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Somatic copy-number alterations (SCNAs) are major contributors to cancer
development that are pervasive and highly heterogeneous in human cancers. However,
the driver roles of SCNAs in cancer are insufficiently characterized. We combined
network propagation and linear regression models to design an integrative strategy to
identify driver SCNAs and dissect the functional roles of SCNAs by integrating profiles of
copy number and gene expression in lower-grade glioma (LGG). We applied our strategy
to 511 LGG patients and identified 98 driver genes that dysregulated 29 cancer hallmark
signatures, forming 143 active gene-hallmark pairs. We found that these active gene-
hallmark pairs could stratify LGG patients into four subtypes with significantly different
survival times. The two new subtypes with similar poorest prognoses were driven by
two different gene sets (one including EGFR, CDKN2A, CDKN2B, INFA8, and INFA5,
and the other including CDK4, AVIL, and DTX3), respectively. The SCNAs of the two
gene sets could disorder the same cancer hallmark signature in a mutually exclusive
manner (including E2F_TARGETS and G2M_CHECKPOINT). Compared with previous
methods, our strategy could not only capture the known cancer genes and directly
dissect the functional roles of their SCNAs in LGG, but also discover the functions of
new driver genes in LGG, such as IFNA5, IFNA8, and DTX3. Additionally, our method
can be applied to a variety of cancer types to explore the pathogenesis of driver SCNAs
and improve the treatment and diagnosis of cancer.

Keywords: somatic copy number alteration, driver genes, random walk with restart, cancer hallmark, LGG,
regression analysis

INTRODUCTION

Lower-grade glioma is the most common malignant primary tumor associated with a wide
range of survival times from 1 to 15 years (Ostrom et al., 2013; Tan et al., 2020; Wu et al.,
2020). This tumor is made up of World Health Organization (WHO) grade II and grade
III gliomas, showing slower disease progress compared with glioblastoma (GBM, grade IV)

Abbreviations: LGG, lower-grade glioma; SCNAs, somatic copy-number alterations; RWR, random walk with restart; PCGs,
protein coding genes; NES, normalized enrichment score; GSEA, gene set enrichment analysis; ssGSEA, single-sample gene
set enrichment analysis.
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(Ceccarelli et al., 2016). Until recently, comprehensive treatments
of lower-grade glioma (LGG) have mainly focused on
neurosurgical resection, radiotherapy, and chemotherapy,
but tumor recurrence and drug resistance are inevitable due to
their highly invasive nature and extensive genetic heterogeneity
(Ceccarelli et al., 2016; Hayes et al., 2018). Therefore, it is
urgent to better understand the pathogenesis and molecular
characteristics of LGG and develop more driver genes for the
early diagnosis and prognostic prediction of LGG.

Somatic copy-number alteration (SCNA), as a crucial somatic
genetic alteration event, is exceedingly common in cancer
(Baudis, 2007; Lopez-Gines et al., 2010; Negrini et al., 2010;
Hollander et al., 2011). Up to 15% of the human genome
is located in the CNV area (Stankiewicz and Lupski, 2010).
Analysis of copy number profiles from multiple cancers shows
that each sample carries an average of 24 amplifications and
18 deletions, and even some cancer samples have an average of
17% amplifications and 16% deletions in the human genome,
compared with an average of 0.35%, less than 0.1% in normal
samples (Beroukhim et al., 2010). However, the extensive
complexity and high degree of heterogeneity of the human
cancer genome have posed challenges in identifying these key
genes driving the initiation and progression of LGG (Tamborero
et al., 2013; Alizadeh et al., 2015; Yadav and De, 2015). Hence,
identifying the key driver SCNAs that play causal roles in
oncogenesis is crucial for understanding the occurrence and
development of the LGG.

