
ORIGINAL RESEARCH
published: 23 June 2021

doi: 10.3389/fgene.2021.653474

Frontiers in Genetics | www.frontiersin.org 1 June 2021 | Volume 12 | Article 653474

Edited by:

Detu Zhu,

Cornell University, United States

Reviewed by:

Liangjiang Wang,

Clemson University, United States

Pengcheng Yang,

Independent Researcher,

Beijing, China

Yong Xu,

First Hospital of Shanxi Medical

University, China

*Correspondence:

Qiming Liu

qimingliu@csu.edu.cn

Specialty section:

This article was submitted to

RNA,

a section of the journal

Frontiers in Genetics

Received: 14 January 2021

Accepted: 15 April 2021

Published: 23 June 2021

Citation:

Liu Y, Liu N, Bai F and Liu Q (2021)

Identifying ceRNA Networks

Associated With the Susceptibility and

Persistence of Atrial Fibrillation

Through Weighted Gene

Co-Expression Network Analysis.

Front. Genet. 12:653474.

doi: 10.3389/fgene.2021.653474

Identifying ceRNA Networks
Associated With the Susceptibility
and Persistence of Atrial Fibrillation
Through Weighted Gene
Co-Expression Network Analysis
Yaozhong Liu, Na Liu, Fan Bai and Qiming Liu*

Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China

Background: Atrial fibrillation (AF) is the most common arrhythmia. We aimed

to construct competing endogenous RNA (ceRNA) networks associated with the

susceptibility and persistence of AF by applying the weighted gene co-expression

network analysis (WGCNA) and prioritize key genes using the random walk with restart

on multiplex networks (RWR-M) algorithm.

Methods: RNA sequencing results from 235 left atrial appendage samples were

downloaded from the GEO database. The top 5,000 lncRNAs/mRNAs with the

highest variance were used to construct a gene co-expression network using the

WGCNA method. AF susceptibility- or persistence-associated modules were identified

by correlating the module eigengene with the atrial rhythm phenotype. Using a

module-specific manner, ceRNA pairs of lncRNA–mRNA were predicted. The RWR-M

algorithm was applied to calculate the proximity between lncRNAs and known AF

protein-coding genes. Random forest classifiers, based on the expression value of

key lncRNA-associated ceRNA pairs, were constructed and validated against an

independent data set.

Results: From the 21 identified modules, magenta and tan modules were associated

with AF susceptibility, whereas turquoise and yellow modules were associated with

AF persistence. ceRNA networks in magenta and tan modules were primarily involved

in the inflammatory process, whereas ceRNA networks in turquoise and yellow

modules were primarily associated with electrical remodeling. A total of 106 previously

identified AF-associated protein-coding genes were found in the ceRNA networks,

including 16 that were previously implicated in the genome-wide association study.

Myocardial infarction–associated transcript (MIAT) and LINC00964 were prioritized as

key lncRNAs through RWR-M. The classifiers based on their associated ceRNA pairs

were able to distinguish AF from sinus rhythm with respective AUC values of 0.810

and 0.940 in the training set and 0.870 and 0.922 in the independent test set. The

AF-related single-nucleotide polymorphism rs35006907 was found in the intronic region

of LINC00964 and negatively regulated the LINC00964 expression.
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Conclusion: Our study constructed AF susceptibility- and persistence-associated

ceRNA networks, linked genetics with epigenetics, identified MIAT and LINC00964

as key lncRNAs, and constructed random forest classifiers based on their associated

ceRNA pairs. These results will help us to better understand the mechanisms underlying

AF from the ceRNA perspective and provide candidate therapeutic and diagnostic tools.

Keywords: atrial fibrillation, susceptibility, persistence, ceRNA, WGCNA, RWR-M

INTRODUCTION

Atrial fibrillation (AF) is the most common type of cardiac
arrhythmia and poses a significant burden to patients and
physicians (Hindricks et al., 2020). The currently estimated global
prevalence of AF is between 2 and 4% (Hindricks et al., 2020;
Virani et al., 2020), and by the middle of the 21st century, AF
will be diagnosed in an estimated 72 million individuals in Asia,
16 million in America, and 14 million in Europe (Kornej et al.,
2020). Well-known risk factors contribute to AF susceptibility,
including aging, male sex, alcohol consumption, obesity, and
smoking as well as comorbidities such as heart failure, diabetes,
obstructive sleep apnea, and inflammatory disease (Chung et al.,
2020). AF is also heritable (Weng et al., 2017), and two
large-scale genome-wide association studies (GWAS) identified
more than 100 loci associated with AF (Nielsen et al., 2018;
Roselli et al., 2018). AF increases the risk of stroke, dementia,
and depression and contributes to a 1.5–3.5-fold increase in
mortality (Hindricks et al., 2020). Despite its epidemiological
importance, the fundamental mechanisms that underlie AF
remain poorly understood.

The basic mechanisms that underlie AF include ectopic
firing and reentry circuits, both of which are associated with
atrial electrical and structural remodeling (Iwasaki et al., 2011).
Electrical remodeling refers to changes in the expression or
function of the ion channels that affect the electrical activity
of cardiomyocytes, whereas structural remodeling refers to
alterations that occur in the tissue architecture, such as
atrial fibrosis and dilation (Nattel and Harada, 2014). Both
electrical and structural remodeling provide the substrates
for ectopic firing and reentry circuits. Some newly proposed
physiological processes, including oxidative stress, inflammation,
and mitochondrial damage, have the potential to trigger atrial
remodeling and represent promising therapeutic targets in AF
(Nattel et al., 2020).

