
fgene-12-652878 June 17, 2021 Time: 18:49 # 1

ORIGINAL RESEARCH
published: 23 June 2021

doi: 10.3389/fgene.2021.652878

Edited by:
Marcelo Rizzatti Luizon,

Federal University of Minas Gerais,
Brazil

Reviewed by:
Obul Reddy Bandapalli,

Hopp Children’s Cancer Center
Heidelberg (KiTZ), Germany

Lucia Taja-Chayeb,
National Institute of Cancerology

(INCAN), Mexico

*Correspondence:
Enrique Soto-Pedre

e.soto@dundee.ac.uk

Specialty section:
This article was submitted to

Pharmacogenetics
and Pharmacogenomics,

a section of the journal
Frontiers in Genetics

Received: 13 January 2021
Accepted: 31 May 2021

Published: 23 June 2021

Citation:
Soto-Pedre E, Siddiqui MK,

Maroteau C, Dawed AY, Doney AS,
Palmer CNA, Pearson ER and

Leese GP (2021) Polymorphism
in INSR Locus Modifies Risk of Atrial

Fibrillation in Patients on Thyroid
Hormone Replacement Therapy.

Front. Genet. 12:652878.
doi: 10.3389/fgene.2021.652878

Polymorphism in INSR Locus
Modifies Risk of Atrial Fibrillation in
Patients on Thyroid Hormone
Replacement Therapy
Enrique Soto-Pedre1* , Moneeza K. Siddiqui2, Cyrielle Maroteau2, Adem Y. Dawed1,
Alex S. Doney3, Colin N. A. Palmer2, Ewan R. Pearson1 and Graham P. Leese1,4

1 Division of Population Health and Genomics, School of Medicine, Ninewells Hospital and Medical School, University
of Dundee, Dundee, United Kingdom, 2 Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital
and Medical School, University of Dundee, Dundee, United Kingdom, 3 Medicines Monitoring Unit and Hypertension
Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom, 4 Department
of Endocrinology and Diabetes, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom

Aims: Atrial fibrillation (AF) is a risk for patients receiving thyroid hormone replacement
therapy. No published work has focused on pharmacogenetics relevant to thyroid
dysfunction and AF risk. We aimed to assess the effect of L-thyroxine on AF risk stratified
by a variation in a candidate gene.

Methods and Results: A retrospective follow-up study was done among European
Caucasian patients from the Genetics of Diabetes Audit and Research in Tayside
Scotland cohort (Scotland, United Kingdom). Linked data on biochemistry, prescribing,
hospital admissions, demographics, and genetic biobank were used to ascertain
patients on L-thyroxine and diagnosis of AF. A GWAS-identified insulin receptor-INSR
locus (rs4804416) was the candidate gene. Cox survival models and sensitivity analyses
by taking competing risk of death into account were used. Replication was performed
in additional sample (The Genetics of Scottish Health Research register, GoSHARE),
and meta-analyses across the results of the study and replication cohorts were done.
We analyzed 962 exposed to L-thyroxine and 5,840 unexposed patients who were
rs4804416 genotyped. The rarer G/G genotype was present in 18% of the study
population. The total follow-up was up to 20 years, and there was a significant
increased AF risk for patients homozygous carriers of the G allele exposed to L-thyroxine
(RHR = 2.35, P = 1.6e–02). The adjusted increased risk was highest within the first
3 years of exposure (RHR = 9.10, P = 8.5e–04). Sensitivity analysis yielded similar
results. Effects were replicated in GoSHARE (n = 3,190).

Conclusion: Homozygous G/G genotype at the INSR locus (rs4804416) is associated
with an increased risk of AF in patients on L-thyroxine, independent of serum of free
thyroxine and thyroid-stimulating hormone serum concentrations.
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INTRODUCTION

Hypothyroidism is the most common thyroid disorder
affecting about 3–5% of the general population, and patients
are nearly always treated with L-thyroxine (Flynn et al.,
2004; Wiersinga et al., 2012). Patients usually respond well
to treatment, and dosage is monitored in response to a
combination of serum thyroid stimulating hormone (TSH)
concentration and patients’ symptoms (Wiersinga et al.,
2012). However, increased risk of cardiovascular disease, atrial
fibrillation (AF) and bone fractures have been described in
patients receiving long-term replacement thyroxine therapy
(Flynn et al., 2010; Chaker et al., 2015; Floriani et al.,
2017).

