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Adverse outcomes that result from chemical toxicity are rarely caused by dysregulation
of individual proteins; rather, they are often caused by system-level perturbations
in networks of molecular events. To fully understand the mechanisms of toxicity, it
is necessary to recognize the interactions of molecules, pathways, and biological
processes within these networks. The developing brain is a prime example of an
extremely complex network, which makes developmental neurotoxicity one of the most
challenging areas in toxicology. We have developed a systems toxicology method
that uses a computable biological network to represent molecular interactions in the
developing brain of zebrafish larvae. The network is curated from scientific literature
and describes interactions between biological processes, signaling pathways, and
adverse outcomes associated with neurotoxicity. This allows us to identify important
signaling hubs, pathway interactions, and emergent adverse outcomes, providing a
more complete understanding of neurotoxicity. Here, we describe the construction of
a zebrafish developmental neurotoxicity network and its validation by integration with
publicly available neurotoxicity-related transcriptomic datasets. Our network analysis
identified consistent regulation of tumor suppressors p53 and retinoblastoma 1
(Rb1) as well as the oncogene Krüppel-like factor (Klf8) in response to chemically
induced developmental neurotoxicity. The developed network can be used to interpret
transcriptomic data in a neurotoxicological context.

Keywords: systems toxicology, zebrafish, developmental neurotoxicity, klf8, rb1, tp53

INTRODUCTION

The developing brain is particularly vulnerable to drugs and environmental chemicals (Rice and
Barone, 2000). Developmental exposure to polycyclic aromatic hydrocarbons, pesticides, heavy
metals, flame retardants, pharmaceuticals, and other chemicals in private and commercial use
has been linked to neurodevelopmental disorders in humans and in animal models (Braun et al.,
2006; Barlow et al., 2007; Dufour-Rainfray et al., 2011; Bellinger, 2013). Guidelines for testing the

Abbreviations: 8beta, 8β-(4′-hydroxytigloyloxy)costunolide; DEG, differentially expressed gene; DNT, developmental
neurotoxicity; Domo, domoic acid; Flu, fluoxetine; Imip, imipramine; LN, leading node; NPA, network perturbation
amplitude; Ser, sertraline; Suvo, suvorexant.
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developmental neurotoxicity (DNT) of chemicals, provided by
the Organisation for Economic Co−operation and Development
(OECD) (OECD, 2007) and the United States Environmental
Protection Agency (US EPA) (EPA, 1996), recommend in vivo
rodent experiments. Although the recommended tests are reliable
and reproducible (Makris et al., 2009), testing each chemical
requires up to a year of research and up to a million dollars
in funding (Crofton et al., 2012). Consequently, the number
of chemicals tested for DNT is low (Makris et al., 2009) and
represents only a small fraction of the thousands of chemicals
in commercial use (Crofton et al., 2012). The need for fast,
cheap, efficient screening methods that would help fill in these
data gaps is apparent (Fritsche et al., 2018b). In vitro cell
culture methods are fast, relatively inexpensive, and very useful
in studying the mechanisms of DNT (Bal-Price et al., 2010).
However, their use obligates one to simplify the central nervous
system (CNS) to a single or few cell types in culture. In losing the
complexity of interactions between cell types, anatomical regions,
and developmental stages, it becomes challenging to translate
in vitro data into in vivo toxicity (Lein et al., 2005). The zebrafish
(Danio rerio) larva is an alternative model that can be used to
complement the in vitro and rodent approaches in studying DNT.

The zebrafish is a model organism that has long been
used by biologists to study the development and function of
the brain (Engert and Wilson, 2012; Haesemeyer and Schier,
2015). This model organism possesses numerous advantages
for DNT assessment. Zebrafish and mammals show conserved
expression of neurodevelopmental genes (Wullimann, 2009),
structural and functional homology of the brain (Tropepe and
Sive, 2003), conserved neuronal subtypes and neurotransmitters
(Nishimura et al., 2015), and similar behavioral responses
to drugs (Rihel and Schier, 2012). Combined with the high
practicality of its use (Kalueff et al., 2014) and its rich behavioral
repertoire that can be used as a readout for altered brain
function (Kalueff et al., 2013), the zebrafish is becoming an
increasingly popular model for toxicological assessment of new
drug candidates and environmental chemicals (Scholz et al., 2008;
Fitzgerald et al., 2020).

Another advantage of the zebrafish is the quality of its
genome sequence and annotation (Howe et al., 2013). Combined
with high-throughput unbiased molecular methods (such as
transcriptomics analyses) and computational analysis (together
termed toxicogenomics or systems toxicology), the zebrafish is
a great tool for discovery of molecular mechanisms underlying
drug- and chemical-induced toxicity (Alexander-Dann et al.,
2018). Systems toxicology approaches, such as reverse causal
reasoning (Catlett et al., 2013)—which is based on integrating
curated biological networks, publicly available omics datasets,
and omics data obtained from toxicological experiments—
have been shown to be particularly effective for evaluating
and predicting chemical toxicity (Hoeng et al., 2012). In
this approach, nodes within curated biological networks cover
multiple levels of biological organization (e.g., RNA, protein,
biological process, and pathology), and edges represent various
relationships (e.g., increases, decreases, physical interaction, and
association). This flexibility allows for a realistic representation
of biology. Additionally, the edges can be directed, which gives

the networks a cause-and-effect topology. This feature aids in
following the propagation of the signal through the network,
from molecular initiating events to adverse outcomes. The
networks can be tailored to a particular set of related adverse
outcomes within specific organs or organ systems and, therefore,
allow focused toxicological interpretation. At the same time, if
multiple curated networks are available, a single transcriptomics
experiment allows one to evaluate the toxicity to different tissues,
organs, or organ systems at once (Hoeng et al., 2014). This
approach can provide information on the probability that a
specific organ toxicity is induced and on the main molecular
events responsible for it. This feature is particularly useful with
small organisms, such as larval zebrafish, when single organs
often provide insufficient material for transcriptomic analysis,
and the whole animal is sequenced.