Recently, many approaches have been proposed to identify
driver SCNAs. The traditional method identified the drivers by
executing functional experiments on the genes located in the
region (Pon and Marra, 2015). For example, through functional
tests, Hagerstrand et al. (2013) found that SKIL and TLOC1
that frequently amplified in multiple cancers were identified as
drivers of 3q26, leading to subcutaneous tumor growth. However,
the traditional method was time-consuming and expensive.
With the accumulation of multi-dimensional omic data, multiple
computational algorithms for identifying driver SCNAs have
emerged. Some computational algorithms discovered drivers
based on the alteration frequencies in cancer populations. For
instance, GISTIC detected significant SCNAs by calculating the
significance of gene amplification or deletion across cancer
samples (Mermel et al., 2011). The effects of copy number
alterations on the expressions of other genes were introduced to
reflect the functional influence of driver SCNAs. DriverNet is a
computational framework to identify the minimum number of
driver genes that explain transcriptome changes with the largest
extent across cancer samples (Bashashati et al., 2012). Akavia
et al. (2010) identified driver genes with higher frequencies by
regulating expression to influence the expressions of other gene
sets by integrating copy number and expression profiles in human
cancers. However, it was extremely limited in making clear the
functions of SCNAs in cancer and how they contributed to
malignant phenotypes.

Random walk with restart (RWR) (Kohler et al., 2008), as
one of the classic network propagation algorithms, can capture
the global structure of the network and has the characteristics
of robustness to the noise in the network (Zhang C. et al.,

2015). In the field of biology, RWR has been used to capture
the disordered information that disease-related genes transmit
through the topological structures of biological networks for
identifying disease genes, mining disease modules, and predicting
drug target (Robinson et al., 2008; Li and Patra, 2010; Cowen
et al., 2017). HotNet2 and Hierarchical HotNet applied a
similar RWR procedure but implemented different approaches
to identify disease-related modules (Leiserson et al., 2015; Reyna
et al., 2018). These studies indicate that the RWR algorithm could
help us to capture the driver effects of SCNAs through topological
structures of biological networks.

The present study developed an integrated computational
framework to identify the key SCNAs driving the dysregulation
of cancer hallmarks in LGG. We used the RWR algorithm to
build the candidate gene-hallmark network by estimating the
driver effects of seed genes on the cancer hallmarks based on
the weighted co-expression protein interaction network. We also
used linear regression analysis to identify the driver gene sets
that cooperatively contributed to the dysregulation of hallmarks.
We found that driver gene-hallmark pairs could identify two new
LGG subtypes with a similarly poor prognosis.

MATERIALS AND METHODS

The copy number and mRNA expression data of LGG patients
were obtained from the cBioPortal database1. Additionally,
high confidence protein interaction data were obtained from
STRING (Franceschini et al., 2013) which included 419,720 pairs
of interactions involving 17,155 protein coding genes (PCGs).
Finally, we downloaded 50 hallmark signature gensets from the
Msigdb database2.

Overview of the Method for Identifying
the Key Copy Number Alterations Driving
the Dysregulation of Cancer Hallmarks
We developed an integrated method to identify key SCNAs
using network propagation algorithm and regression analysis
through integrating the profiles of copy number alterations and
gene expression and weighted co-expression protein interaction
network (Figure 1).

Filtering the Candidate Genes With
Somatic Copy-Number Alterations
Genes with SCNAs in the copy number profile were filtered
as candidate genes by integrating profiles of copy number and
gene expression if these genes met the following four criteria:
(1) Genes should have a dominant SCNAs type (either high-level
amplification or homogenous deletion) using the binomial test at
P < 0.05 (Zhang et al., 2017). (2) Genes should be expressed in at
least 10% of cancer samples (Zhou et al., 2017). (3) Genes with the
dominant type should be altered in at least 3% of cancer samples.
(4) The dominant SCNAs of genes should have a concordant

1https://www.cbioportal.org/
2https://www.gsea-msigdb.org/gsea/msigdb/
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FIGURE 1 | The workflow of the integrative method for identifying SCNAs driving the dysregulation of cancer hallmarks.

influence on their expression (one-tailed Wilcoxon rank-sum test
with FDR < 0.05). The genes selected by the four criteria were
used to identify driver genes.

