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Heart failure with preserved ejection fraction (HFpEF) has become a major health issue 
because of its high mortality, high heterogeneity, and poor prognosis. Using genomic data 
to classify patients into different risk groups is a promising method to facilitate the 
identification of high-risk groups for further precision treatment. Here, we applied six 
machine learning models, namely kernel partial least squares with the genetic algorithm 
(GA-KPLS), the least absolute shrinkage and selection operator (LASSO), random forest, 
ridge regression, support vector machine, and the conventional logistic regression model, 
to predict HFpEF risk and to identify subgroups at high risk of death based on gene 
expression data. The model performance was evaluated using various criteria. Our analysis 
was focused on 149 HFpEF patients from the Framingham Heart Study cohort who were 
classified into good-outcome and poor-outcome groups based on their 3-year survival 
outcome. The results showed that the GA-KPLS model exhibited the best performance 
in predicting patient risk. We further identified 116 differentially expressed genes (DEGs) 
between the two groups, thus providing novel therapeutic targets for HFpEF. Additionally, 
the DEGs were enriched in Gene Ontology terms and Kyoto Encyclopedia of Genes and 
Genomes pathways related to HFpEF. The GA-KPLS-based HFpEF model is a powerful 
method for risk stratification of 3-year mortality in HFpEF patients.

Keywords: risk prediction, kernel partial least squares, genetic algorithm, heart failure with preserved ejection 
fraction, machine learning

INTRODUCTION

Heart failure (HF) is the leading cause of death and disability worldwide among older adults 
(Manolis et  al., 2019). Over 50% of patients with HF exhibit heart failure with preserved 
ejection fraction (HFpEF; Komajda et  al., 2011; Rich et  al., 2018), and the prevalence of 
HFpEF is increasing relative to heart failure with reduced ejection fraction (HFrEF) at an 
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alarming rate of 1% per year (Monika et  al., 2018). HFpEF 
is a heterogeneous syndrome that contributes to abnormal 
cardiac structure or function, seriously endangering human 
health (Antlanger et al., 2017; Garg et al., 2017). HFpEF patients 
have a poor prognosis, and the 5-year mortality rate of HFpEF 
is as high as 50% (Shah et  al., 2017). While the mortality 
rate of HFrEF has significantly decreased over the past few 
years because of specific HFrEF treatments (Loh et  al., 2013), 
no effective treatment has been identified for HFpEF patients 
(Shah et al., 2014). Arguably, with an aging population worldwide, 
the emerging epidemic of HFpEF requires urgent attention to 
determine methods for faster disease risk assessment and to 
predict clinical outcomes to guide therapy, monitoring, and 
patient management.

While numerous risk assessment models have been developed 
in cohorts with HFrEF or a mixture of HFrEF and HFpEF, 
risk prediction in HFpEF patients has been less studied 
(Thorvaldsen et  al., 2017; Angraal et  al., 2020). This may 
be  associated with the poor prognostic factors used to predict 
HFpEF patients (Kanda et al., 2018). The existing risk assessment 
models for HFpEF are predominantly based on clinical phenotype 
data, such as baseline demographic and clinical data and 
electrocardiographic, echocardiographic, and laboratory testing 
data (Komajda et  al., 2011; Thorvaldsen et  al., 2017; Rich 
et  al., 2018; Angraal et  al., 2020). Unfortunately, these models 
constructed using clinical phenotypic data have low sensitivity 
or specificity, and patients are likely to be  misdiagnosed. No 
model has gained widespread acceptance to date. The estimate 
of an HFpEF patient’s prognosis in daily practice is still mainly 
based on the experience of clinicians (Ferrero et  al., 2015; 
Thorvaldsen et  al., 2017; Manolis et  al., 2019). A great need 
exists to develop an effective risk model for HFpEF to aid in 
the design of future clinical trials.