Atrial fibrillation is the most common cardiac dysrhythmia
and a leading cause of cardiovascular and cerebrovascular
morbidity and mortality (Chugh et al., 2014). Risk of AF for
patients taking L-thyroxine is partly related to their dose and
serum TSH concentration (Flynn et al., 2010). Over the last
decade, progress has been made in defining the genetic basis
of AF, and there is now evidence that genetic factors may play
a role in its pathogenesis. Most published work has focused
on identifying genetic variants (common and rare) associated
with AF (Fatkin et al., 2017), less on pharmacogenetics relevant
to AF management (Huang and Darbar, 2016), few on genetic
determinants of thyroid function/dysfunction associated with AF
(Ellervik et al., 2019; Larsson et al., 2019; Salem et al., 2019), but
none on pharmacogenetics relevant to thyroid dysfunction on AF
risk.

We have previously replicated in a Scottish population
a number of GWAS-identified loci associated with serum
TSH concentrations including the insulin receptor-INSR locus
(Soto-Pedre et al., 2017). Insulin resistance and serum TSH
concentration have both been highlighted as being possible
underlying mechanisms for AF (Flynn et al., 2010; Bell and
Goncalves, 2019; Bohne et al., 2019; Ellervik et al., 2019; Salem
et al., 2019). We aimed to assess the effect of L-thyroxine
replacement therapy on AF stratified by a variation at an INSR
locus.

MATERIALS AND METHODS

Discovery Cohort
A retrospective follow-up study was performed among patients
from the Genetics of Diabetes Audit and Research Tayside
Scotland (GoDARTS) study. All subjects in this population are
of white European ethnicity, the period of follow-up was defined
from 1994 to March 2014 and all patients with at least one
serum TSH recording were considered for inclusion. For each
individual the date of entry into the study was the first date
of thyroid replacement therapy prescription (exposed cohort)
or the date at first serum TSH recording (unexposed cohort).
Each eligible patient was followed from the date of entry until
either occurrence of AF or withdrawal from observation (i.e., the

earliest of three dates: date of death, last date under observation,
or 1 April 2014).

Each patient has a unique identification number (Community
Health Index) which facilitates data linkage across all
available electronic medical records (EMRs) by the Health
Informatics Centre of the University of Dundee1. Linked data on
biochemistry, prescribing, hospital admissions, demographics,
and genetic biobank were used to ascertain patients on L-
thyroxine and diagnosis of AF (see Supplementary Material for
a detailed description of linked datasets).

Replication Cohort
The Genetics of Scottish Health Research register (GoSHARE)
was used to perform the replication analyses (McKinstry et al.,
2017). In brief, participants anywhere in Scotland are asked to
allow their information held within NHS Scotland EMRs to be
used for research, and to give consent for blood remaining from
diagnostic tests to be used. Any participant included also in
the discovery cohort was removed from GoSHARE. The same
data linkage procedure and phenotype definition criteria for the
discovery cohort were applied to this dataset.

Phenotype Definition Criteria
A phenotype of thyroid replacement therapy was defined as
having been issued at least two prescriptions of L-thyroxine
(British National Formulary codes-BNF 6.2.1) during the study
period. Patients with any prescription of liothyronine and/or
with history of thyroid cancer or probable hyperthyroidism were
excluded. Unexposed patients never received a prescription for
L-thyroxine, and had a serum TSH within the reference range.
There was no distinction between AF and atrial flutter when
identifying AF phenotypes because the conditions are similar
with respect to risk factors and possible complications (Chaker
et al., 2015). See Supplementary Material for more detailed
information on phenotype definition.

Serum TSH and free thyroxine (FT4) were taken as the
median of these measures recorded throughout the study period
for each patient.

Genetic Data
A GWAS-identified INSR locus (rs4804416) associated with
average serum TSH concentrations and replicated in the
GoDARTS cohort (Soto-Pedre et al., 2017) was the candidate
gene. To strengthen the choice of this candidate, additional
single-nucleotide polymorphisms (SNPs) associated with TSH
were also considered regarding AF in patients on L-thyroxine
(see Supplementary Table 1). Genotype data was available from
several platforms as previously described (Soto-Pedre et al., 2017;
see Supplementary Material).