Depending on the presentation, duration, and spontaneous
termination of AF, five patterns have been classified, including
first-diagnosed, paroxysmal, persistent, long-standing persistent,
and permanent AF (Hindricks et al., 2020). The self-perpetuating
nature of AF represents a major challenge that has limited the
success of pharmacological or ablation therapies and might serve
as the leading mechanism that contributes to the development
of paroxysmal to persistent to permanent AF (Nattel et al.,
2014). Rapid, irregular pacing causes abnormalities to develop
in the underlying electrical or structural properties of the
atria, and these remodeling events can further promote AF
development (Nattel et al., 2014), leading to a vicious cycle of

“AF begetting AF.” Therefore, identifying the regulators that
mediate the pathogenic biological processes that underlie atrial
remodeling has become a primary goal in AF-related clinical and
experimental studies. The recent discovery of a new group of
mediators, known as competing endogenous RNAs (ceRNAs),
offers a unique opportunity for deciphering this complex heart
rhythm disorder.

Numerous microRNA (miRNA) binding sites have been
identified on messenger RNAs (mRNAs), long non-coding RNAs
(lncRNAs), circular RNAs, and pseudogenes (Tay et al., 2014),
leading to the hypothesis that RNA transcripts containing
miRNA-binding sites can “communicate” or regulate each other
by competing for shared miRNAs, acting as ceRNAs (Salmena
et al., 2011). This hypothesis has been widely adopted in
investigations of the roles played by non-coding RNAs in disease
pathogenesis, especially lncRNAs. A great example is cardiac
apoptosis–related lncRNA (CARL), which competitively binds
to miR-539, preventing the miR-539-dependent downregulation
of prohibitin 2 (PHB2), allowing PHB2 to inhibit mitochondrial
fission and apoptosis in cardiomyocytes (Wang et al., 2014).
However, the functions of ceRNA pairs in AF have not yet
been well-illustrated. As the “language” of ceRNAs, many
miRNAs have been demonstrated to promote AF development
by causing atrial electrical and structural remodeling (Luo
et al., 2015), suggesting the existence of ceRNA crosstalk in
AF pathogenesis. Previous research has attempted to identify
ceRNA pairs associated with AF by identifying differentially
expressed lncRNAs/mRNAs between patients with AF and those
with sinus rhythm (SR) (Qian et al., 2019). However, differentially
expressed gene (DEG) analysis ignores the interconnections
between ceRNAs and may filter out genes with high centralities
that engage in high levels of ceRNA crosstalk. In addition, DEGs
were identified by comparing the expression patterns between a
persistent AF and an SR group; however, these genes could be
associated with either increased susceptibility or persistence, and
the distinction between susceptibility- and persistence-associated
ceRNA pairs is not possible in comparisons of AF and SR genes.

The characteristics and underlying molecular mechanisms
associated with AF susceptibility might differ from those
associated with AF persistence. A previous microarray study
(Deshmukh et al., 2015) compared the transcriptomic profiles
of left atrial appendages from three types of patients (no AF
history, AF history in SR at surgery, AF history in AF at surgery)
and found that AF susceptibility was associated with changes
in the activities of several transcription factor targets related to
inflammation, oxidation, and cellular stress responses, whereas
AF persistence was associated with the remodeling of ion channel
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FIGURE 1 | Study workflow.

expression. Many of these changes corroborate the findings of
previous clinical and electrophysiology studies of AF. On the one
hand, inflammatory disease, cardiovascular comorbidities, and
increased serum inflammatory biomarkers have been associated
with an increased risk of AF (Chung et al., 2020; Li and
Brundel, 2020), which supports the idea that inflammation and
oxidative stress contribute to AF susceptibility. On the other
hand, GWAS studies and gain and loss of function studies
have identified various genes related to ion channel expression
that are associated with AF persistence (Roselli et al., 2020).
Drugs that target ion channel currents represent the current
pharmacological strategies used to treat AF patients. However,
the application of anti-inflammatory agents for AF prevention
has generally failed to establish AF-specific indications, and the
efficiency of anti-arrhythmia drugs in AF treatment remains
relatively unsatisfactory (Chung et al., 2020). Therefore, the
identification of new regulators to prevent the initiation and
progression of this complex arrhythmia could provide new
therapeutic and diagnostic targets.

In this study, we introduce a method known as the weighted
gene co-expression network analysis (WGCNA), which can
cluster highly correlated genes into association modules and
then relate each module to external clinical traits (Langfelder

and Horvath, 2008). The construction of a ceRNA network
within a disease-related module ensures that the identified
nodes are highly co-expressed and enhances the reliability and
significance of the network. Our present study used a large
cohort (n = 235) of left atrial tissue samples derived from
patients from three types of atrial rhythm. By analyzing the
relationships between the modules and the various phenotypes,
we were able to identify AF susceptibility- and persistence-
associated ceRNA networks, which will inform future research.
We also applied a newly proposed algorithm, known as the
random walk with restart on multiple networks (RWR-M), to
prioritize lncRNAs by analyzing the “proximity score” of each
lncRNA to known disease-related genes. Moreover, by applying
the random forest classification algorithm, we demonstrate
that key lncRNA-associated ceRNA pairs could distinguish AF
from SR patients in both training and independent test sets.
In general, our study generates a state-of-the-art pipeline for
the construction of disease-associated ceRNA networks and
the prioritization of newly identified disease-associated genes
(Figure 1). These results provide information to promote a better
understanding of the mechanisms that underlie AF from the
ceRNA perspective and identify new candidate therapeutic and
diagnostic targets.