Although the number of curated biological networks
describing toxicity in humans, rats, and mice is steadily growing
(Boue et al., 2015; Yepiskoposyan et al., 2019), the current
lack of such networks for zebrafish precludes large-scale
systems toxicology assessment of zebrafish omics data. To begin
addressing this paucity, we recently constructed and validated
the first zebrafish network for describing cardiac toxicity (Li et al.,
2020). We have shown that network scoring can predict toxicity
days before the onset of visible cardiac phenotypes and identified
candidate molecular events that mediate cardiac toxicity. Here,
we describe the construction, validation, and applicability of
the second zebrafish network, which describes neurotoxicity in
developing larvae.

MATERIALS AND METHODS

Curation and Compilation of the
Zebrafish Neurotoxicity Network
The neurotoxicity network was constructed by converting causal
molecular relationships reported in literature into the Biological
Expression Language (BEL; version 1.0)1,2. BEL is used to
represent biological knowledge in a computable form as BEL
statements. Each BEL statement consists of a source node, a target
node, and a relationship between them (called an edge). Nodes
in BEL can represent multiple levels of biological organization,
such as RNA, protein, protein activity, biological process, or
pathology. BEL uses controlled vocabularies (namespaces) for
node names; for example, human genes and proteins are labeled
in accordance with the HUGO Gene Nomenclature Committee
(HGNC) vocabulary, and biological processes follow the Gene
Ontology Biological Process (GOBP) vocabulary. This ensures
uniformity of language and enables computation. Edges can
represent various regulation by the source node, e.g., inhibition,
activation, and translation. Additionally, each BEL statement is
annotated with metadata (e.g., publication, species, tissue, and
experimental methods) to facilitate future verification. We used
the open source framework OpenBEL 3.0.03 to compile curated

1https://bel.bio
2https://github.com/OpenBEL/language
3https://github.com/OpenBEL/openbel-framework
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BEL statements into a connected network. Supplementary
Table 1 lists all BEL statements and may be used to create an
interactive version of the network. We used Cytoscape (Shannon
et al., 2003) to visualize and analyze the network. Alternatively,
an interactive version of the network is available at http://
causalbionet.com/.

Network Scoring
An important part of our approach is integration of the network
with high-throughput omics measurements to evaluate the
(neuro) toxicity of chemicals, as described in detail recently by
Martin et al. (2019). The central idea is that experimentally
obtained omics (usually transcriptomic) data can be used to
infer activity of upstream molecular events (Figures 1A–C).
Nodes with a known differential gene expression signature
are called inferable nodes (iNodes). Mapping gene expression
molecular signatures to iNodes creates an additional layer of
information. Therefore, literature-based statements represent
the functional layer, and the transcriptomic signatures of the
iNodes in the functional layer represent the transcript layer.
The network scoring algorithm works by first calculating the
activity value (similarity between the query gene expression and
gene expression from the transcript layer) for each iNode. Then,
for each node in the functional layer (both iNodes and regular
nodes), the algorithm calculates a node coefficient, which takes
into account the inferred activity values of the iNodes and the
topology of the network (Figures 1D,E). Inferred activities that
are well accommodated by the functional layer result in high
node coefficients and vice versa. The node coefficients are then
used to calculate the network perturbation amplitude (NPA).
The NPA can be used as a measure of disruption specific to
the network scored. For biological networks that describe organ
toxicity, the NPA can be used to quantify toxicity specific to
that organ. The NPA is reported with confidence intervals and
two companion statistics: “o” and “k.” Confidence intervals are
calculated on the basis of the assumption that gene expression
values in the transcript layer follow normal distribution and
provide information on the variance of the NPA. The “o” statistic
is calculated by permuting the edges in the transcript layer and
recalculating the NPA value. The “k” statistic is calculated by
permuting the edges in the functional layer and recalculating the
NPA value. In both cases this procedure is performed 500 times
and statistical significance is reached if the original NPA is in
the top 5th percentile of the permuted NPA. Therefore, the two
statistics test the null hypothesis that a random arrangement of
the transcription layer or the functional layer can produce a result
similar to the original NPA. If 95% of the time this is false, we
conclude that the dataset being scored specifically perturbs the
two layer network, and this result is not due to random chance
(Martin et al., 2014).

Leading Node Analysis
We performed leading node (LN) analysis to identify regions
of the network responsible for the observed impact and to gain
insights into the underlying mechanisms. LNs are nodes that are
responsible for 80% of the total NPA score and are, therefore,
the major drivers of network perturbation. Nodes contribute

more to the total NPA score if their inferred activity is highly
impacted and consistent with the neighboring nodes in the
functional layer. This analysis has been shown to be a useful
way for interpreting the biological basis of network perturbations
(Hoeng et al., 2012; Martin et al., 2014). In addition, LN analysis
indicates the directionality of the impact on each node. The
entire network scoring algorithm, including LN analysis, is
described in detail by Martin et al. (2019) and is available on
the GitHub project pages https://github.com/pmpsa-hpc/NPA
and https://github.com/pmpsa-hpc/NPAModels as an R package.
The package includes information on the transcript layer used
to score the network in this paper. This will allow interested
researchers to replicate our results or try our approach on their
own transcriptomic datasets. In our figures, LNs are color-coded
to help visualize signal propagation through the network and
to identify the most impacted areas. Activated nodes are red,
while inactivated nodes are blue, and unaffected nodes are gray.
The heatmap was scaled to minimum and maximum activation
for each dataset independently but was not altered between
treatments in individual datasets.