As serum TSH has been identified as a possible underlying
mechanism for AF (Ellervik et al., 2019; Salem et al., 2019), a
genetic risk score was developed using a weighted sum of TSH
increasing alleles (wGRS) reported by Teumer et al. (2018). The

1http://www.dundee.ac.uk/hic
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purpose of this was to explore whether any possible association
with the insulin receptor was driven by serum TSH.

Statistical Analysis
ANOVA and chi-square tests were used to compare means and
frequencies among subgroups of patients, respectively, and non-
parametric tests were used where appropriate. Single-locus tests
of association with rs4804416 (INSR) were performed under the
assumption of an additive model in the discovery cohort, with the
T/T genotype (ancestral allele) as the reference. Cross-sectional
analysis was done by logistic regression models to strengthen the
choice of the candidate gene.

Longitudinal analyses to explore the relationship between
exposure to L-thyroxine and AF by genotype over time were
performed by Cox proportional hazards regression models. The
effects of the exposure were estimated by including in models
gender, age, and body mass index (BMI) at baseline, and terms for
average serum TSH (or FT4) and a diagnosis of diabetes mellitus
at any time over the study period were considered as strata.
A two-way interaction term between L-thyroxine and genotype
was included in all models. To further explore the hypothesis
that serum TSH might be related with the development of AF
in the context of L-thyroxine therapy, Cox survival models
were fitted instead with a two-way interaction term between L-
thyroxine and the generated TSH-wGRS (Teumer et al., 2018).
The estimates of interaction effects are based on a ratio of hazard
ratios (RHR); for each Cox model, ratios between treated (i.e.,
L-thyroxine) and untreated hazard ratios (HR) were computed.
Sensitivity analyses to assess the robustness of the findings were
conducted by competing risk regression models where death was
the competing event. Model specification was evaluated using
goodness of fit diagnostics by computing Harrell’s C coefficient,
and a test of the proportional hazards assumption was performed
for each covariate and globally using a formal significance test
based on Schoenfeld residuals. Replication analyses in GoSHARE
consisted of repeating same statistical models that were fitted in
GoDARTS. Data were entered into a STATA/SE R© version 13.1
package (StataCorp, TX, United States) for statistical analysis.

The results from the discovery and replication cohorts were
combined in a fixed-effect meta-analysis by using R-package
“metaphor”2, and heterogeneity was quantified using the
I-squared measure. Meta-analyses were based on the assumption
of an underlying recessive genetic model. Evidence for this
effect came from our primary analyses (see Supplementary
Tables 2–4), where the effect of the genotype on AF was visibly
similar in participants homozygous for the ancestral allele (T/T)
and heterozygous carriers (T/G), while the only clear effect
was observed in homozygous carriers of the rare allele (G/G).
This was supplemented by mRNA expression data available
from the Genotype-Tissue Expression (GTEx) portal, where the
association of the genotype with INSR expression in the thyroid
tissue showed a decreased expression only for those with the
G/G genotype, while the other two groups showed very marginal
increase (see Figure 1).

2https://www.r-project.org

FIGURE 1 | GTEx portal data showing the association of rs4804416 on INSR
expression in thyroid tissue. Normalized expression in tissue with T/T
genotype was 0.017, in T/G was 0.036, and G/G was –0.146 (T-test
statistic = –3.0, P = 0.0034).

RESULTS

We identified 6,802 patients eligible for the study cohort who
were INSR-rs4804416 genotyped. During a median follow-up of
12.1 years (interquartile range 7.9–15.8 years) a total of 535 AF
events occurred. A comparison of the baseline characteristics
of the exposed and unexposed cohorts is shown in Table 1.
Although those exposed to L-thyroxine had a higher average
serum TSH (2.7 vs 1.8 mIU/L, P< 1e-03), average TSH (and FT4)
levels were within the biochemical reference range. Preliminary
cross-sectional analyses strengthen the choice of the candidate
gene by showing association signal only for rs4804416 among
other SNPs related also to average serum TSH concentration (see
Supplementary Table 1).

Survival analyses showed that for patients taking L-thyroxine
there was a significant increased risk of AF for homozygous
carriers of the G allele at any time during the follow-up compared
to the other genotypes. Table 2 shows the unadjusted and
adjusted RHR for the interaction effects between L-thyroxine
treatment and genotype on AF risk by time to follow-up. The
increased risk was highest within the first 3 years after starting on
treatment when it was over nine times higher than in non-carriers
(RHR = 9.10, P = 8.5e–04). However, heterozygous carriers
did not show a significant increased risk compared to non-
carriers. Similar results were obtained after adjusting for height
instead of BMI or stratifying for serum FT4 instead of TSH (see
Supplementary Tables 2, 3, respectively). Figure 2 graphically
shows the difference in AF-free survival by genotype within
3 years of treatment. Survival models fitted instead with a two-
way interaction term between L-thyroxine and the increasing
TSH-wGRS (i.e., weighted TSH-based genetic risk score) showed
no associated risk of AF per genetically predicted increase of TSH
levels for those treated (see Supplementary Table 5).