With advances in sequencing and computer technology, high 
throughput expression data can be  extracted without limits. 
Genomic measures of gene expression offer rich information 
about the underlying disease mechanism and have provided 
new possibilities of using these molecular data to understand 
the disease gene function and further predict disease outcomes 
(Haring and Wallaschofski, 2012). Based on the expression 
data, great efforts have been devoted to disease classification, 
clinical outcome prediction, and the identification of genes 
with potential therapeutic molecular signatures (Penney et  al., 
2011; Khan et  al., 2012; Vargas and Lima, 2013; Wang et  al., 
2019). HFpEF is a complicated clinical syndrome with high 
molecular heterogeneity and diverse manifestations (Shah et al., 
2015) and is further complicated with a potentially nonlinear 
relationship between genes and the clinical outcome. Thus, 
conventional generalized linear models (e.g., logistic regression) 
are poor choices for risk prediction. Advanced statistical 
techniques and machine learning methods show great potential 
in improving the classification performance over conventional 
statistical tools through the nonlinear effects of variables to 
achieve accurate prediction (Angraal et  al., 2020) and should 
be  studied for HFpEF prediction.

The purpose of this work is to evaluate six different risk 
stratification models and to predict the survival risk of HFpEF 

patients based on gene expression profiles using data from a 
high-quality epidemiologic study, the Framingham Heart Study 
(FHS). We  applied five advanced machine learning methods 
[i.e., kernel partial least squares based on the genetic algorithm 
(GA-KPLS), random forest (RF), the least absolute shrinkage 
and selection operator (LASSO), ridge regression (RR), support 
vector machine (SVM), and a conventional logistic regression 
model (Logit)] to build an optimal risk stratification model. 
Identification of patients with a high risk of HFpEF will 
be helpful for targeted interventions and clinical trials to further 
improve the survival of HFpEF patients.

MATERIALS AND METHODS

Data
Framingham Heart Study
The FHS data used in this study included clinical, survival, 
and expression data downloaded from dbGAP (study accession: 
phs000007, http://dbgap.ncbi.nlm.nih.gov). The FHS has recruited 
participants from Framingham, MA, United  States, to undergo 
biennial examinations to investigate cardiovascular disease and 
its risk factors since 1948 (Oppenheimer, 2005). Offspring (and 
their spouses) and adult grandchildren of the original cohort 
of participants were recruited into the second- and third-
generation cohorts in 1971 and 2002, respectively (Yao et al., 
2015). In this study, the clinical and gene expression data 
were obtained from the offspring cohort who (i) attended the 
eighth examination cycle conducted between 2005 and 2008 
and (ii) had both clinical and gene expression profiles.

HFpEF Patients
According to the guidelines of the European Society of Cardiology 
(McMurray et  al., 2018), patients were diagnosed with HFpEF 
using the following four conditions: (1) typical signs or symptoms 
of HF, (2) B-type natriuretic peptide >35  pg/ml and/or 
N-terminal-pro hormone B-type natriuretic peptide >125  pg/
ml, (3) left ventricular ejection fraction >50%; and (4) structural 
HF (left ventricular hypertrophy/left atrial enlargement) and/
or diastolic dysfunction. We  excluded patients with valvular 
stroma and/or hypertrophic cardiomyopathy, resulting in 
inclusion of 172 HFpEF patients (103 males and 69 females). 
Patients whose 3-year survival status was unknown were filtered 
out by design (Fransen et  al., 2011). Finally, 149 individuals 
(91 males and 58 females) who had full survival information 
after 3  years were included in the study.

Gene Expression Data
The expression data contained 17,873 gene expression probes. 
We  mapped these probes to genes following the annotation 
from the Affymetrix Human Exon 1.0 ST GeneChip platform, 
which yielded 17,358 genes. The gene expression data were 
log2 (x + 1) transformed and then standardized (Cheerla and 
Gevaert, 2017). A variable screening procedure called as sure 
independence screening was applied to reduce the gene expression 
dimensionality from an ultra-high to a moderate scale, with 
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a binary response defined as a “good outcome” or “poor 
outcome” for each individual. Following the sure independence 
screening criterion {i.e., keeping d  =  [2n/log(n)] features; Fan 
and Lv, 2008}, the top  137 features were retained for 
further analysis.

Clinical Outcome
The clinical outcome was defined as a good or poor outcome 
based on patients’ survival status. The good-outcome group 
had event-free survival for at least 3  years [survival time was 
measured from the time of admission for HFpEF diagnosis 
to the time of last follow-up (2011) or time of death from 
cardiovascular disease]. The poor-outcome group included 
patients who died because of cardiovascular disease during 
the 3-year period. We further explored the differentially expressed 
genes (DEGs) between the good-outcome and poor outcome 
groups using significance analysis of microarrays (Tusher et al., 
2001) and then conducted Gene Ontology (GO) enrichment 
analysis and the Kyoto Encyclopedia of the Genes and Genomes 
(KEGG) pathway analysis based on the DEGs using KOBAS 
software1 (Ai and Kong, 2018).

