, a specific microRNA named as miR-5100
(MIMAT0022259) has been detected in the plasma of benign
ovarian cysts, which can be classified into benign ovarian
disease, corresponding with our prediction (Zhang L. et al.,
2020). As for Borderline Ovarian Tumor, rule 72 has been
confirmed to contribute to the identification of patients
with such disease. Among multiple microRNA biomarkers,
the significant one is also miR-5100 (MIMAT0022259),
indicating that it is still an ovarian-associated signature.
Moreover, miR-296 (MIMAT0000690) has been predicted
to be correlated with Borderline Ovarian Tumor, whose
correlation has also been verified (Li Y. et al., 2020). For
breast cancer, as discussed above, miR-8073 (MIMAT0031000)
shown in rule 145 has been validated to be related to breast
cancer with relatively high expression level (Cui et al.,
2018). Similarly, miR-6800 (MIMAT0027500) of colorectal
cancer shown in rule 274 has been discussed above (Yan
et al., 2017), indicating a relatively low expression level of
such microRNA compared with normal controls and other
cancer subtypes.

For esophageal cancer and gastric cancer, the optimal
quantitative microRNA features in the rules have also been
validated. In esophageal cancer, as described in rule 13, miR-
6784 (MIMAT0027468) has been shown to have a relatively high
expression level and validated by recent publications (Fujihara
et al., 2015). As for gastric cancer-associated signatures at the
microRNA level, miR-3663 (MIMAT0018085) has been shown to
be a potential biomarker for gastrointestinal tumors, including
gastric cancer (Lee et al., 2016; Xu et al., 2018; Kubo et al., 2019).
To specifically identify gastric cancer, another microRNA named
miR-1343 (MIMAT0019776) has been shown to be a specific
gastric cancer-associated microRNA by regulating TEAD4 (Zhou
et al., 2017), thereby validating our prediction.

As regards class hepatocellular carcinoma, lung cancer, and
ovarian cancer, we also identified specific classification rules
with the specific microRNA signatures discussed above. For
hepatocellular carcinoma, miR-4532 (MIMAT0019071) has been
shown to be a decisive biomarker with a relatively low expression
level (Fiorino et al., 2016) in rule 158, corresponding with
our discussion above. In lung cancer-associated rules, a typical
rule named rule 162 has been shown to have a relatively high
expression level of miR-1343 (MIMAT0019776) in patients’
plasma compared with normal controls and other patients
with other cancer subtypes (Zhang X. et al., 2020). Similar
rules have been established for ovarian cancer involving miR-
6088 (Pandey et al., 2019), implying the reliability of our
predicted rules.

For pancreatic cancer and sarcoma, miR-6746
(MIMAT0027392) shown as a significant parameter in rule
207 has also been confirmed to be correlated with and be specific
for pancreatic cancer, as discussed above (Sheng et al., 2020),
confirming the efficacy of our prediction. For sarcoma, miR-92B
(MIMAT0004792) shown in rule 9 has been presented to be
up-regulated in sarcoma compared with other cancer subtypes
and no cancer controls. According to recent publications, in
2017, researchers already confirmed that miR-92B is a novel
biomarker for carcinoma monitoring (Uotani et al., 2017),

Frontiers in Genetics | www.frontiersin.org 7 March 2021 | Volume 12 | Article 651610

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-651610 March 4, 2021 Time: 17:38 # 8

Yuan et al. Distinguishing Cancer Subtypes With MicroRNA

corresponding with our prediction. Apart from the discussion
above, individuals with extracellular microRNA profiling not
satisfying either of the above rules may be classified into controls.

CONCLUSION

As discussed above, our identified optimal microRNA signatures
and related quantitative classification rules have all been verified
by recent publications, helping us classify different cancer
subgroups and non-cancer controls. For the first time, we
integrated feature selection and machine-learning models with
inherited information at the extracellular microRNA level to
present a new workflow for cancer-classification recognition,
early diagnosis, and monitoring with high prediction specificity.
The promising results obtained in this study (microRNA
signatures and rules) may validate the specific and diverse roles
of extracellular microRNAs during tumorigenesis and may also
lay a solid foundation for further studies on the potentials of
extracellular microRNAs on tumor diagnosis and monitoring.
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