Sensitivity analyses using competing risk regression
models with death as a competing event are shown in
Supplementary Table 4 and yielded similar results to the
survival models showed in Table 2. A competing risk is an event
that either hinders the observation of the outcome of interest or
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TABLE 1 | Description of patients on thyroid replacement therapy (L-thyroxine)
and their comparison cohort at study entry (n = 6,802).

Characteristic L-thyroxine
(n = 962)

Comparison
cohort (n = 5,840)

P

n (%)

Gender-female 644 (66.9) 2,205 (37.7) <0.001

SIMD quintile:

1 Most deprived 180 (18.9) 1,048 (18.2) =0.968

2 157 (16.5) 958 (16.7)

3 155 (16.3) 958 (16.7)

4 294 (30.9) 1,755 (30.5)

5 Most affluent 164 (17.2) 1,031 (17.9)

Diabetes mellitus 236 (24.5) 584 (10.0) <0.001

Genotype rs4804416:

TT 323 (33.6) 1,955 (33.5) =0.962

TG 466 (48.4) 2,813 (48.1)

GG 173 (18.0) 1,072 (18.4)

Mean (SD)

Age-years 58.1 (12.5) 59.6 (12.4) <0.001

BMI (Kg/m2) 31.1 (6.6) 30.6 (5.6) <0.001

Height (cm) 163.9 (9.3) 168.3 (9.6) <0.001

Serum TSH (mIU/L)* 2.7 (1.7–3.6) 1.8 (1.3–2.4) <0.001

Serum FT4 (pmol/L)* 14.6
(13.2–16.3)

14.7 (13.3–16.5) =0.415

BMI, Body mass index; FT4, free thyroxine; SIMD, Scottish Index of Multiple
Deprivation; and TSH, Thyroid-stimulating hormone.
* median (interquartile range) of measures recorded throughout the study period.

modifies the chance that this outcome occurs. Thus, our results
were not confounded by death.

The replication study consisted of additional 3,190 eligible
individuals of white ethnicity recruited from GoSHARE from
1995 to 2018. During a median follow-up of 10.2 years
(interquartile range 6.1–14.5 years) a total of 220 AF events
occurred. A comparison of the baseline characteristics of the
exposed and unexposed groups to L-thyroxine is shown in
Supplementary Table 6. Survival analyses showed that for

FIGURE 2 | Survival functions of atrial fibrillation in patients on L-thyroxine by
genetic variation at INSR- rs4804416 within 3 years of follow-up.

patients taking L-thyroxine there was a significant increased
risk of AF for homozygous carriers of the G allele at any
time during the follow-up compared to the other genotypes
(see Supplementary Figure 1) similar to the discovery cohort.
Sensitivity analyses using competing risk regression models
with death as a competing event yielded similar results.
Supplementary Table 7 shows the increased AF risk in
unadjusted and adjusted genetic recessive models, although it was
not significant due to less number of AF events in this smaller
dataset.

The results of the adjusted genetic recessive models from the
study (i.e., GoDARTS) and replication (i.e., GoSHARE) were
further combined in fixed-effect meta-analyses. We reported the
p-values for the two-tailed test on the combined effect. Figure 3
shows a decreased AF risk for homozygous carriers of rs4804416
G allele in both unexposed cohorts with a significant summary
estimate (HR = 0.66, P = 1.1e–02), and an increased risk for the
exposed cohorts that was not significant due to the sample size
(HR = 2.34, P = 2.5e–01). To overcome the sample size issue in the
exposed groups, a two-way interaction term between L-thyroxine

TABLE 2 | Pharmacogenetics interaction between exposure to L-thyroxine and INSR-rs4804416 on developing atrial fibrillation by follow-up time (n = 6,802).