RESULTS

Zebrafish Neurotoxicity Network
To construct the zebrafish neurotoxicity network, we curated
peer-reviewed articles that describe adverse neural outcomes in
zebrafish larvae. We searched PubMed4 for articles containing
the keywords “zebrafish larvae” and one of the following
neurotoxic phenotypes commonly reported in zebrafish:
“microcephaly” (reduced brain size), “megalencephaly”
(enlarged brain size), “microphthalmos” (reduced eye size),
“hydrocephalus” (accumulation of fluid around the brain),
“seizures,” “neurogenic inflammation,” “sleep,” “phototaxis,”
or “locomotion.” We collected data-supported mechanistic
findings from these papers and converted them into computable
statements. For example, the natural language sentence: “As
shown in Figure 13, exposure to 2% ethanol or treatment with
agrin or Shh MO results in a significant decrease in brain volume.”
(Zhang et al., 2013) was expressed as three BEL statements:

a(CHEBI:ethanol)→ path(MESHD:Microcephaly)
act(p(ZFIN:agrn)) -| path(MESHD:Microcephaly)
act(p(ZFIN:shha)) -| path(MESHD:Microcephaly)

We then searched literature for molecular interactions
upstream and downstream of the initially identified nodes in the
zebrafish brain and added these statements to the network. For
example, looking for upstream regulators of shha in the zebrafish
brain we found: “gbx2 induction. . . moderately upregulated shha
in the ventral brain, including the hypothalamus (Figure 3H)”
(Wang et al., 2018). This evidence was added as:

act(p(ZFIN:gbx2))→ r(ZFIN:shha)

With this approach, we curated a total of 87 articles to create
the zebrafish neurotoxicity network (Supplementary Table 2).

4https://pubmed.ncbi.nlm.nih.gov
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FIGURE 1 | Network scoring. (A–C) Reverse causal reasoning paradigm. Gene expression data following activation of protein A can be used as a molecular
signature for the activity of that protein A. Any given transcriptomic dataset—for example, from chemically exposed samples—can now be used to infer the activity of
protein A. Closely matching gene expression values indicate that protein A was active (B), whereas disparate gene expression is not consistent with the activity (C).
(D,E) Network perturbation amplitude (NPA) calculation. If nodes A, B, and C positively regulate node D and their activities are inferred to be high, there is a high
consistency between gene expression and network topology. High consistency leads to a high NPA value (D). Conversely, if node activity and the topology of the
network contradict each other, the NPA value decreases (E).

The network contains 344 nodes connected by 479 edges
(Figure 2A). Selected pathways were extracted from the network
to highlight some of the biological processes and their regulation
within the network (Figure 2B). The nodes represent 122
proteins, 118 protein activities, 46 mRNAs, 23 chemicals,
22 biological processes, 6 pathologies, 5 complexes, and 2
microRNAs (Supplementary Table 3). The edges are annotated
with metadata that detail the publication and evidence used
to create that edge. When available, annotation for species,
type of experiment conducted, cell type, confidence, anatomy,
and disease are also included (Supplementary Table 1). An
interactive version of the network model can be accessed on

http://causalbionet.com. Nodes with many interactions are said
to have a high node degree and are referred to as hubs. The top ten
hubs with the highest node degrees are listed in Table 1. Nodes
with high betweenness centrality are referred to as bottlenecks
(Yu et al., 2007) and are listed in Table 2.

Network Scoring With Public Datasets
To score the network with transcriptomic data, we searched
the Gene Expression Omnibus repository5 for datasets with
differentially expressed genes (DEG) from experiments that

5https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 2 | The zebrafish neurotoxicity network. (A) The entire network visualized in Cytoscape. (B) Selected pathways extracted from the network and color-coded
to nodes in panel A. To simplify visualization, RNA, protein, and protein activity nodes were collapsed into a single corresponding node.

involved genetic or chemical manipulation of the zebrafish
central nervous system. We additionally constrained the search
to larval stages of the zebrafish, as the network was curated
using data obtained from 3 to 8 dpf zebrafish, and to datasets
that had three replicates per condition available, in order to
perform statistics. We selected datasets GSE55618, GSE115720,

GSE31712, GSE140045, GSE129812, and GSE117399. Dataset
GSE55618 (Driessen et al., 2015) was used as a negative control, as
the authors had submitted data both for distilled water and 0.2%
dimethyl sulfoxide (DMSO) treatment. At this low concentration,
DMSO is not expected to be neurotoxic (Christou et al., 2020). In
accordance, scoring with this dataset did not perturb the network,
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TABLE 1 | Nodes with the highest number of total edges.

Node name Edge count

bp(GOBP:"cell proliferation") 19

bp(GOBP:"cell death") 16

bp(GOBP:"dopaminergic neuron differentiation") 11

m(ZFIN:"mir9-2") 5

act(p(ZFIN:lef1)) 5

p(ZFIN:lef1,pmod(P)) 5

bp(GOBP:"apical junction assembly") 4

act(p(ZFIN:tp53)) 4

act(p(ZFIN:plxna2)) 4

act(p(ZFIN:notch1a)) 4

and all the following values were normalized to those of DMSO
treatment (Figure 3).

We first used dataset GSE115720 (Schultz et al., 2018). In this
study, the authors sequenced the mRNA of the zebrafish larval
heads, either wildtype or homozygous mutant for retinoblastoma
1 (rb1). Rb1 is a tumor suppressor protein that exerts its function
by regulating cell proliferation, and genetically rb1-mosaic adult
zebrafish develop brain tumors (Solin et al., 2015). Although
DNT is usually associated with chemical exposure, we selected
rb1 mutants as a positive control because the larvae displayed

TABLE 2 | Nodes with the highest betweenness centrality.

Node name Betweenness centrality

act(p(ZFIN:pax2a)) 0.00927118

act(p(ZFIN:neurog1)) 0.00612848

bp(GOBP:"cell proliferation") 0.00368594

p(ZFIN:dld) 0.00332378

p(ZFIN:her5) 0.00308637

a clear neurological phenotype and had a defined genetic
background, thus providing a link between the mutation and the
phenotype. The transcriptome of the rb1−/− larvae elicited the
biggest network perturbation of all treatments (Figure 3).

In GSE31712, the authors explored the effects of two selective
serotonin reuptake inhibitors (SSRI), sertraline and fluoxetine,
on whole larvae at 25 and 250 µg/L (Park et al., 2012). SSRIs
are prescription drugs used to treat clinical depression and
have been found to have neuroactive effects in fish (Kreke
and Dietrich, 2008). Both drugs elicited statistically significant
network perturbations at the higher concentration, while only
fluoxetine resulted in a significant perturbation at the lower
dose (Figure 3).