Building the Candidate Gene-Hallmark
Network Using Random Walk With
Restart
By integrating the gene expression profile of cancer samples
and protein interaction network, the weighted co-expression
protein interaction network was constructed by calculating the
expression correlation value for each pair of protein interactions.
The weighted protein interaction network was unsigned, in
which the weight of each edge represented the active extent
between PCGs. According to the RWR principle, the higher the
correlation coefficient between PCGs, the greater the probability
of transmitting the imbalanced information. To measure the
driver influence of candidate genes, each candidate gene was used
as seed node to carry out a RWR (Kohler et al., 2008) on the
weighted co-expression protein interaction network. The stable
transfer probabilities from the seed gene reflected the driver

extent by the seed gene on the genes in the protein interaction
network. The information flow could restart from the seed genes
with probability r.

Pt1 = (1− r)WPt + rP0

where r was set to 0.3; P0 were the initial probabilities of
genes, in which the probabilities of seed genes were 1; Pt
were the transfer probabilities of genes at the t step; The
Pt + 1 characterized the stable transfer probabilities; W was the
normalized transfer matrix of the weighted co-expression protein
interaction network; the random walk process reached the
steady-state when the maximum difference between Pt + 1 and
Pt was less than <1e−8. Based on the stable transfer probabilities,
we used gene set enrichment analysis (GSEA) (Subramanian
et al., 2005) to identify the significant cancer hallmarks driven
by the candidate gene at NES (normalized enrichment score)
>0 and P < 0.05. The candidate gene and its driving cancer
hallmarks formed candidate gene-hallmark pairs and were then
used to build a candidate gene-hallmark network by collecting all
candidate gene-hallmark pairs from all candidate genes.
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Constructing the Active Driver
Gene-Hallmark Network Using Partial
Least Squares Regression Analysis
The gene expression profile was standardized by dividing the
mean expression to eliminate the natural expression levels of
genes in cancer samples. To assess dysfunctional activities of
hallmark signatures in each sample, we built the significant
dysfunctional profile of cancer hallmark signatures using single-
sample GSEA (ssGSEA) (Hanzelmann et al., 2013). To measure
the significance of dysfunctional activity, we permuted the gene
expression profile of each sample 1,000 times, and recalculated
1,000 random scores of dysfunctional activities for each hallmark
signature. The significance of activation was calculated as the
frequency with which the random activity differences were
greater than the actual activity score. Conversely, the significance
of inactivation was calculated by the frequency of the random
activity differences less than the real one. The significant
activation/inactivation hallmark signatures in each sample were
identified at FDR < 0.05.

To further determine the driver genes contributing to the
variation of dysfunctional activities of hallmarks, a linear
regression model was used to dissect the driver extents of
driver genes on hallmarks based on driver relationships from
the candidate gene-hallmark network. For each significant
dysfunction hallmark in cancer samples, the candidate genes
driving this hallmark were extracted. The partial least squares
regression (PLSR) model was adopted to identify driver genes
that cooperatively contributed to the dysfunctional activities of
this hallmark (Bjornstad et al., 2004), in which the significant
activity scores of the hallmark in cancer samples were the
responding variables (Y), and the SCNAs statuses of candidate
genes were explained variables (X).

The significance of the driver effects of candidate genes on
dysfunctional activities of the hallmark was assessed using 10-fold
cross-validation in R package “pls” (R functions of PLSR, RMSEP,
and Jack.test). Subsequently, the driver genes that significantly
contributed to the dysfunction of the hallmark with significant
coefficients (P < 0.05) were identified, and active driver gene-
hallmark pairs were formed. The active driver gene-hallmark
network was constructed which consisted of all active driver
gene-hallmark pairs. The genes in the active gene-hallmark
network were identified as driver genes.

RESULTS

Identifying Cancer Hallmarks Driven by
Somatic Copy Number Alterations Using
Random Walk With Restart in LGG
In total, 511 LGG samples detected in both expression
profile and copy number profile were used for subsequent
analysis. Among the 20,530 PCGs (protein coding genes) with
SCNAs, 19,059 PCGs were expressed in at least 10% of LGG
samples. 10,280 PCGs showed one dominant SCNAs type (high-
level amplification or homozygous deletion) (binomial test,
P < 0.05), of which 1,736 PCGs somatic copy number alterations

significantly affected their expressions (FDR < 0.05). Eventually,
391 candidate PCGs with SCNAs frequency greater than 3% were
identified, and only 40% of cancer samples occurred SCNAs of
these candidate PCGs.