Frontiers in Genetics | www.frontiersin.org 3 June 2021 | Volume 12 | Article 653474

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Liu et al. ceRNA Network in Atrial Fibrillation

MATERIALS AND METHODS

Data Acquisition and Preprocessing
The GSE69890 data set was used to obtain the RNA sequencing
results generated from left atrial appendage (LAA) tissue samples
derived from 235 subjects of European descent (Hsu et al., 2018).
These 235 subjects were divided into three groups according to
their atrial rhythm phenotypes: no history of AF and in SR at
the time of surgery (SR/SR, n = 43), a history of AF but in SR
at the time of surgery (AF/SR, n = 74), and a history of AF and
flutter at the time of surgery (AF/AF, n = 118). The raw count
file was downloaded from the NCBI Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/). We annotated
the Ensemble ID identifier with the Ensembl Release 99 (https://
www.ensembl.org/index.html), retaining rows that (1) had an
official symbol name and (2) belonged to the lncRNA or mRNA
category and removing rows that had duplicated gene names.
Genes with counts of <10 in more than 80% of samples were
filtered out, and the remaining data were variance-stabilized and
transformed using the R package DESeq2 (Love et al., 2014).
Surrogate variables (SVs) were calculated using the sva package
(Leek et al., 2012), and the expression of each gene was adjusted
by the sex covariate and the identified SVs. Finally, the top 5,000
genes with the highest variance were selected for the construction
of a gene co-expression network.

For validation, the GSE41177 data set (Yeh et al., 2013),
which includes microarray data from a total of 38 left atrial
tissues from 6 persistent AF and 32 SR patients, was downloaded
from the GEO database. The raw CEL files were obtained and
preprocessed using a robust multiarray average (RMA) algorithm
with the affy package (Gautier et al., 2004) for background
correction and quantile normalization. The median expression
values among all multiple probe IDs were selected to represent
the corresponding gene.

Construction of a Weighted Gene
Co-Expression Network
WGCNA is one of the most widely used methods for the
construction of a gene co-expression network (Langfelder and
Horvath, 2008). In this study, we focused only on positive gene
correlations; therefore, a signed network was constructed. First,
a signed adjacency matrix was generated between genes based on
their correlation. The adjacency value, signed aij, for genes i and
j, is defined as

signed aij = |
(

1+ cor
(

xi, xj
) )

/2|
β
,

where cor
(

xi, xj
)

is the Pearson’s correlation coefficient between
gene i and gene j, and β is an integer to let the network display
a scale-free topology property. A value of β = 12 was selected in
this study because this satisfied a degree of independence of 0.9
with the minimum value. Then, a topological overlap measure
(TOM) was created to reduce the network sensitivity to spurious
connections or random noise (Ravasz et al., 2002). Hierarchical
clustering was performed on the matrix 1 – TOM and the
dynamic tree cut method was applied to generate modules of
highly co-expressed genes with parameters set to a deepSplit of 2,

minModuleSize of 30, and height cutoff of 0.25 as recommended
(Zhang and Horvath, 2005). The module eigengene (ME) is
defined as the first principal component of a given module and
can, therefore, present the gene expression profiles in a module
(Langfelder and Horvath, 2008).

Association Between Modules and Clinical
Information
Pearson’s correlation analysis was applied to correlate the atrial
rhythms with the MEs from each module. Associations between
modules and AF susceptibility were determined by evaluating the
correlations between the MEs and the atrial rhythm phenotypes
in the 117 AF/SR and SR/SR samples (AF/SR was assigned one
and SR/SR was assigned zero). Similarly, associations between
modules and AF persistence were determined by evaluating the
correlation between MEs and atrial rhythm phenotypes in the
192 AF/AF and AF/SR samples (AF/AF was assigned one and
AF/SR was assigned zero). To reduce the probability of statistical
error, we only chose the four most significant modules associated
with AF (two for susceptibility and two for persistence) for
further analysis.

Preparation of miRNA Targets Database
DIANA-LncBase v2.0 (http://www.microrna.gr/LncBase) is a
reference repository that contains experimentally supported
non-coding RNA–miRNA pairs (Paraskevopoulou et al., 2016).
DIANA-TarBase v8 (http://www.microrna.gr/tarbase) is a
reference database with experimentally supported mRNA-
miRNA pairs (Karagkouni et al., 2018). We annotated the
Ensemble ID identifiers in the two data sets, as described
above, and retained only the identified lncRNA–miRNA and
mRNA–miRNA pairs, resulting in 26,178 lncRNA–miRNA pairs
and 418,758 mRNA–miRNA pairs, which were used for further
ceRNA pair prediction.