Dataset GSE117399 considered the effects of lead (Pb) on the
larval nervous system (Peterson et al., 2011), as Pb exposure

FIGURE 3 | Neurotoxicity network perturbation amplitude (NPA). NPA values are shown as fold change over DMSO control with proportional adjustment of
confidence intervals. Beige rectangles highlight separate transcriptomic datasets. Red stars indicate significant NPA values. Green stars indicate significant o statistic
values — a measure of how specific the given perturbation is to the current network. Blue stars indicate significant o statistic values — a measure of the quality of
the functional layer. Orange bars indicate significant perturbation, while gray bars represent values where at least one statistic was not significant.
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is associated with DNT, neuronal cell death, excitotoxicity,
and behavioral defects in children (Sanders et al., 2009). The
authors analyzed the transcriptomes of whole larvae treated
with 100 ppb Pb after 72 and 120 h of exposure. The network
was highly perturbed at both time points, but the “o” statistic
(which measures the adequacy of assignment of the transcript
layer genes) did not reach statistical significance at 120 post-
fertilization (hpf) (Figure 3).

We also scored the network with two datasets which, at
the time of writing, did not have associated publications. One
of the studies (GSE140045) evaluated the effects of domoic
acid (Domo)—a potent neurotoxin produced by harmful algal
blooms—on whole larvae at two different time points. In the
second dataset (GSE129812), larvae were exposed to insomnia
medication suvorexant, antidepressant imipramine, and a plant-
derived orexin antagonist 8β-(4′-hydroxytigloyloxy)costunolide
(8beta). The latter chemical was used at two concentrations.
The brains of these larvae were used for microarray. All of
the above chemicals have neuroactive properties in mammals.
In accordance, the transcriptome of larvae treated with these
chemicals showed significant perturbation of the neurotoxicity
network (Figure 3).

LN Analysis
To gain mechanistic insights, we performed LN analysis
for the datasets that produced a significant NPA. In the
transcriptome of the rb1−/− larval heads, thirteen LNs (i.e.,
nodes that together contribute up to 80% of the NPA) were
identified (Figure 4A), color-coded, and extracted into a smaller
subnetwork (Figure 4B). For ease of interpretation, relevant
downstream adverse outcomes and biological processes were
added to the subnetwork independently of whether they were
identified as LNs. Reassuringly, the top inferred inactivated
LN in the rb1−/− dataset was Rb1. This was followed by
downstream activation of two chromatin remodeling proteins,
histone-binding protein Rbbp4 and histone deacetylase Hdac1,
and led to increased cell proliferation and decreased cell death.
Proliferation and cell death were also impacted by inactivation
of the tumor suppressor p53 downstream of Klf8 (Krüppel-
like factor 8) and Met (MET proto-oncogene, receptor tyrosine
kinase). These computational results are consistent with the
findings of the original study, where the authors reported
increased cell proliferation in the developing brain and retina
of the mutant larvae and altered p53 signaling. In addition to
the original findings, the network approach inferred positive
regulation of the apical junction assembly by Rhoaa (ras homolog
gene family, member Aa). Together, the node activities converge
on microphthalmos, microcephaly, and brain morphogenesis,
but none is significantly affected. This finding fits well with
the phenotype of rb1-/- larvae, which do not show gross
morphological differences when compared with their wildtype
siblings (Schultz et al., 2018). Network scoring also suggested
a possible effect on dopaminergic neuron differentiation due
to increased activity of Isl1 (ISL LIM homeobox 1); however,
locomotion downstream of these nodes was not affected.

We next analyzed the SSRIs sertraline and fluoxetine. Because
sertraline at 25 µg/L did not elicit a significant network

perturbation, we excluded this treatment from further analysis.
Sertraline at 250 µg/L caused a strong inferred downregulation
of Klf8, which led to activation of p53 signaling in the
network (Figure 5A). The subnetwork also indicated a modest
increase in the activity of Chmp1a (charged multivesicular body
protein 1a) and Bmi1a (bmi1 polycomb ring finger oncogene
1a), followed by reduced activity of the negative regulator
of proliferation, Cdkn2a/b (cyclin dependent kinase inhibitor
2A/B). Additionally, we inferred reduced activity of Fyna (FYN
proto-oncogene, Src family tyrosine kinase a), a protein that
plays a role in synaptic function (Nygaard et al., 2014), and
increased activity of the downstream small GTPase Rasl11b
(RAS-like, family 11, member B). Although the above nodes
play roles in cell proliferation and apoptosis, the topology of the
network, together with node activity, did not suggest a significant
effect in either process. However, network scoring indicated a
reduction in motor neuron differentiation in the spinal cord
due to a decrease in the activity of Olig2 (oligodendrocyte
lineage transcription factor) and a decline in dopaminergic
neuron differentiation due to increased activity of the synaptic
vesicle-associated Picalma (phosphatidylinositol binding clathrin
assembly protein A) and reduced autophagy. Together, these
processes led to a marginal reduction in node “locomotion”;
however, this effect was not significant.

At both 25 and 250 µg/L, fluoxetine treatment elicited very
similar effects to sertraline (Figures 5B,C). These included
strongly reduced Klf8 and Met activity and activation of p53;
reduced Fyna activity, reduced Plxna2 (plexin A2; axon guidance
protein) phosphorylation and activity, and increased Rasl11b
activity; and reduced motor neuron differentiation due to
reduced Olig2 and Insm1a (insulinoma-associated 1a) activity.
However, the node “locomotion” downstream of these nodes
was not affected at either concentration. Chmp1a was inferred
to be activated at the lower concentration of fluoxetine, and
Isl1 (ISL LIM homeobox 1) was inferred to be inactivated at
the higher concentration. Rhoaa and the downstream apical
junction assembly were affected at 250 µg/L, suggesting that
the integrity of the neurepithelium may be affected at this or
higher concentrations. Both concentrations resulted in a small
but significant reduction in the node “cell proliferation,” and
250 µg/L fluoxetine caused a modest increase in the node “cell
death,” suggesting that the higher dose is more neurotoxic.
However, none of the pathologies in the network were affected
at either concentration. This result is consistent with the absence
of changes in mortality, appearance, or behavior in the treated
larvae (Park et al., 2012).