Follow-up At risk (p-y) Events (n) Genotype RHR (95% CI)a P† RHR (95% CI)b P† RHR (95% CI)c P†

3 years 19,652 128 TG 1.13 (0.38–3.38) 8.2e-01 1.17 (0.39–3.51) 7.7e-01 1.19 (0.39–3.58) 7.5e-01

GG 7.34 (2.11–25.53) 1.7e-03* 7.48 (2.15–26.06) 1.6e-03* 9.10 (2.48–33.33) 8.5e-04*

5 years 31,837 184 TG 1.04 (0.41–2.60) 9.4e-01 1.06 (0.42–2.68) 8.9e-01 1.10 (0.43–2.78) 8.3e-01

GG 4.40 (1.62–11.94) 3.6e-03* 4.48 (1.65–12.17) 3.2e-03* 4.70 (1.70–12.95) 2.7e-03*

10 years 57,984 347 TG 1.45 (0.74–2.82) 2.7e-01 1.43 (0.73–2.80) 2.9e-01 1.40 (0.71–2.74) 3.2e-01

GG 2.77 (1.24–6.19) 1.3e-02* 2.83 (1.26–6.32) 1.1e-02* 2.93 (1.30–6.58) 9.1e-03*

15 years 74,153 470 TG 1.37 (0.75–2.48) 3.0e-01 1.29 (0.71–2.35) 4.0e-01 1.30 (0.71–2.37) 3.9e-01

GG 2.39 (1.17–4.86) 1.6e-02* 2.36 (1.16–4.81) 1.8e-02* 2.45 (1.20–5.01) 1.4e-02*

20 years 79,301 535 TG 1.49 (0.84–2.65) 1.7e-01 1.45 (0.81–2.57) 2.0e-01 1.45 (0.81–2.58) 2.1e-01

GG 2.25 (1.12–4.50) 2.2e-02* 2.27 (1.13–4.55) 2.0e-02* 2.35 (1.17–4.72) 1.6e-02*

INSR = insulin receptor-polymorphism. INSR effect allele = G; coding TT = 0, TG = 1, GG = 2. RHR = Ratio of hazard ratios. TSH = thyroid-stimulating hormone.
*P < 0.05, †P value for the interaction term (L-thyroxine*INSR).
aUnadjusted Cox survival models.
bAdjusted Cox models for age and gender, and stratified by average serum TSH during follow-up and history of diabetes mellitus.
cAdjusted Cox models for age, gender and BMI, and stratified by average serum TSH during follow-up and history of diabetes mellitus.
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FIGURE 3 | Forest plot for meta-analyses of INSR-rs4804416 on developing atrial fibrillation by exposure to L-thyroxine within 10 years of follow-up. HR, Hazard
ratio.

FIGURE 4 | Forest plot for meta-analyses of pharmacogenetics interaction between exposure to L-thyroxine and INSR-rs4804416 on developing atrial fibrillation
within 10 years of follow-up. RHR, Ratio of hazard ratios.

and genotype was included in the model as mentioned earlier.
Figure 4 shows a significant summary estimate of interaction
effects across the studies (P = 3e–03), meaning that homozygous
carriers of G allele exposed to L-thyroxine have an increased
AF risk 2.59 (95% CI 1.36–4.94) times higher than unexposed
individuals. The consistency of the SNP effects direction across
the studies (i.e., study and replication) was also graphically
shown in Figures 3, 4. Although no significant heterogeneity was
detected, a value close to 44% was found in the meta-analysis
across the exposed cohorts (P = 1.8e–01).

DISCUSSION

We have undertaken a large follow-up study to assess the
association between thyroid hormone replacement therapy, the
SNP rs4804416 and risk of developing AF over a 20 year period.
We have shown that AF risk is up to nine times higher in
patients taking L-thyroxine that are also homozygous carriers of
the minor G allele of rs4804416. The impact of L-thyroxine upon
AF was evident independent of average serum TSH (or FT4)
concentration, BMI (or height) and diabetes status at any point
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during the follow-up period, which have been associated with AF
(Flynn et al., 2010; Rosenberg et al., 2012; Chaker et al., 2015;
Baumgartner et al., 2017; Bell and Goncalves, 2019).

Replication was performed in an additional comparable
sample (i.e., GoSHARE) where identical phenotype definition
criteria were applied. The replication sample was smaller
and younger, and thus had fewer AF events during similar
average follow-up. Nonetheless, replication results showed same
direction of effects, similar effect size when there was no exposure
to L-thyroxine, but larger effect size when there was exposure to
L-thyroxine. Survival analyses of the discovery and replication
data showed similar functions for non-carriers and heterozygous
carriers compared to homozygous carriers. Meta-analyses of the
association across the discovery and replication were based on
underlying recessive genetic models, which did not assume that
the underlying genetic model was known in advance but made
use of the information available on all genotypes. The association
test results observed indicate that variability between estimated
effects from the study and the replication can be explained by
chance only.