ceRNA Network Construction
For each of the selected modules, the mRNAs and lncRNAs
were co-expressed and closely related to AF. Thus, we predicted
their communications by identifying shared miRNAs between
lncRNAs and mRNAs. We used a strict prediction and
selection method as follows: (a) prediction of lncRNA–miRNA
interactions; (b) prediction of mRNA–miRNA interactions; (c)
hypergeometric test: for each lncRNA–mRNA pair with shared
miRNAs, we calculated the pair’s significance by performing
a hypergeometric test using the phyper function in the stata
packages in R software. The p-values were calculated as follows:

p = 1−
∑t−1

k=0

Ck
MCn− k

N−M

Cn
N

,

where N represents the total number of miRNAs in the
prepared lncRNA–miRNA and mRNA–miRNA pairs (N = 923),
t represents the number of shared miRNAs between the given
lncRNA and mRNA, n represents the number of miRNAs that
target the lncRNA, and M represents the number of miRNAs
that target the mRNA. Those pairs with p < 0.05 were selected
to construct the ceRNA network. We also calculated an adjusted
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p-value using the Benjamini–Hochberg (BH) method. Those
pairs with adjusted p < 0.05 were used in the following
sensitivity analysis.

Enrichment Analysis
For a given gene list, a gene ontology biological process (GO BP)
enrichment analysis was conducted using the ClusterProfiler (Yu
et al., 2012) package in R software.

Random Walk With Restart on Multiplex
Networks
RWR-M is a state-of-the-art algorithm in network computational
biology (Valdeolivas et al., 2019). It can be applied to prioritize
candidate disease genes by calculating the proximity score of
other nodes to known disease genes (seed nodes) in multiple
interaction networks. Consider a multiplex graph G of L
undirected graphs that share the same sets of n nodes. Each layer
α = 1,. . . L, is defined by its n× n adjacency matrix A[α] =

(A[α]
(

i, j
)

)
i,j=1,...n, where A[α]

(

i, j
)

= 0 if nodes i and j are not

directly connected on layer α and one otherwise. Specifically,
A[α] (i, i) = 0, i = 1, . . . n. The multiplex graph is then
defined as G = (V, E), where V =

{

vα
i i = 1, . . . n, α =

1, . . . L}; E =
{

(vα
i vα

j ), i, j = 1, . . . n, α = 1, . . . L, A[α]
(

i, j
)

6=

0}
⋃

{(vα
i , v

β
i ), i = 1, . . . n, α 6= β}.

For each iteration, an imaginary particle can walk from its

current node vα
i to its neighbors within a layer or jump to v

β
i

(α 6= β) in another layer. An nL× nLmatrix M can be defined as

M =











(1− δ)A[1] δ
L−1 I . . . δ

L−1 I
δ

L−1 I (1− δ)A[2] . . . δ
L−1 I

...
...

. . .
...

δ
L−1 I

δ
L−1 I . . . (1− δ)A[L]











,

where I is the n × n identity matrix. The parameter δ ∈ [0, 1] is
the probability of staying in a layer or jumping to another layer
and was set as 0.5 in this study. The RWR-M equation can be
defined as

pTt+1 = (1− r)MpTt + rpTRS,

where M is the column normalization transition matrix of M;
pTt = [p1t , . . . p

L
t ] and pTt+1 = [p1t+1, . . . p

L
t+1] are n× L vectors

with each element representing the probability of the walking
particle in G; r ∈ [0, 1] is the restart probability that the particle
can restart by jumping to seed nodes at each iteration in the graph
and was set as 0.7. The pRS is defined as pRS = τ ·p0, where
p0 represents the initial probability distribution. The seed nodes
are assigned 1/k (k is the number of seeds), and other nodes are
assigned zero. τ = [τ1,..., τL] is the measurement of each layer’s
weight. After enough iterations, the difference between pt+1 and
pt becomes negligible, and the stationary probability distribution
is reached. The elements in the distributionmatrix then represent
a proximity measure from every node to the seed(s). Nodes with
a high “global proximity score” were, therefore, prioritized as new
disease genes.

First, the lncRNA–mRNA pairs in the four ceRNA networks
were aggregated into a single large network, which was set as
the first layer. We then used the top 50% of evidence-supported
gene–gene interactions with the highest confidence scores from
the cardiac muscle data identified by the GIANT project
(Greene et al., 2015). The GIANT project collected genome-
wide, functional interaction networks in tissue- and cell-specific
manners for more than 100 human tissues and cell types.We only
extracted those edges for which the two nodes both existed in
the aggregated ceRNA network. Then, we conducted the RWR-
M algorithm with two layers (L= 2, aggregated ceRNA network,
and GIANT-guided network) using the RandomWalkRestartMH
package (Valdeolivas et al., 2019). For the RWR-M analysis,
seed nodes must first be defined. We searched the DISEASE
(Pletscher-Frankild et al., 2015), DisgeNET (Piñero et al., 2017),
and MALACARD (Rappaport et al., 2017) databases to identify
known AF protein-coding genes, and those presented in the
network were set as seed nodes. For RWR-M, the layer weight
was set to τ = [ 2

(1+R) ,
2×R
(1+R) ], where R is the ratio of the number

of ceRNA-guided interactions in the first layer to the number
of GIANT project-guided interactions in the second layer. After
performing the RWR-M algorithm, the top two scoring lncRNAs
were selected as the key lncRNAs associated with AF.