Statistical Analysis
KPLS Prediction Model Optimized With the 
Genetic Algorithm
The kernel partial least squares method can map the original 
data points from the original input space RN into a high-
dimensional feature space ℱ, and therefore, original data that 
cannot be linearly separated in RN can be separated in ℱ (Rosipal 
and Trejo, 2002), which improves the classification performance 
to achieve accurate prediction. A genetic algorithm (GA) is an 
optimization method based on the genetic mechanism of “survival 
of the fittest.” In this study, we  used a Gaussian kernel function 
to construct the kernel matrix for gene expression data and 
then used the genetic algorithm to optimize the Gaussian kernel 
function parameter σ. The Gaussian kernel function is given 

as K x x x xi j i j, ( )= − −( )exp
2 2

2 s . For the details of the 

method, readers are referred to Yang et  al. (2020). Because 
we  only used gene expression data for prediction, the only 
parameter that needed to be optimized was the kernel bandwidth σ.

Other Prediction Models
Ridge regression and LASSO fit prediction models by shrinkage 
or regularization of the regression coefficients (Frank and 
Friedman, 1993; Tibshirani, 1996). The LASSO method can 
shrink some coefficients to exactly zero. Both models were 
developed to minimize prediction errors. For the LASSO and 
RR methods, the optimal tuning parameter λ was chosen by 
10-fold cross-validation over a grid of 100  λ values. The RR 
and LASSO methods were performed using the R glmnet package.

The SVM method was developed to solve high-dimensional 
classification problems (Furey et  al., 2000) and was performed 

1 http://kobas.cbi.pku.edu.cn

using the R e1071 package. The radial basis kernel function 
was used in the SVM.

An RF uses the bootstrap method to extract n samples 
from the original data and generate B classification trees. These 
B trees constitute a random forest. Each observation’s predictive 
result is determined by a majority vote; the overall prediction 
is the most commonly occurring class among the B classification 
trees (Austin et  al., 2013). The RF method was performed 
using the randomForest package in R. All parameter values 
were set using the default.

Model Training and Testing
In our study, the original data were divided into two 
non-overlapping data sets: modeling data and external testing 
data. We randomly selected modeling data and external testing 
data at a ratio of 80:20. The modeling set was used to train 
the prediction model, and the testing set was used to evaluate 
the prediction performance. The entire process of randomly 
selecting the modeling and testing data was repeated 1,000 
times to increase the stability and repeatability of the results.

Model Performance
We used multiple evaluation criteria to evaluate the predictive 
performances of the six models, including the area under the 
curve (AUC), sensitivity (Se), specificity (Sp), accuracy (ACC), 
Youden index, G-means, and Matthews correlation coefficient 
(MCC). The MCC and AUC were mainly used to evaluate 
the model performance because they are more comprehensive 
evaluation criteria. We  employed one-way ANOVA, followed 
by Dunnett’s multiple-comparison test, to compare the 
performance of the GA-KPLS and the five other models (RF, 
LASSO, RR, Logit, and SVM). Statistical significance was 
indicated by a value of p  <  0.05.

RESULTS

Characteristics of HFpEF Patients in the 
FHS
At the end of the 3-year period, 42 patients (28.19%) met 
the study endpoint of cardiovascular disease-related death, and 
107 patients (71.81%) had survived. There were 91 males 
(61.07%) and 58 females (38.93%). The average age was 75.02 
(±8.02) years old. Table  1 shows the baseline condition of 
both groups, patients with good outcomes, and those with 
poor outcomes. There was no significant difference in age, 
gender, comorbidities, vital signs, or laboratory data (except 
for systolic blood pressure) between the two groups.