The subnetworks in Pb-treated larvae revealed some
similarities as well as marked differences in the 72- and 120-hour
treatments (Figure 6). In both cases, the following inferences
were made: reduced activity of Rb1, Eya1 (EYA transcriptional
coactivator and phosphatase 1), and Rbpja (recombination
signal binding protein for immunoglobulin kappa J region a)
upstream of Notch signaling; increased activity of Lef1 (lymphoid
enhancer-binding factor 1), Rhoaa upstream of apical junction
assembly; and increased autophagy, with the 72-hour group
showing a greater predicted increase out of the two treatments.
For the 72-hour Pb exposure (Figure 6A), the subnetwork
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FIGURE 4 | Neurotoxicity network scored with the transcriptome of rb1 mutant larvae. (A) Visualization of the affected nodes in the network. Increased and reduced
activity for each node is color-coded according to the heatmap. (B) Leading nodes extracted from A into a subnetwork.

predicted the following: activation of Mpp5a (membrane
protein, palmitoylated 5a) and Cldn5a (claudin 5a), suggesting
that this treatment might affect epithelium integrity; increased
activity of Chmp1a and Bmi1a; increased activity of Ccnd1
(cyclin-D1) and cell proliferation; decreased activity of Picalma;
decreased activity of Fezf2 (FEZ family zinc finger 2) upstream of
neuron differentiation; and decreased activity of Vangl2 (VANGL
planar cell polarity protein 2) upstream of hydrocephaly. For
the 120-hour Pb exposure (Figure 6B), the following changes
were predicted: reduced activity or Neurog1 (neurogenin 1) and
inhibition of downstream neuronal differentiation; activation of

Klf8; reduced activity of Fyna and Plxna2; activation of Kctd13
(potassium channel tetramerization domain containing 13); and
an increase in the node “cell death.”

For exposure to 0.14 ng of Domo at two developmental
windows, we inferred strongly activated Klf8 and inactivated
p53 (Supplementary Figure 1A); activated dopamine receptors
D2a (Drd2a) and D2b (Drd2b); and inactivated Kctd13 and
Ebf2 (a proneuronal transcription factor). Exposure at 3 days
post-fertilization (dpf) resulted in inactivation of Elavl3 (ELAV
like neuron-specific RNA binding protein 3; a proneuronal
protein) and Neurog1 and increase in Ccnd1 activity. These
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FIGURE 5 | Neurotoxicity network scored with the transcriptomes of larvae
treated with selective serotonin reuptake inhibitors. (A) Sertraline treatment,
250 µg/L. (B) Fluoxetine, 25 µg/L. (C) Fluoxetine, 250 µg/L. Increased and
reduced activity for each node is color-coded according to the heatmap.
Dotted lines represent indirect connections in the main network.

results suggest that Domo treatment at 3 dpf has an inhibitory
effect on neurogenesis and favors a proliferative state. Lastly,
the LNs also suggest an increase in the activity of Lgi1a
and 1b (leucine-rich glioma-inactivated protein 1a and 1b),

which is associated with epileptic seizures (Cowell, 2014).
Domo exposure at 7 dpf resulted in inhibition of Mpp5a,
Chmp1a, and Bmi1a upstream of Cdkn2a/b, as well as inhibition
of Chd8 (chromodomain helicase DNA binding protein 8)
(Supplementary Figure 1B). Increased autophagy and increased
activity of NADH dehydrogenase complex I and Isl1 positively
regulated the node “dopaminergic neuron differentiation.”
Lastly, the activity of the epilepsy-associated protein Tsc2 (TSC
complex subunit 2) was decreased in this group.

In the dataset GSE129812, suvorexant, imipramine, and 8beta
reduced the activity of Klf8 and Met and increased the activity
of p53. Suvorexant exposure resulted in marginally and not
significantly increased cell death via increased activity of p53 and
Kctd13, activated Mpp5a and Cldn5a, and decreased activity of
proteins involved in neuron differentiation (Olig2, Fezf2, and
Neurog1), planar cell polarity (Vangl2), axon guidance (Fyna
and Plxna2), and otic vesicle formation (Eya1) (Supplementary
Figure 2A). Inactivation of both Tsc2 and Lgi1a suggested an
increase in the node “seizures.” Imipramine treatment increased
the activity of tumor suppressors (Rb1 and p53), autophagy, and
proteins involved in embryonic development [Fgf3 (fibroblast
growth factor 3), Fgf8a (fibroblast growth factor 8a), Pax8 (paired
box 8), and Pax2a (paired box 2a)] and increased cell death
(Supplementary Figure 2B). Suvorexant and imipramine had
opposite effects on the activity of the Rb1 node, resulting in
a significant increase in the node “cell death” in imipramine-
treated larvae.

Exposure to 10 and 100 µM 8beta resulted in largely
similar outcomes, with the higher concentration producing a
greater effect (Supplementary Figure 3). Reduced activity of
Vangl2 suggested increased hydrocephaly at both concentrations,
and this increase became significant at 100 µM. Increased
activity of proteins crucial for CNS development (Fgf3, Pax2a,
Wnt1, and Lef1) suggests that the nervous system developed.
However, increased activity of Kctd13 and tumor suppressors
p53 and Rb1 indicate an increase in cell death at the
highest concentration of 8beta. Interestingly, ethanol activity
was inferred to be upregulated, suggesting that 8beta and
ethanol result in somewhat similar gene expression signatures in
the developing CNS.