Gene Set Variation Analysis
To further investigate the function of the prioritized lncRNAs
and eliminate the effects of atrial rhythm, we conducted a GSVA.
GSVA (Hänzelmann et al., 2013) is an unsupervised method
that computes the enrichment score of a given gene set in each
sample. We downloaded the latest GO BP gene sets from the
Molecular Signatures Database v7.2 (https://www.gsea-msigdb.
org/) (Mootha et al., 2003) and excluded those with gene sizes
smaller than 10 or larger than 500. For each gene set, we identified
the correlation with the prioritized lncRNAs by fitting a linear
model as the GSVA score–atrial rhythm + expression value of
lncRNA. The regression coefficient and p-value for each lncRNA
were calculated using the stata package.

Construction of Random Forest Classifiers
and Validation
For each prioritized lncRNA, the expression values of the lncRNA
and its mRNA pairs were used to construct a random forest
classifier using the randomForest package (Liaw and Wiener,
2002) in R. The performance of the classifier was first validated
in the training set using a six-fold cross-validation method
and was further evaluated using an independent test data set.
First, because RNA sequencing and microarray results can be
characterized by substantial heterogeneity, the expression values
of selected features in 118 AF/AF samples, 43 SR/SR samples,
and 38 microarray samples were merged, and batch effects were
removed using the combat function of the sva package in R,
without specifying the covariate of interest (AF or SR). The
RNA sequencing samples were used as the training set, and the
remaining 38 microarray samples were used as the test set. The
performance of the established classifier was evaluated using the
receiver operating characteristic curve and the value of the area
under the curve (AUC).
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RESULTS

Data Preparation
After data preprocessing, we obtained a large gene expression
matrix consisting of 16,905 unique genes (1,994 lncRNAs and
14,911 mRNAs) rows by 235 sample columns (AF/AF, n =

118; AF/SR, n = 74; and SR/SR, n = 43). An SV analysis was
performed to identify potential large effectors of gene expression
that might potentially introduce spurious correlations between
genes, including technical variables, such as batch effects and
read depths; genetic variables; and environmental variables, such
as any history of structural heart disease and age (Leek and
Storey, 2007; Leek et al., 2010; Parsana et al., 2019). Two SVs
were identified when specifying the interest of atrial rhythm and
covariate of sex. We then fit the gene expression matrix with a
linear model that included atrial rhythm, sex, and the identified
SVs (expression–atrial rhythm + sex + SVs) and regressed out
the sex variable and the SVs. The cleaned expression matrix was
used for further analyses, and the GSE41177 data set was used
for validation.

Construction of Co-Expression Modules
and the Identification of Key Modules
The top 5,000 genes with the highest variation (including 460
lncRNAs and 4,540 mRNAs) were selected for the construction
of a gene co-expression network. The β value was set to 12. A
total of 21 modules were generated using dynamic tree cutting
(Figure 2A). We then analyzed the correlation between each
module and the clinical traits by calculating the correlation
coefficient between each ME and the atrial rhythm phenotype.
As shown in Figure 2B, the magenta (r = 0.42, p = 3e−6) and
tan (r = 0.35, p = 9e−5) modules represent the top two AF
susceptibility-associated modules, whereas the turquoise (r =

−0.54, p = 1e−15) and yellow (r = 0.6, p = 6e−20) modules
represent the top two AF persistence-associated modules. In
addition, the magenta and tan modules did not significantly
correlate with AF persistence, and the turquoise and yellow
modules did not significantly correlate with AF susceptibility,
indicating that the selected modules each have specificity for
either AF susceptibility or persistence. Supplementary Table 1

summarizes the basic and functional information for all 21
modules. Figures 2C–F show the top 10 GO BP enrichment
results for the four selected modules. The magenta module is
primarily associated with the type I interferon signaling pathway,
and the tan module is primarily associated with T cell activation.
Both the turquoise and yellow modules are associated with
muscle contraction and the regulation of membrane potential.
These results indicate that immune system activation is closely
associated with AF susceptibility, and electrical remodeling is
more closely associated with AF persistence.

Construction of ceRNA Networks in a
Module-Specific Manner
The key design of our study was the construction of the ceRNA
network among highly co-expressed genes. We reasoned that, if
two genes exist in different modules, their ceRNA interactions
would likely be less strong. Thus, we did not consider any
intermodule ceRNA pairs. For each of the four AF modules,

we identified the intramodule lncRNA–mRNA ceRNA pairs
through the prediction and selection methods described in
section Association between modules and clinical information.
We obtained four independent ceRNA networks, two associated
with AF susceptibility and two associated with AF persistence
(Figure 3). The GO BP enrichment analysis (Figure 4) shows
that the magenta ceRNA network was primarily associated with
the defense response to virus and type I interferon signaling
pathway, the tan ceRNA network was associated with T cell
differentiation and T cell activation, the turquoise ceRNA
network was primarily associated with synapse organization
and regulation of membrane potential, and the yellow ceRNA
network was primarily associated with cardiac muscle tissue
development and muscle contraction.