The weighted protein interaction network was constructed in
LGG, in which each interaction was weighted by the expression
correlation coefficient of the gene pair, representing the active
extent of the interaction. The dysfunctional information of
genes could be diffused following the topological structure of
the weighted protein interaction network. The genes with higher
expression correlation coefficients had higher probabilities to
receive dysfunctional information. To estimate the driver effects
of candidate genes on cancer hallmarks, each candidate gene
was sowed as a seed node in the weighted protein interaction
network, and the RWR algorithm was used to calculate the
stable transition probability from the candidate gene to the
other genes in the protein interaction network. The significant
cancer hallmarks driven by the candidate gene were identified
using GSEA (Subramanian et al., 2005) according to the rank of
stable transition probabilities (NES > 0, P < 0.05). For instance,
EGFR amplification was frequent in LGG, which significantly
upregulated the EGFR expression (Supplementary Figure 1).
We found that EGFR amplification significantly affected
many cancer hallmarks, including development signature
(EPITHELIAL_MESENCHYMAL_TRANSITION, P = 0.012),
immune signature (ALLOGRAFT_REJECTION, P = 0.004;
IL6_JAK_STAT3_SIGNALING, P = 0.005; INTERFERON_
GAMMA_ RESPONSE, P = 0.013) (Supplementary Figure 2A).

By assembling cancer hallmarks driven by all candidate
genes, the candidate gene-hallmark network was constructed, in
which nodes represented candidate genes and cancer hallmarks,
and edges represented driver relationships among them. The
candidate gene-hallmark network involved 1,177 gene-hallmark
pairs including 329 PCGs and 50 hallmarks (Figure 2A). We
ranked candidate genes in descending order according to their
degree in the gene-hallmark network and found that 60% of the
top 20 genes were known cancer genes including EGFR, MYC,
HRAS, PTK2, CCND2, PDGFRA, CDKN2B, PTPN6, CDKN2A,
DTX3, HAS2, and CDK4 (Figure 2B). For ranking hallmark
signatures, among the top ten hallmarks, four were related to
proliferation signatures, two were related to immune signatures,
one was related to signal signature, one was related to pathway
signature, one was related to DNA damage signature, and one was
related to the metabolic signature (Figure 2C).

The Driver SCNAs in LGG Based on the
Active Gene-Hallmark Driving Network
Single-sample gene set enrichment analysis algorithm was
used to evaluate the active scores of cancer hallmarks for each
LGG patient. In order to characterize dysfunctional activities
of hallmark signatures in each patient, the dysfunctional
profile of cancer hallmarks was constructed by permutating
the expression profile of each sample 1,000 times at the
threshold of FDR < 0.05 (Figure 3A). A total of 39 cancer
hallmarks were dysregulated in at least one LGG patient.
Among them, eight hallmarks were dysregulated in more
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FIGURE 2 | Constructing the candidate gene-hallmark network using random walk for LGG. (A) The candidate gene-hallmark network, the green dots represent
candidate genes, and the yellow ones represent hallmarks signature affected by candidate genes; (B) the top 20 genes with a high contribution degree of the
candidate gene-hallmark network, the genes marked in red represent known cancer genes; (C) the top 10 hallmarks with a high contribution degree of the candidate
gene-hallmark network.

than 50% of LGG samples including two proliferation
signatures (E2F_TARGETS and G2M_CHECKPOINT), four
immune signatures (INTERFERON_ GAMMA_ RESPONSE,
INTERFERON_ALPHA_RESPONSE, INFLAMMATORY_
RESPONSE, and ALLOGRAFT_ REJECTION), one
development signature (EPITHELIAL_MESENCHYMAL_
TRANSITION), one signaling signature (TNFA_SIGNALING_
VIA_ NFKB). None of these cancer hallmarks showed a
consistent state of activity in the LGG population. For example,
the proliferation signature E2F_TARGETS was dysregulated
in 339 LGG samples, which was significantly activated in
131 samples and inactivated in 208 samples. These results
showed the activity heterogeneities of cancer hallmarks across
the LGG population.