Model Performance Comparison
We compared the classification performance of the six models: 
GA-KPLS, RF, LASSO, RR, SVM, and Logit. The evaluation 
index of the six models was summarized as the average value 
obtained by repeating the data partition 1,000 times. Table  2 
shows the prediction results of the six models. As shown in 
the table, the GA-KPLS model exhibited the best performance 
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in nearly all the criteria except for specificity. This finding clearly 
demonstrates the superior performance of the GA-KPLS model. 
To further display the prediction results, we chose the evaluation 
criterion AUC to demonstrate the performance obtained by 
1,000 random splits (see Figure  1). The AUC of the GA-KPLS 
model was significantly different from those of the RF, LASSO, 
RR, Logit, and SVM models, indicating the superior performance 
of the GA-KPLS model over the other models. It is interesting 
to note that the performance of the SVM model was quite 
similar to that of the GA-KPLS model. Based on the results, 
we  concluded that the risk prediction model constructed by 
the GA-KPLS method had the best performance and can provide 
a methodological reference to assess the risk of HFpEF.

Prediction Result of HFpEF Using the 
GA-KPLS Method
To demonstrate the clinical significance of identifying high-risk 
patients, we  selected the prediction result of one random split 
with 120 training samples and 29 testing samples, which gave 
an MCC  =  0.920 (close to MCCmean  =  0.921). The Kaplan-Meier 
curves based on the original and predicted data yielded significantly 
different survival probabilities (p  <  0.0001). Figure  2 shows the 
survival curves of the two groups. The left panel shows the survival 
curve from the original data, and the right panel shows the 
survival curve based on the newly predicted risk group with the 
GA-KPLS method. The prediction method exhibited good 
performance because the survival curves using the original and 
predicted values were very similar. To predict a future event, all 
the data can be  used as the training set, and then the risk group 
status can be  predicted based on measured gene expression data.

DEGs Between the Good-Outcome and 
Poor-Outcome Patients
We treated the good-outcome group as the control group to 
identify DEGs. Of a total of 137 top genes, 116 DEGs were 
identified based on a threshold value of q  <  0.05, among 
which 70 genes were upregulated and 46 were downregulated. 
The significant features of gene expression are shown in a 
heat map (see Figure 3). A block-like structure can be observed 
between the good-outcome and poor-outcome groups.

Among the 116 DEGs, the TRAℱ3IP2, C1QTNℱ9, TECRL, 
and Eph genes have been reported to be  associated with 
HF. TRAℱ3IP2 is an upstream regulator of multiple 
proinflammatory pathways. TRAℱ3IP2 overexpression may 
activate IKK/NF-B, p38 MAPK, and JNK/AP-1 and induce 
proinflammatory cytokines, leading to cardiac fibrosis and 
contractile dysfunction (Yariswamy et  al., 2016). C1QTNℱ9 
(CTRP9) is an important member of the CTRP protein family. 
Appari et  al. (2016) found that C1QTNℱ9 knock-out mice 
were protected from left ventricular dilatation and contractile 
dysfunction; however, C1QTNℱ9 overexpression promoted 
ventricular remodeling and systolic dysfunction. TECRL was 
recently suggested to play a key role in the electrical activity 
of the heart. TECRL affects the electrical conduction system 
of the heart by causing mutations in a calcium-processing 
protein, which eventually leads to arrhythmia (Perry and 
Vandenberg, 2016). The Eph/ephrin receptor ligand comprises 
the largest family of receptor tyrosine kinases and affects 
the behavior of cells mainly by activating signal transduction 
pathways. Eph/ephrin expression may lead to phenotypic 
changes in the vascular endothelium during inflammation, 

TABLE 1 | Clinical characteristics of the study population (N = 149).

Characteristic Good-outcome group (107) Poor-outcome group (42) 𝜒𝜒2/t p-value

Age, years 74.44 ± 8.23 76.50 ± 7.46 0.572 0.568
Female, n (%) 40(37.4) 18(42.9) 0.380 0.538
Comorbidities, n (%%)

Hypertension 84(78.5) 33(78.6) <0.001 0.993
Hyperlipidemia 70(65.4) 26(61.9) 0.163 0.687
Diabetes 27(25.2) 11(26.2) 0.015 0.904
Vital signs and laboratory data

Systolic blood pressure, mmHg* 127.74 ± 18.44 138.88 ± 22.71 −3.102 0.002
Diastolic blood pressure, mmHg 65.64 ± 11.58 67.83 ± 9.55 −1.08 0.279
Body mass index, kg/m2 29.84 ± 5.47 29.21 ± 5.68 0.633 0.528
Serum creatinine, mg/dl 1.24 ± 0.86 1.29 ± 0.88 0.288 0.774
Total cholesterol, mg/dl 162.12 ± 36.70 167.74 ± 41.31 −0.811 0.419
Heart rate, bpm 62.50 ± 10.90 64.45 ± 12.97 −0.929 0.354

*Shows the statistical significance at the α = 0.05 level.