The node “Klf8” was significantly regulated in all exposures
apart from the low concentration of sertraline (Figure 7).
Klf8 was inactivated in antidepressant and insomnia treatments
(sertraline, fluoxetine, suvorexant, imipramine, and 8beta) and
strongly activated in neurotoxic conditions (Domo, Pb, and
rb1 mutants). This was followed by changes in the activity of
the downstream nodes Met, p53, cell death, cell proliferation,
microphthalmos, and microcephaly.

DISCUSSION

Zebrafish are small vertebrates whose larvae are uniquely suited
for high-throughput methods, drug and chemical screening, and
systems approaches. These characteristics have made them a
popular candidate for transcriptomics analysis. In September
2020, the Gene Expression Omnibus (GEO) repository listed
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FIGURE 6 | Neurotoxicity network scored with the transcriptomes of larvae treated with lead. (A) 72-hour exposure. (B) 120-hour exposure. Increased and reduced
activity for each node is color-coded according to the heatmap. Dotted lines represent indirect connections in the main network.

28,199 transcriptomic datasets generated in zebrafish (Barrett
et al., 2013). To help leverage this wealth of data, we
developed a zebrafish-specific causal biological network as
a tool to complement current methods on gene expression
analysis. Instead of analyzing individual proteins or discrete
pathways, network biology considers systems-level perturbations
in response to stress or disease. This helps connect molecular
events to biological processes and eventually phenotypes, which,
in turn, may help identify therapeutic targets (Barabasi et al.,
2011). The network was curated using data obtained from
3 to 8 dpf larval zebrafish – the point at which a lot of
neurodevelopmental processes are complete or are in the
process of completion. We demonstrate the utility of the
network in analyzing transcriptomic datasets generated at these

developmental stages (between 3 hpf and 7 dpf) as well as datasets
from several tissues (whole larvae, dissected heads, and brains).
These qualities should make the network useful for a wide range
of basic and applied research using 3–8 dpf zebrafish organs
or whole larvae.

Network Hubs and Bottlenecks
Network hubs are structurally important for the topology of any
network, and identification of these highly connected nodes may
have practical implications. Hub proteins tend to be encoded
by essential genes (Jeong et al., 2001), are preferentially targeted
by pathogens (Schleker and Trilling, 2013), and, at least in the
case of some cancers, are enriched for genes associated with
disease (Jonsson and Bates, 2006). We identified the biological
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FIGURE 7 | Klf8 regulation in the neurotoxicity network. Node coefficient values (see section “Materials and Methods”) for all treatments are shown as bar graphs.
Bars from left to right correspond to neuroactive (ser 25 µg/L, ser 250 µg/L, flu 25 µg/L, flu 250 µg/L, suvo, imip, 8beta 10 µM, and 8beta 100) and neurotoxic
(domo 3 dpf, domo 7 dpf, Pb 72 hpf, Pb 120 hpf, and rb1) conditions. Orange bars indicate activation, and blue bars indicate inactivation.

processes cell proliferation, cell death, dopaminergic neuron
differentiation, and apical junction assembly as hubs in the
network (Table 1). Although this finding is not unexpected,
it underscores the importance of these biological processes in
mediating neurotoxicity. In agreement, some of these processes
were identified as crucial endpoints for DNT assay development
(Fritsche et al., 2018a).

Among the proteins identified as hubs were Plxna2— a
semaphorin receptor with a well-established role in axon
guidance during CNS development (Luo et al., 1993); Plxna2
deficiency has been linked to psychiatric disorders (Wray et al.,
2007). The microRNA miR9, another hub in the network, plays

important roles in controlling neural progenitor proliferation
and migration as well as in maturation of differentiated
neurons (Coolen et al., 2013) and has been associated with
psychiatric disorders (Tovo-Rodrigues et al., 2019). Another
hub, the transcription factor Lef1, is a component of the
Wnt/β-catenin pathway and is, therefore, indispensable during
CNS development (Noelanders and Vleminckx, 2017). Aberrant
regulation of this pathway has been linked to neurodegeneration
and mental disorders (Bem et al., 2019). Another hub, notch1a
receptor, is a member of the Notch signaling pathway, which
can regulate neural stem cell maintenance, proliferation, and
apoptosis and is a critical pathway in brain development and
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neurological disease (Lasky and Wu, 2005). The Wnt and
Notch pathways have been reported to crosstalk during CNS
development (Ma et al., 2019), and mir9 and Notch interact to
control neural progenitor cell proliferation and differentiation
(Roese-Koerner et al., 2017). Overall, the neurotoxicity hubs
are highly connected within the network and between each
other and follow the notion that network hubs tend to be
associated with disease (Wachi et al., 2005). Interestingly, the
identified neurotoxicity hubs have been specifically associated
with schizophrenia (Mah et al., 2006; Panaccione et al., 2013;
Topol et al., 2016; Hoseth et al., 2018), suggesting that
the network we have developed may be useful for studying
this disease. Schizophrenia is a complex psychiatric disorder
thought to arise from abnormalities during development of
the brain; however, its exact causes are unknown (Weinberger,
1987). Pharmacological and genetic zebrafish models have been
developed to help unravel the etiology of the disease (Gawel et al.,
2019). It will be interesting to see whether network scoring with
the transcriptomes of these models might help identify not only
the affected neurodevelopmental processes but also an effective
treatment for reversing these changes.

Nodes with high betweenness centrality have the largest
number of shortest paths going through them. This topological
quality places bottleneck nodes at key points of information flow
within the network, which can translate to biological essentiality
(Yu et al., 2007). Hub nodes and bottleneck nodes tend to overlap
(Lawless et al., 2014). Indeed, cell proliferation was identified in
the top ten lists for both methods. Pax2a plays one of the central
roles in the development and patterning of the CNS (Thompson
and Ziman, 2011) and has the highest betweenness centrality
in the neurotoxicity network. Neurog1 is a key transcriptional
regulator of neuronal differentiation (Yuan and Hassan, 2014).
Her5 (hairy-related 5) and Dld (deltaD) play a role in the Notch
signaling pathway, which is a key player in lateral inhibition
during neurogenesis (Beatus and Lendahl, 1998). The high
betweenness centrality of these developmentally important nodes
suggests that they could serve as markers for DNT.