To further identify the driver factors underlying the activity
heterogeneities of cancer hallmarks, the linear regression analysis
was used to identify the driver gene sets that cooperatively
contributed to activity changes of hallmarks by integrating
the hallmark dysfunctional profile, the SCNAs profile of the
candidate PCGs and the candidate gene-hallmark network.
For each dysregulated cancer hallmark, the driver genes
were identified at FDR < 0.05. The SCNAs of the driver
genes could affect the activities of cancer hallmarks. For
example, EGFR amplification significantly influenced the
activities of EPITHELIAL_MESENCHYMAL_TRANSITION
(P = 5.7e-09), ALLOGRAFT_ REJECTION (P = 7.2e-06),
IL6_JAK_STAT3_SIGNALING (P = 0.002), INTERFERON_
GAMMA_ RESPONSE (P = 2.7e-08) (Supplementary
Figure 2B). Finally, we found that 29 cancer hallmark signatures

whose dysfunctional activities were significantly driven by 98
driver genes, forming an active gene-hallmark network with 143
gene-hallmark pairs (Figure 3B). Among 98 driver genes, 21
genes (including CDKN2A, CDKN2B, FBXO32, SIRT3, ING4,
PTPN6, CHIC2, RAD21, PDGFRA, EGFR, HRAS, ERC1, CDK4,
HDLBP, DTX3, C3AR1, GPC1, TALDO1, and MTAP) were
recorded as cancer genes in at least one of four known databases
[Cancer Gene Census in COSMIC (Sondka et al., 2018), TSGene
(Zhao et al., 2016), Bushman3, and DriverDBv3 (Liu et al., 2020)].
Specifically, based on the degree of driver genes in the active
gene-hallmark network, we found that 70% of the top 10 driver
genes were cancer genes.

After conducting a manual literature search, we also found
that 97.4% (75/77) of the remaining driver genes identified by
our method were reported as cancer-associated genes in vivo or
in vitro (Supplementary Table 1). For instance, Menezes et al.
(2020) found that MTAP overexpression was associated with
proliferation, migration, and invasion of glioma cells in silico and
in vitro models. The low expression of PTPN6 was significantly
associated with poor overall survival in bladder cancer patients
and co-expression with TNFRSF14 (tumor necrosis factor
receptor superfamily member 14) had a close correlation in
breast cancer (Menezes et al., 2020). METTL1 promoted the
proliferation and migration of hepatocellular carcinoma cells by
inhibiting the PTEN signaling pathway and was associated with
poor prognosis (Tian et al., 2019). Additionally, the ratio of
known cancer genes in the active gene-hallmark network was

3http://www.bushmanlab.org/links/genelists
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FIGURE 3 | Building the active driver gene-hallmark network using regression analysis for LGG. (A) The dysfunctional profile of cancer hallmarks for LGG; (B) the
active gene-hallmark network, the green dots represent driver genes, and the yellow ones represent disordered hallmark signatures.

elevated to 21.4% (21/98) by comparing that ratio of 15.5%
(51/329) in the candidate gene-pathway network. These findings
confirmed the driving roles of the identified PCGs.

LGG Subtypes With Poor Prognosis
Contributed by the Active Gene-Hallmark
Network
To investigate whether the gene-hallmark pairs from the active
gene-hallmark driving network were associated with LGG