We successfully constructed two inflammation-associated
ceRNA networks related to AF susceptibility and two cardiac
conduction or electrical remodeling-associated ceRNA networks
related to AF persistence. Based on Figure 3, the majority of the
nodes in each network appear to be able to communicate with
each other through ceRNA language-guided interactions, either
directly (lncRNA–mRNA) or indirectly (an mRNA–lncRNA–
mRNA–lncRNA axis). These lncRNAs and mRNAs represent
valuable therapeutic targets to prevent AF progression as they
were not only co-expressed but also functionally correlated.
Moreover, a total of 106 previously identified AF protein-
coding genes were included in the established ceRNA networks
(Figure 3, red nodes), including 49 in the turquoise ceRNA
network, 32 in the yellow ceRNA network, 15 in the magenta
ceRNA network, and 10 in the tan ceRNA network. The
hypergeometric test showed a p-value of 8e−10 for the AF
enrichment. These findings further demonstrate the significance
of the constructed networks. More interestingly, 16 of the
identified protein-coding genes have been implicated in the
GWAS of AF conducted by Roselli et al. (2018, 2020) and
Nielsen et al. (2018), including AGBL4, COG5, DGKB, HSF2,
KCND3, KCNN2, SLC27A6, SYNE2, and SYNPO2L in the
turquoise ceRNA network and MYH7, MYOCD, MYO18B,
NAV2, PHLDB2, RPL3L, and SMAD7 in the yellow ceRNA
network. These results indicate that the roles of these GWAS-
related genes in AF are likely associated with atrial electrical
remodeling. Detailed information for each ceRNA network,
including shared miRNAs between any lncRNA–mRNA pair, can
be found in Supplementary Table 2.

Prioritizing Key lncRNAs Associated With
AF Using the RWR-M Algorithm
We then aimed to prioritize key lncRNAs associated with AF
(Figure 5). We defined the hub lncRNAs with high graphical
proximity to known AF genes. We applied the latest RWR-
M algorithm with two different layers (the aggregated ceRNA
network and the GIANT project-guided network; Figure 5A).
The calculated RWR-M score can be considered a measure of
the proximity between the seed(s) and all other nodes in the
graph. Those genes with high RWR-M scores are then identified
as hub genes. After performing the RWR-M algorithms, MIAT
and LINC00964 were identified as the genes with the top
two highest RWR-M scores and were identified as hub genes
associated with AF (Figure 5A; scores for all lncRNAs in the
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FIGURE 2 | Construction of the weighted co-expression network and module analysis. (A) Cluster dendrogram. The two colored rows below represent the original

and merged modules. (B) Heat map of the correlation between AF susceptibility/persistence and module eigengenes. Each row corresponds to a different module

eigengene, and each column corresponds to a different AF trait. Each cell contains the corresponding correlation (first line) and p-value (second line). (C–F) Top 10

enriched biological processes associated with the AF-related modules.
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FIGURE 3 | ceRNA networks for each module. Note: the yellow color represents lncRNAs, whereas the red color represents known AF protein-coding genes

identified from DISEASE, DisgeNET, and MALACARD databases. (A–D) lncRNA-mRNA ceRNA networks identified using a module-specific manner in AF

susceptibility-associated magenta (A) and tan (B) modules, and AF persistence-associated turquoise (C) and yellow (D) modules.

network and their diagnostic efficiency for distinguishing AF
from SR are described in Supplementary Table 3). We also
tested whether using BH-adjusted p-values in step 2.5 would
substantially change the results. After filtering lncRNA–mRNA
pairs with an adjusted p < 0.05 and conducting the subsequent
protocols, MIAT and LINC00964 remained among the top five

high RWR-M scoring lncRNAs. The lncRNA MIAT belongs to
the AF susceptibility-associated tan module, whereas the lncRNA
LNIC00964 belongs to the AF persistence-associated turquoise
module. The miRNA partners of MIAT-mediated ceRNA pairs
include 19 miRNAs (Supplementary Table 2), some of which
have previously been implicated in AF, such as miR-27b-3 (Lv
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FIGURE 4 | Gene ontology biological process enrichment analysis for each ceRNA network. (A–D) Top 20 enriched gene ontology biological process terms of

protein-coding genes in AF susceptibility-associated magenta (A) and tan (B) ceRNA networks, and AF persistence-associated turquoise (C) and yellow (D) ceRNA

networks.

et al., 2019) and miR-23b-3p (Yang et al., 2019). The miRNA
partners of LINC00964-mediated ceRNA pairs only included
miR-34a-5p. Interestingly, a previous study has demonstrated
that miR-34a promoted atrial electrical remodeling by enhancing
intracellular Ca2+ signaling (Zhu et al., 2018). These results
revealed that these miRNA-mediated ceRNA pairs likely served
critical roles during AF development.

Identifying Biological Processes
Correlated With MIAT and LINC00964
The lncRNA MIAT has 23 direct mRNA targets in the tan
module, including six known AF genes. GO BP enrichment
analysis identified the 23 genes associated with MIAT as being
primarily involved in lymphocyte differentiation and T cell
activation (data not shown). The lncRNA LINC00964 has 89
direct mRNA targets in the turquoise module, including 13
known AF genes. No significant term was enriched among these