TABLE 2 | Model performance.

Model Se Sp AUC ACC Youden F-measure MCC G-means

GA-KPLS 0.925 0.984 0.955 0.968 0.909 0.939 0.921 0.953
RF 0.319 0.974 0.646 0.793 0.293 0.445 0.427 0.535
LASSO 0.605 0.943 0.774 0.850 0.548 0.678 0.608 0.745
RR 0.469 1.000 0.734 0.853 0.469 0.618 0.620 0.669
Logit 0.549 0.574 0.591 0.567 0.122 0.410 0.112 0.548
SVM 0.870 0.989 0.929 0.956 0.859 0.913 0.891 0.926
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causing inflammatory cells to enter the interstitial tissue 
from the vascular space (Coulthard et  al., 2012).

The role of DUSP1 is controversial, as both anti-inflammatory 
and pro-atherosclerotic actions have been suggested (Hahn 
et  al., 2014). Auger-Messier et  al. (2013) suggested that the 
disruption of DUSP1 promoted p38 MAPK activity, which 
could reduce cardiac contractility and calcium handling; 
thus, DUSP1 could be  a target gene for prevention of HF. 
In addition, LHℱPL2 and SNX24 are associated with coronary 
artery disease (Lin et  al., 2013; Shendre et  al., 2017). 
HIST1H4B is associated with the immune process (Zhang 
et al., 2019). OXER1 is involved in the inflammatory response 
of the disease (Dattilo et  al., 2015). The empirical evidence 
suggests the importance of the identified DEGs associated 
with HFpEF.

Functional Analysis of DEGs
To further investigate the functional relevance of the DEGs, 
we  performed GO enrichment and KEGG pathway analyses. 
The DEGs were significantly enriched in 12 GO terms, with 

a corrected value of p  <  0.05. GO terms comprised three 
categories: biological process, cell component, and molecular 
function. Figure  4 shows all significant GO terms. The most 
significantly enriched GO terms were plasma membrane (corrected 
value of p  =  2.67E−07), G protein-coupled receptor signaling 
pathway (corrected value of p = 3.06E−04), and protein binding 
(corrected value of p = 3.06E−04). The plasma membrane plays 
important roles in maintaining homeostasis, cell material 
exchange, and information transmission (Lutz et al., 2003; Wang 
et al., 2017). The G protein-coupled receptor signaling pathway 
mediates cardiac functions, such as those of inotropy and 
vasodilation in peripheral vessels, participates in the occurrence 
and development of HF and may serve as the molecular 
underpinning for future HF therapeutics (Wang et  al., 2018; 
Altamish et  al., 2020). Protein binding, including fatty acid-
binding proteins, has been related to cardiac alterations, e.g., 
systolic and diastolic cardiac dysfunction (Rodriguez-Calvo 
et  al., 2017). In the KEGG analysis, the olfactory transduction 
pathway was identified, with a corrected value of p  <  0.05. 
The olfactory system uses G protein-coupled receptors to 
accomplish its vital task (Ronnett and Moon, 2002).

FIGURE 1 | Boxplot of the area under the curve (AUC) values for the six different models (based on 1,000 random splits). The y-axis represents the AUC value. 
Values of p were obtained using Dunnett’s multiple-comparison test.

A B

FIGURE 2 | Kaplan-Meier survival curves of the good-outcome and poor-outcome groups. (A) The survival curve including the original 29 patients in the testing 
cohort and (B) the survival curve based on the predicted survival outcomes using the GA-KPLS method.
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DISCUSSION

Accurately predicting disease outcomes are essential for patient-
centered care, both for making treatment decisions and 
monitoring the quality of health care (Angraal et  al., 2020). 
Using the gene expression data of HFpEF patients, this study 
explored five machine learning methods and one conventional 
logistic regression model to predict the survival status of patients 

with HFpEF. The GA-KPLS based HFpEF model could predict 
patient survival status with high accuracy. Furthermore, the 
identification of molecular markers (i.e., DEGs) of HFpEF may 
lead to the development of novel targeted therapies.