prognosis and characterized new subtypes, we mapped the active
gene-hallmark network into LGG patients and constructed a
binary profile of gene-hallmark pairs for the LGG population,
where each row was a pair of gene-hallmark, each column was
a cancer sample and value referred to whether this gene-hallmark
pair occurred in a certain sample. A gene-hallmark pair was
considered to be present if the gene showed an SCNA and the
cancer hallmark was significantly activated or inactivated in this
sample. The binary profile of gene-hallmark pairs contained 81
gene-hallmark pairs across 511 cancer samples. We observed that
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134 samples carried at least one gene-hallmark pair (group I)
(Figure 4A) while the other 377 samples did not carry any of
these pairs (group II), mainly because 303 samples out of 377
did not harbor any SCNAs. Using survival analysis, we found
the survival time of 134 samples were significantly shorter than
that of 377 samples (P = 1.4e-10, log-rank test, Figure 4B). Based
on the active gene-hallmark pairs, these 134 patients (group I)
were classified using consensus clustering [50 resamplings, 80%
item resampling, partitioning around medoids (PAM) clustering
method]. The consensus heatmap and cumulative distribution
function were used to determine the optimal K. We identified
three subtypes (1, 2, and 3) with the largest relative change in area
under the CDF curve (K = 3) (Supplementary Figures 3A–C;
Wilkerson and Hayes, 2010; Senbabaoglu et al., 2014). Finally, 511
LGG patients were stratified into four subtypes and the sample
numbers of the four subtypes were 74, 17, 43, 377 accounting for
14.5, 3.3, 8.4, 73.8% of the 511 samples, respectively (Figure 4C).
We compared the overall survival times of the three subtypes
with that of subtype 4 (without gene-hallmark pairs), found that
there were significant differences in overall survival time between
the four groups (P < 0.001, log-rank test, Figure 4D). Subtype
2 and 3 showed significantly poorer prognosis than subtype 4
(P = 3.07e-13 for subtype 2; P = 0 for subtype 3, log-rank

test, Supplementary Table 2), and subtype 1 showed shorter
survival time with weaker significance. (P = 0.089, log-rank test,
Supplementary Table 2). Furthermore, we compared the survival
times among the three subtypes and found there were significant
survival differences (P = 2.37e-07, log-rank test, Supplementary
Table 2). The subtype 2 and 3 showed significantly shorter
survival times than that of subtype 1 (P = 1.77e-05 for subtype
2; P = 1.64e-07 for subtype 3, log-rank test, Supplementary
Table 2), but there was no significance in survival times between
subtype 2 and 3(P = 0.89, log-rank test, Supplementary Table 2).
Together, these results proved that the active gene-hallmark pairs
could identify new LGG subtypes with poor prognoses.

The Subtype-Specific Gene-Hallmark Pairs in LGG
Subtypes 2 and 3 had the poorest prognosis and showed
no significance in survival time. To explore the molecular
mechanisms underlying these subtypes, we investigated the
distribution of gene-hallmark pairs across LGG samples and
identified the subtype specific gene-hallmark pairs using Fisher’s
exact test at P < 0.05 for each subtype (Supplementary
Table 3). For subtype 2, specific gene-hallmark pairs
involving driver genes CDK4, DTX3, and AVIL were identified
(Supplementary Figure 4A). For example, CDK4 specifically

FIGURE 4 | The gene-hallmark pairs identified were associated with LGG prognosis and characterize new subtypes. (A) The heatmap of gene-hallmark pairs
contained 81 gene-hallmark pairs across 134 cancer samples for three subtypes; (B) comparison of survival time between the two groups with (group I) or without
(group II) gene-hallmark pairs; (C) the bar plot showed the number of samples contained in each subtype; (D) the Kaplan–Meier analysis of subtypes identified by
our method based on OS. P-value was calculated by the log-rank test among subtypes.
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and significantly drove two proliferation signatures (P = 6.02e-15
for E2F_TARGETS and P = 3.01e-12 for G2M_CHECKPOINT,
Fisher’s exact test). Amplification of CDK4, DTX3, and AVIL
significantly upregulated their gene expression (P = 2.4e-14
for CDK4, P = 1.7e-08 for DTX3, and P = 4.6e-10 for AVIL,
Wilcoxon rank-sum test), and showed significant association
with LGG poor prognosis (P = 1.2e-10 for CDK4, P = 8.03e-10 for
DTX3, and P = 3.86e-6 for AVIL, log-rank test, Supplementary
Figure 4B). AVIL, as a novel oncogene gene in LGG, was reported
to play important roles in functions of cancer in vivo or in vitro
through literature searches. For example, AVIL overexpression
in GBM promoted cell proliferation and metastasis, leading
to poor prognosis in patients (Xie et al., 2020). In the subtype
3, 12 specific gene-hallmark pairs were identified including
driver genes (EGFR, CDKN2A, CDKN2B, INFA8, and INFA5),
and their affected hallmarks were significantly presented in 43
LGG individuals (P < 0.05, Fisher’s exact test, Supplementary
Figure 4A). EGFR amplification and the deletions of CDKN2A,
CDKN2B, INFA8, and INFA5 were also significantly associated
with LGG poor prognosis (P < 0.001 for CDKN2A, CDKN2B,
P = 1.42e-12 for IFNA8, P = 1.76e-12 for IFNA5, and P < 0.001
for EGFR, log-rank test, Supplementary Figure 4B).