89 mRNAs based on Fisher’s exact test with BH adjustment,
indicating that the 89 direct targets of LINC00964 have
multiple biological functions. These genes are significantly
associated with atrial electrical remodeling because they (1)
were co-expressed with atrial electrical remodeling-related
genes in the turquoise ceRNA network and (2) co-interacted
with atrial electrical remodeling-related genes in the turquoise
ceRNA network through ceRNA-guided interactions. To further
investigate the biological functions of MIAT and LINC00964,
we conducted a GSVA and correlated the GSVA score of
each pathway (a total of 5,348 gene sets) with the expression
value of each lncRNA while adjusting for the AF phenotype
(Supplementary Table 4 for MIAT and Supplementary Table 5

for LINC00964). For MIAT, all of the top 10 positively correlated
pathways were identified as T cell activation–related pathways,
with T_Helper_17_Cell_Lineage_Commitment having the
highest regression coefficient of 0.384. For LINC00964,
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FIGURE 5 | RWR-M algorithm and the performance of random forest classifiers in the test set. (A) Process of RWR-M. (B) MIAT-related ceRNA pairs (left) and

LINC00964-related ceRNA pairs (right). Yellow color represents lncRNAs and red color represents known AF protein-coding genes. (C) Performance of the

MIAT-related ceRNA pairs-based classifier (left) and the LINC00964-related ceRNA pairs-based classifier (right), as reflected by their respective receiver operating

characteristic curves.
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the top 10 positively correlated gene sets were primarily
involved in rhythm control-related processes. In addition,
nearly all of the cardiac conduction–associated pathways were
significantly positively correlated with LINC00964. For example,
the Atrial_Cardiac_Muscle_Cell_Membrane_Repolarization
pathway was correlated with LINC00964 with a regression
coefficient of 0.178 and a p-value of 0.015. Taken together, these
findings suggest that MIAT was closely associated with T cell
activation, whereas LINC00964 was closely associated with atrial
electrical remodeling.

Establishing a Classifier Based on Key
lncRNA–mRNA Pairs
We reasoned that if MIAT and LINC00964 were important in AF,
the expression values of their related ceRNA pairs would have
the ability to discriminate persistent AF from SR. For each of the
two lncRNAs, we extracted related ceRNA pairs in the network
(Figure 5B) and constructed a classifier based on their expression
values, using random forest algorithms. Before the random forest
algorithm, we removed the batch effects associated with the
microarray samples and the RNA sequencing samples that did
not fit the interest (AF or SR) into themodel to increase the power
of the classifier as the microarray data and RNA sequencing data
have high heterogeneity. The classifiers were first validated in
the training set using a six-fold cross-validation method. Both
MIAT-based and LINC00964-based classifiers showed a strong
ability to discriminate AF from SR in the training set with
AUC values of 0.810 and 0.940, respectively. We then evaluated
their performances in the independent microarray data set.
Promisingly, high AUC values were obtained for both classifiers,
including 0.870 for the MIAT-based classifier and 0.922 for the
LINC00964-based classifier (Figure 5C). These results further
indicate the importance of these ceRNA pairs in AF pathogenesis
and might provide new diagnostic tools for AF. In the sensitivity
analysis, we determined the effects of retaining the batch effects,
which resulted in the AUC values of the MIAT- and LINC00964-
based classifiers for the independent test set being reduced to 0.75
and 0.70, respectively. This result highlights the importance of
removing batch effects before constructing classifiers.

DISCUSSION

To our knowledge, this is the first study to identify AF
susceptibility- and persistence-specific gene modules and ceRNA
networks. The large sample size ensures that these results are
more reliable than most previously conducted AF bioinformatic
studies. By comparing the MEs from patients in SR who differed
according to a history of previous AF (AF/SR vs. SR/SR),
we identified two co-expression modules associated with AF
susceptibility, both of which were primarily associated with
inflammatory processes. By comparing the MEs from patients
in AF rhythm with those from patients with a history of AF
but in SR (AF/AF vs. AF/SR), we identified two co-expression
modules associated with AF persistence, both of which primarily
associated with the processes of electrical remodeling. These
results were consistent with those of a previous study that
compared the genome-wide mRNA microarray profiling of

LAA tissues between AF/AF, AF/SR, and SR/SR patients
(Deshmukh et al., 2015), in which altered transcriptional activity
associated with inflammation and the remodeling of ion channel
expression were also associated with AF susceptibility and
persistence, respectively.

Our next goal was to construct ceRNA networks based on
gene co-expression modules, which differed from a previous
study (Qian et al., 2019) that used identified DEGs to predict
AF-associated ceRNA pairs, which does not account for any
interactions between genes. For each ceRNA network, the nodes
were not only co-expressed, but also interacted functionally,
and most of the nodes could communicate either directly or
indirectly. The function of each network was closely associated
with a specific feature of atrial remodeling, which could provide
a better understanding of gene functions. For example, the
identification of a gene in the turquoise ceRNA network could
indicate a role in AF through the regulation of genes involved
in electrical remodeling. This information might also help to
relate genetics with epigenetics and disease phenotypes as 16 AF-
GWAS-related genes were identified in the currently constructed
electrical remodeling-related networks.