Recently, Salem et al. (2019) and Ellervik et al. (2019)
researched the association between thyroid function and AF
using genetic data, and provided support for the observational
association between thyroid function and AF. They showed that
the risk of AF seems to vary throughout the spectrum of thyroid
function as measured by TSH, including the reference range.
Thus, serum TSH concentration may explain only some of the
risk of AF. Salem et al. reported a negative association with AF for
carriers of the increasing TSH rs4804416 G allele in a phenome-
wide association study of individuals unexposed to L-thyroxine
(β = –0.0185, P = 0.15; Salem et al., 2019). Ellervik et al. (2019)
conducted a Mendelian randomization analysis and reported a
protective association of their genetic increasing TSH predictor
on AF (OR = 0.88; 95% CI 0.84–0.92). These studies support
our finding of decreased AF risk among homozygous carriers
of rs4804416 G allele unexposed to L-thyroxine (HR = 0.66;
95% CI 0.48–0.91). Our data provides evidence for the first time
that a genetic variation impacts on AF risk in patients treated
with L-thyroxine for hypothyroidism. Genetic polymorphisms
may increase susceptibility to environmental changes in the
pathogenesis of AF (Fatkin et al., 2017). Exposure to L-thyroxine
could reverse the protective association of rs4804416 G allele
observed in individuals with normal thyroid function.

Candidate genes from GWAS are considered an unbiased
approach to identifying or validating genetic influences on
drug response (Roden et al., 2011). This approach focuses on
associations between genetic variation within pre-specified genes
of interest and phenotypes. In this study, a GWAS-identified
INSR locus (rs4804416) replicated in a Scottish population
was the candidate gene (Soto-Pedre et al., 2017). This gene
encodes a preproprotein that is processed to generate two alpha
and two beta subunits that work together as a functioning
insulin receptor. INSR gene mutations also underlie the type
A insulin resistance syndrome and leads to diabetes mellitus
(Semple et al., 2011). Although this SNP has been associated with
average serum TSH concentrations, our results are suggestive that
the observed increased AF risk for homozygous carriers of the

increasing TSH allele (i.e., G/G) in the context of L-thyroxine
therapy might not be dependent on serum TSH.

The GTEx Project has created a reference resource of gene
expression levels from non-diseased tissues (Carithers and
Moore, 2015). Studies of tissue-specific gene expression across
human tissues provide useful insights into how genes can affect
disease. Data from the GTEx shows that the SNP rs4804416
is a strong expression quantitative trait locus for INSR mRNA
expression, and it is associated with a statistically significant
expression at several tissues (see Supplementary Figure 2). In
thyroid and aortic artery tissue, carriers of the rare allele (G) have
lower expression of INSR mRNA. It is possible that exposure to L-
thyroxine associated with impaired expression of INSR in patients
with the G/G genotype in some of these tissues may explain the
mechanism of increased AF risk. This indirectly supports the
hypothesis that altered insulin resistance due to reduced mRNA
product of INSR might be associated with the development of AF
in the context of L-thyroxine therapy.

Our results were adjusted for known potential confounders
and the impact of missing values is considered low. The data
on morbidity and AF mainly related to hospital admission data
and would have missed out-patient activity, and thus missed
some events of AF underestimating overall AF risk. An apparent
limitation of the study is that criteria for individual date of entry
into the study differed between exposed and unexposed cohorts;
the first date of prescription for exposed to L-thyroxine and the
date at first serum TSH recording for those unexposed. However,
these criteria do not differ much in clinical practice because
serum TSH is nearly always measured before starting on L-
thyroxine. A major strength of this study is that it is a longitudinal
study and that sensitivity analysis using competing risk regression
models with death as a competing event for AF confirmed the
results across the discovery and replication datasets.

In summary, genetic polymorphisms in the INSR gene may
affect disease outcomes in patients on L-thyroxine replacement
therapy and support to predict those who will have higher risk
of AF. The results of the present study may help to customize
L-thyroxine prescribing for patients to improve safety. Further
studies are needed to reassure our findings.
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