Of note, we observed these specific gene-hallmark pairs
in subtype 2 and 3, which showed obvious mutually
exclusive patterns (Supplementary Figure 4A), but
these driver genes drove the same dysregulated hallmark
signatures such as proliferation (E2F_TARGETS and
G2M_CHECKPOINT) and immunity signature (ALLOGRAFT_
REJECTION, INTERFERON_ GAMMA_ RESPONSE, and
INTERFERON_ALPHA_ RESPONSE) in both subtype 2 and
3. These results implied that these two subtypes with the
poorest prognosis were driven by different driver genes through
dysregulating the same biological functions, further improving
the potential of the identified active gene-hallmark pairs for
identifying new LGG subtypes.

Performance Evaluation of the Method
Known cancer genes were collected from multiple sources
(Table 1). The driver genes identified by our method significantly
overlapped with these known cancer gene sets (hypergeometric
test, P < 0.05, Table 1). We then further compared our method
with the other three previous methods, which also identified
driver copy number alterations [Ping et al., 2020; Zhou et al.,
2017, and DriverDBv3 (Liu et al., 2020)]. The results showed
that our method could also significantly capture the driver genes
identified by other methods with the Ping et al. (2020), Zhou et al.
(2017) (hypergeometric test, P = 1.84e-05 for Ping et al. (2020),
P = 4.23e-12 for Zhou et al. (2017), Table 1), but not significantly
with DriverDBv3(hypergeometric test, P = 0.175, Table 1).
Among them, Ping et al. (2020) could directly dissect long
non-coding RNAs (lncRNAs) functional roles in cancers based
on dysregulated ceRNA network induced by SCNAs but was
limited in identifying potential driver SCNAs with low expression
levels and SCNA frequencies, however, Zhou et al. (2017) and
DriverDBv3 cannot dissect driver roles of genes in cancers in
a direct manner (Supplementary Table 4). Additionally, the
driver genes identified by our method also showed a significantly

TABLE 1 | The performance of our method compared with six known cancer
gene sources and three previous methods.

Type Cancer gene
sets

Number of
cancer
genes

Number of
gene

intersections

P-value

Known cancer
gene sets

CGC 723 10 0.00103

TSG 638 7 0.0193

Bushman 2,579 18 0.0237

Tamborero
et al., 2013

435 5 0.0385

Rahman, 2014 114 6 9.29e-06

An et al., 2016 1,571 16 0.0427

Previous
method

Ping et al.,
2020

37 4 1.84e-05

Zhou et al.,
2017

88 10 4.23e-12

DriverDBv3 45 1 0.175

higher degree than the non-drivers whose expression levels were
concordant with SCNAs in the PPI network (Supplementary
Figure 5, P < 0.05, Wilcoxon rank-sum test). Our method could
complement other methods, which identified novel driver genes
contributing to cancer development. For instance, DTX3 was a
gene that had not been identified by other methods, but it had the
ability to drive E2F_TARGETS hallmark signature dysfunction
and was associated with LGG prognosis. These results suggest
that our method is useful in identifying driver SCNAs that
contribute to dysfunction cancer hallmarks in LGG.