Another innovation of the present study was the application of
the state-of-the-art RWR-M algorithm, which is an improvement
on the RWR algorithm, to prioritize lncRNAs. Most previous
studies (Song et al., 2016; Qian et al., 2019; Wang et al., 2020)
use the RWR algorithm to identify new disease genes based
on a single network. However, this approach ignores functional
interactions, such as co-expression networks and co-annotation
networks, and each type of network has different relationships,
advantages, and biases (Lee et al., 2019). One should note that
the RWR-M algorithm differs from the simple aggregation of
various types of interactions into an aggregated network, which
would dismiss the individual features and topologies of each
network and has been shown to be less effective for prioritizing
new disease genes than the RWR-M algorithm (Valdeolivas et al.,
2019). By applying the RWR-M algorithm based on ceRNA
language-guided and evidence-supported interactions identified
by a previously published data set (Greene et al., 2015), MIAT
and LINC00964 were identified as the top two genes with the
highest proximities to known AF genes. After adjusting for the
covariate of atrial rhythm,MIATwas significantly correlated with
T cell activation, especially T helper 17 cells, whereas LINC00964
was correlated with rhythm control. Moreover, LINC00964 was
also significantly correlated with the atrial electrical remodeling–
related process. Using the random forest algorithm, we further
demonstrated that their associated ceRNA pairs could distinguish
persistent AF from SR patients in both the training set and an
independent test set, further indicating the importance of MIAT
and LINC00964 in AF susceptibility and persistence, respectively.

MIAT has been shown to promote cardiac fibrosis through
the MIAT/miR-24/Furin/transforming growth factor (TGF)-beta
1 axis (Qu et al., 2017), promote cardiac hypertrophy through
the miR-150/P300 axis (Zhu et al., 2016) and miR-93/TLR4
axis (Li et al., 2018), promote extracellular matrix deposition
through the miR-29/COL1A1 and COL3A1 axes (Chuang et al.,
2020), and regulate vascular endothelial cell function through the
miR-150-5p/VEGF axis (Yan et al., 2015). Our study indicates
that MIAT is a T cell activation–associated lncRNA, especially
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Th17 cells, and is closely associated with AF susceptibility. This
corroborates a recent study that found that cinnamaldehyde can
ameliorate ulcerative colitis through the suppression of Th17 cells
and the regulation of MIAT (Qu et al., 2020). The knockdown of
MIAT has been shown to alleviate the inflammatory response and
reduce intracellular oxidative stress in LPS-stimulated atrial HL-
1 cells (Xing et al., 2020) and attenuate AF and AF-induced atrial
fibrosis by targeting miR-133a-3p (Yao et al., 2020). Th17 cells
are also suggested to contribute to AF susceptibility. Elevated
plasma levels of Th17-related cytokines have been associated with
a high risk of AF (Wu et al., 2016), and serum IL-17A levels
are associated with AF recurrence (Xu et al., 2019). Experiments
have also shown that Th17-produced IL-17A contributes to the
development of AF by promoting inflammation and cardiac
fibrosis (Fu et al., 2015). Other types of T cells, such as Th1, Th2,
and Tregs, have also been implicated in AF (Liu et al., 2018).
These studies are consistent with our finding and suggest the
involvement of MIAT in AF through the mediation of T cell
activation and inflammation. Targeting MIAT might prevent AF
occurrence and recurrence.

We also identified LINC00964 as a central AF persistence-
related lncRNA that is closely associated with atrial electrical
remodeling. The function of LINC00964 has not previously
been investigated. However, by searching the results of GWAS,
we found that an AF-related single-nucleotide polymorphism
(SNP), rs35006907, exists in the intronic region of LINC00964.
The presence of SNPs in the promoter, intronic, or exonic
regions of lncRNAs can affect transcription, structure, or
function (Castellanos-Rubio and Ghosh, 2019). For example,
the SNP rs11672691, located in the promoter region of
lncRNA PCAT19, modulates the function and expression of
PCAT19, promoting prostate cancer progression through the
upregulation of cell cycle gene expression (Hua et al., 2018).
By searching the expression quantitative trait loci (eQTLs)
results from the Genotype-Tissue Expression (GTEx) consortium
database (http://www.gtexportal.org/home/) version 8 (GTEx
Consortium, 2015), rs35006907 was identified as being negatively
correlated with LINC00964 expression levels, in both heart-
atrial appendage tissue (normalized effect size = −0.28, p
= 2.7e−8) and heart-left ventricle tissue (normalized effect
size = −0.35, p= 4.3e−13). This direct evidence between
SNP and gene expression indicates that the r35006907 SNP
could promote AF persistence by negatively regulating the
expression of LINC00964. The downregulation of LINC00964
expression would promote AF electrical remodeling by affecting
the expression of ion channel–related genes in the turquoise
ceRNA network.

Several limitations should be acknowledged in this study.
First, the RNA sequencing technique that was used for GSE68868
was not specialized for the identification of lncRNAs; thus, only

a small number of lncRNAs were available after filtering out
low-expression genes. Second, lncRNAs can affect protein-coding
gene function through diverse pathways, and we only considered
the effects of the ceRNA mechanism. Third, lncRNAs or mRNAs
can also communicate with each other through the ceRNA
language, which was not analyzed. Finally, no attempt was made
to validate the functions of the identified ceRNA pairs using an
experimental model, and the causal relationships remain unclear.

In conclusion, our study constructed AF susceptibility- and
persistence-associated ceRNA networks, identified relationships
between genetic and epigenetic pathways, prioritized MIAT and
LINC00964 as key lncRNAs, and constructed random forest
classifiers based on their associated ceRNA pairs. These results
will help us to better understand the mechanisms underlying AF
from the ceRNA perspective and provide candidate therapeutic
and diagnostic tools.
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