The ability to assess survival outcomes of patients with 
cardiovascular diseases has great clinical value in an era 
with multiple treatment options. Although previous studies 
have devoted great effort to predicting clinical outcomes of 

FIGURE 3 | The heatmap of DEGs between the good-outcome and poor-outcome groups. Each column represents a patient, and each row represents a gene. 
Patients labeled with the black bar are poor-outcome samples, and those with the gray bar are good-outcome samples.

FIGURE 4 | Gene Ontology (GO) enrichment analysis of DEGs. The x-axis shows the number of genes, and the y-axis indicates the GO terms. Bars with different 
colors correspond to different GO categories, with green representing biological process, orange representing cellular component, and blue representing molecular 
function.
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HF patients, the current study has several unique merits. 
There are many studies being conducted to predict HF. 
However, few studies are focused on HFpEF. By evaluating 
six models, we  showed that the GA-KPLS model using gene 
expression data may be  a powerful and highly accurate 
prediction model of survival status in HFpEF patients. A 
prediction model using gene expression data can be  an 
alternative means to the currently used models based on 
clinical data, such as the Enhanced Feedback for Effective 
Cardiac (EFFECT) study risk scores (Thorvaldsen et  al., 
2017) and Meta-Analysis Global Group in Chronic Heart 
Failure (MAGGIC) scores (Pocock et  al., 2013).

Second, because of the highly heterogenous nature of HFpEF, 
a consensus has not been reached on which predictors can 
be  used to reliably predict HFpEF. We  demonstrated that gene 
expression can be  used to predict HFpEF survival status with 
high accuracy using the GA-KPLS prediction model. With the 
availability of increasing types of omics data (e.g., copy number 
variants, microRNAs, and epigenetic data), we  can further 
improve the prediction accuracy by integrating different data 
sources with the GA-KPLS model. Our study illustrates the 
development of new machine learning methods for HFpEF 
risk prediction by integrating different omics data types.

Current studies have focused on single or multiple clinical 
indicators to identify patients at high risk for HFpEF. However, 
most methods can only achieve an AUC of 0.7, which is 
unrealistic for application in clinical practice (Kanda et  al., 
2018; Shen et  al., 2020). Many researchers have also used 
statistical methods to construct stratification models such as 
Cox proportional hazards models and logistic regression models. 
However, these methods fail to capture the nonlinear relationship 
between predictors and the disease outcome (Komajda et  al., 
2011; Rich et  al., 2018; Angraal et  al., 2020). In contrast, the 
GA-KPLS model uses the advantage of kernel functions to 
extract nonlinear relationships between genomic features and 
survival outcomes, hence achieving more accurate predictions 
than its counterparts.

Risk prediction in HFpEF patients using the GA-KPLS model 
may (1) serve to motivate patients to adhere to recommended 
treatments and lifestyle modifications (Oktay et  al., 2013); (2) 
help clinicians to make treatment decisions, especially for high-
risk groups of patients who may progress to circulatory failure 
when administered routine clinical therapeutics, and these 
patients may have the opportunity to undergo active therapeutic 
interventions such as mechanical circulatory assistance, heart 
transplantation, or new trials (Wang et  al., 2019); and (3) help 
to inform the design of future HFpEF clinical trials.

However, our study had some limitations. First, because 
of the lack of additional external data on HFpEF, we  cannot 
validate our findings in another data set. Second, we  focused 
on gene expression data in our study. As lifestyle is an 
important risk factor for HF, further research should 
be  performed to predict HFpEF risk by integrating both 
clinical and genomic data to improve the prediction performance 
because potential interactions may exist between these factors. 
Third, the HFpEF data set is imbalanced, with a ratio of 
28:72 between the poor-outcome and good-outcome groups. 

However, the GA-KPLS and SVM methods performed well, 
with high sensitivity and specificity. If either low sensitivity 
or specificity becomes a concern, the SMOTE algorithm can 
be  applied (Chawla et  al., 2002), which is designed to handle 
prediction with imbalanced data.

In conclusion, the GA-KPLS-based HFpEF prediction model 
using gene expression data represents a valuable tool to improve 
the prognosis of HFpEF patients with different risk levels. The 
discovered transcriptional biomarkers of HFpEF provide new 
insight to the understanding the complex mechanism of HFpEF, 
leading to the development of novel targeted therapies for 
HFpEF. It is expected that integrating multi-omics and clinical 
data can further improve HFpEF outcome prediction, leading 
to the development of targeted, adaptive, and precision treatment 
of HFpEF patients with different risk levels.
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