Network Perturbation Amplitude
We analyzed the transcriptomes of larvae treated with
neuroactive chemicals, and all but two treatments caused
significant perturbation in the neurotoxicity network, with the
positive control Rb1 producing the largest perturbation (over
900-fold greater over the DMSO control). There was a clear
dose–response relationship in sertraline- and 8beta-treated
larvae but not in those treated with fluoxetine. The higher
concentration of fluoxetine (250 µg/L) resulted in fewer DEGs
than the lower concentration in the original study, which
led the authors to suggest that fluoxetine elicits a non-linear
response (Park et al., 2012). Such a response seems to be not
uncommon in toxicological literature, with some estimates
suggesting that around 20% of dose–response relationships are
U-shaped when concentrations below observable toxicity values
are used (Calabrese and Baldwin, 2001). The 250 µg/L fluoxetine
treatment fits this concentration range, as Park et al. (2012)
reported no changes in mortality, morphology, or behavior
in the exposed larvae. In contrast, sertraline elicited a lower

NPA at 250 µg/L and no response at 25 µg/L. Fluoxetine and
its neuroactive metabolites have a half-life of 1–4 days and
7–15 days respectively, while sertraline’s half-life ranges from 22
to 36 h in humans (Altamura et al., 1994; DeVane et al., 2002).
As Park et al. (2012), exposed the larvae to both SSRIs for 96 h, it
is plausible that sertraline has a shorter half-life in zebrafish, and
this translates to lower NPA values. The network was similarly
perturbed by Domo at 3 and 7 dpf, suggesting that the larvae are
equally sensitive to this neurotoxin at both time points.

Lead exposure produced a significant NPA at 72 and 120 h, but
significance for accompanying statistics was not reached at 120 h.
In the original study, GO analysis indicated that the 72-hour
Pb exposure was strongly associated with neurological disease,
whereas the 120-hour exposure affected general development.
This suggests that our network can be perturbed by general
toxicity; however, the o and k statistics help distinguish this
from neurotoxicity. This interpretation, although attractive,
should be viewed with caution until more transcriptomes of
zebrafish larvae treated with neuroactive as well as generally toxic
chemicals are scored.

LN Analysis
In total, we identified 326 LNs for all treatments. In the interest of
brevity, we have discussed here a selective but not exhaustive list
of points. An unexpected finding from the LN analysis was the
consistent regulation of Klf8 (Figure 7). Klf8 is a transcription
factor that promotes cell cycle progression (Zhao et al., 2003) and
can act as an oncogene by inducing proliferation and metastasis
of cancer cells (Yan et al., 2015). In zebrafish, klf8 is expressed
in the CNS, where it is required for normal development of
the cerebellum (Tsai et al., 2015). Interestingly, Klf8 was not
identified as a DEG in any of the datasets (data not shown),
suggesting that its activity is not regulated at the mRNA level.
Indeed, Klf8 activity has been shown to be regulated by post-
translational modifications (Wei et al., 2006; Urvalek et al.,
2011). This suggests that Klf8 protein activity, but not mRNA
abundance, may be a useful readout for neurotoxic or neuroactive
substances. A zebrafish reporter line for Klf8 protein activity in
the brain—for example, fluorescent protein expression driven by
the Met promoter downstream of Klf8—might be suitable for
this purpose (Gurevich et al., 2016). Interestingly, cerebellum
neuronal development is abnormal in rb1-mutant mice and in
rats exposed to Pb or Domo (Marino et al., 2003; Hogberg and
Bal-Price, 2011; Mousa et al., 2015). This correlation suggests that
Klf8 may mediate some of the above cerebellar phenotypes. As
Klf8 is an oncogene, its activation by neurotoxins may increase
the risk of cancer. Indeed, Pb exposure is associated with brain
cancer (Anttila et al., 1996; Cocco et al., 1998; van Wijngaarden
and Dosemeci, 2006), and preliminary data suggest that Domo
can promote proliferation in cancer cells (Ayed et al., 2018).
Furthermore, because antidepressants seem to inactivate Klf8,
it is possible that antidepressants may help treat brain cancers.
This does appear to be the case for some gliomas treated with
antidepressants alone or in combination with other treatments
(Liu et al., 2015; Shchors et al., 2015; Kushal et al., 2016),
although a firm consensus has not been reached (Otto-Meyer
et al., 2020). Further investigation into the role of Klf8 in the
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efficacy of antidepressants may help introduce a new class of
treatment for brain cancers— an attractive option for drugs
that are already on the market and can cross the blood brain
barrier. Nodes downstream of Klf8 were consistently regulated
together with Klf8. For example, in rb1 mutants, activation of
Klf8 led to activation of Met, which inhibited p53, increased cell
proliferation, and decreased cell death. Because this sequence of
events was reliably perturbed, it may make a good basis for a
neurotoxicity adverse outcome pathway (AOP) (Vinken, 2013;
Figure 7). Indeed, the network as a whole should make a useful
resource for generating AOPs, because: it was constructed on the
basis of evidence in literature; its edges have a direction; and it
represents biological organization on multiple levels.

The response to Pb exposure indicated a switch from
neurotoxicity at 72 h to general toxicity at 120 h. Autophagy and
apical junction assembly were predicted to be strongly activated
at 72 h and less so at 120 hpf, while cell death was activated
at 120 hpf. Oxidative stress is known to disrupt the integrity
of epithelial junctions (Rao, 2008). Thus, the present network
analysis provides a possible scenario that the shorter Pb exposure
triggered a protective response in the CNS, while the longer
exposure led to oxidative stress and apoptosis.

Domoic acid is a neurotoxin that causes, among other
symptoms, seizures in mammals and zebrafish (Tiedeken
et al., 2005; Pulido, 2008). Domo mimics the neurotransmitter
glutamate and can cause excitotoxicity by overstimulating the
nerves (Chandrasekaran et al., 2004). Glutamate has been shown
to downregulate Tsc2 expression in mouse cortical cultures via
activation of mTor (mechanistic target of rapamycin) (Ru et al.,
2012), and Tsc2 inactivation is associated with epileptic seizures
(Zeng et al., 2011). Our LN analysis identified inhibition of Tsc2
activity in the Domo -treated group. Thus, a plausible mechanism
for Domo -induced seizures in zebrafish is inhibition of Tsc2.
Domo treatment increased dopaminergic neuron differentiation
and the activity of dopamine receptors D2a and D2b. Although
Domo has been reported to significantly decrease the number of
dopaminergic neurons in culture (Radad et al., 2018), curiously,
in vivo administration to rat brain via dialysis causes dopamine
release (Alfonso et al., 2003). Our results suggest that zebrafish
larvae respond to Domo similarly to rats and that the eventual
reduction in the number of dopaminergic neurons is preceded by
aberrant dopamine release.

Limitations and Future Directions
We have shown the NPA value to be useful in comparing the
magnitude of effect between chemicals, doses, and exposure
durations. However, the NPA should not be interpreted as
a standalone value for indicating neurotoxicity. The datasets
tested here varied greatly in terms of the NPA, and most
reached the threshold for statistical significance. Yet, most of
the exposures in the transcriptomics studies used here were
not reported to cause a neurotoxic phenotype. Therefore, the
relationship between the NPA value and observable neurotoxicity
(and consequently biological significance) is not apparent from
current data. Furthermore, general toxicity does seem to perturb
the network as is the case for the longer Pb exposure. Although
the “o” statistic returned a not significant result for this treatment,

we cannot exclude the possibility that general toxicity will result
in significant NPA and perhaps will have a proportional response
at a higher toxic and/or transcriptional response. In such cases
the presence of general toxicity phenotypes in the sampled larvae
should be considered when interpreting the scoring results.

Publicly available zebrafish transcriptomic data are not
standardized. Variabilities in experimental design include
chemical concentration, solvent use, exposure duration, age of
the fish, light and temperature settings, presence or absence of
the chorion, reported endpoints, and transcriptomics platforms.
While this flexibility is great for basic research when answering
a specific biological question, it is less suitable for toxicological
and regulatory applications, as comparison of effects among
different datasets is difficult. As an example, datasets that
met our selection criteria for the current study (larval stage,
neuroactive or neurotoxic chemical treatment, and three
biological replicates per condition) display a considerable degree
of heterogeneity. Dataset GSE129812 (suvorexant, imipramine,
and 8beta treatments) was generated using larval brains and
dataset GSE115720 (rb1 mutants) was generated using zebrafish
larval heads, while all other datasets were generated using whole
zebrafish larvae. Additionally, mRNA was collected between 3
and 8 dpf depending on the dataset. Although network scoring
returns a significant NPA value for these treatments, it makes
little sense to compare the transcriptome of 8 dpf brain to 3 dpf
larva. Also, it is not yet clear whether comparison between
networks is possible, since the data used to create each network,
both the functional layer and the downstream transcripts, come
from many different sources. Thus, at the moment, we encourage
the use of NPA for comparison of treatments within a single
dataset and in one network. On the other hand, the heterogeneity
of the input data and biologically plausible, and in some cases
consistent output results (e.g., klf8, rb1, p53), indicate that
LN analysis can be a useful tool independent of source data.
This raises the question of whether the network can be used
as a filter to detect organ-specific changes in the transcriptome
of the whole organism, thus bypassing manual dissection or
FACS. One direct way to test this would be to sequence and
score the transcriptomes of identically treated whole larvae and
dissected brains.

The above points highlight an unmet need for systematic
acquisition of transcriptomic data for toxicological assessment.
To begin addressing this need, we are currently performing
a larger chemical screening, where we are exposing larvae
to chemical concentrations related to adverse outcomes
(effect concentrations) under identical conditions, recording
a standard set of phenotypes, and sequencing the mRNA on
the same platform. Once collected and scored, this dataset
should help connect gene expression data, NPA values, and
observable phenotypes. Systematic acquisition of data should
also be useful for network building. The current network was
largely constructed using reports on single gene or protein
expression. Although useful, this approach is low throughput.
Transcriptomic data from zebrafish under or overexpressing
specific genes at a specific stage would be a great resource to
curate networks, fill in the current knowledge gaps, and populate
the transcript layer.
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The narrow scope of our network is both its strength and
limitation. On the one hand, it allows assessment of chemical
toxicity specifically in the organ of interest. On the other hand,
it does not allow assessment of events that are not curated
into the network. For example, we did not include essential
processes for any developing organ, such as DNA replication or
mitochondrial respiration, in order to avoid detection of non-
CNS effects. Nor could we include events not documented in
the literature. Consequently, the network covers only a subset of
possible neurotoxic events. Additionally, the network is static as it
represents only a narrow window during the development of the
larva. One possible way to expand the scope of inquiry would be
to create and score separate networks focused on different organs,
biological processes, pathologies, and developmental stages. It is
tempting to imagine that, in the near future, whole organisms
will be curated into validated “network of networks” ready for
analysis with a single transcriptomic dataset. Lastly, literature-
based networks tend to be biased toward well-studied molecular
players. To mitigate this, future networks could be populated with
more diverse nodes by scoring relevant datasets against the entire
iNode knowledgebase and connecting any new inferred nodes to
the existing network model. The new hypotheses generated this
way could be then verified experimentally, if literature to support
these relationships doesn’t exist.

CONCLUSION

We have developed a network-based method to test DNT
in zebrafish larvae. This network recapitulates the biology of
zebrafish and allows comprehensive toxicological assessment.
The NPA represents high-dimensional transcriptomic data
condensed into a single value, which helps compare chemicals
and dose responses between similarly treated samples. The
network identified Klf8 activity as a potential marker of
neurotoxicity in silico. We suggest a prospective neurotoxicity
AOP for further verification. Lastly, we propose plausible
molecular mechanisms of DNT underlying the exposure to

Pb and Domo. This approach should be useful to study
developmental biology, drug discovery, and chemical toxicity.
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