DISCUSSION

This article has proposed an integrative method to identify driver
SCNAs and characterize the dysfunctional cancer hallmarks
driven by these SCNAs in LGG. The active driver gene-hallmark
pairs identified could stratify the LGG patients into four subtypes
and identify two new subtypes with similar poor prognoses
and with different underlying molecular mechanisms. We also
discovered that different driver genes could disorder the same
cancer hallmarks, leading to malignant phenotypes.

The dysfunctional effects of driver SCNAs were characterized
by network propagation on the protein interaction networks.
The selection of the specific forms of the protein interaction
network was crucial. Our method used three forms of protein
interaction network, including static protein interaction network,
co-expression weighted PPI across only samples with SCNAs
of the seed gene, weighted co-expression PPI across all cancer
samples (our method). We found that the first two forms
do not help to significantly capture the known cancer genes.
For example, using the static PPI network, 147 driver PCGs
dysregulating 27 hallmarks could not significantly overlap
with TSGene (Zhao et al., 2016) (P = 0.225, hypergeometric
test) and Bushman (P = 0.0622, hypergeometric test), which
also did not account for the differences in co-expression
patterns among genes from cancer to cancer. For the second,
the identified active gene-hallmark network including 139
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PCGs only weaker significantly overlapped with TSGene
(Zhao et al., 2016) at the significance of P = 0.0926,
which was not suitable for the PCGs with low SCNAs
frequencies. The development of a comprehensive dynamic PPI
network in the future could help us to better analyze the
functional roles of SCNAs.

Two subtypes of poor prognosis were driven by different
driver gene-hallmark pairs. The subtype 3 characterized by
driver genes CDKN2A and CDKN2B was consistent with
our previous studies (Ping et al., 2020), in which identified
CDKN2A and CDKN2B could dysregulate the hallmark of
G2M_CHECKPOINT based on miRNA-mediated ceRNA
networks and further contributed to poor LGG prognosis. The
SCNAs of CDK4, AVIL, and DTX3 driven another new subtype
with poor prognosis showed significant mutual exclusivity with
that of CDKN2A and CDKN2B (Supplementary Figure 6). These
phenomenons forming the hypothesis of functional redundancy
were extensively used to identify the cancer genes (Sparks et al.,
1998; Zhao et al., 2012; Babur et al., 2015). For example, Deng
et al. (2018) identified cancer driver lncRNAs that were mutually
exclusive with well-known driver genes based on functional
redundancy hypothesis. Ping et al. (2014) showed that the glioma
pathway was affected by 12 different genes (including EGFR,
PDGFRA, CAMK2B, AKT1, CDK4, MDM2, NRAS, PIK3CA,
TGFA, SHC4, CDKN2A, and PDGFA) with significant patterns
of mutual exclusivity.

Another important finding of our method was that
hallmark activity showed broad heterogeneity in the cancer
population. For instance, proliferation (E2F_TARGETS
and G2M_CHECKPOINT) and immunity signature
(ALLOGRAFT_REJECTION) showed inconsistent activity
statuses across the LGG population and dysregulated in more
than 50% of LGG samples, but these hallmarks contributed
malignant phenotypes driven by different genes in a mutually
exclusive manner.

The four subtypes identified by our method were compared
with WHO subtypes (IDH mutant and 1p/19q codeleted, IDH
mutant and 1p/19q non-codeleted, IDH wild-type) (Louis et al.,
2016). We found that subtype 2 and subtype 3 were mainly
enriched in the IDH wild-type subtype, which showed the
worst prognosis [58.8% (10/17) for subtype 2; 72.1% (31/43)
for subtype3, Supplementary Figures 7A,B]. We identified the
risk prognostic markers (including CDKN2A/CDKN2B deletion,
EGFR amplification, CDK4 amplification, IFNA5/IFNA8
deletion, AVIL amplification, and DTX3 amplification) for IDH
wild-type subtype from SCNAs level. For the IDH mutant and
1p/19q non-codeleted, and IDH wild-type subtypes, our subtypes
could further divide them into four different subgroups with
significant differences in survival times (P = 0.0045 for IDH
mutant and 1p/19q non-codeleted, P< 0.0001 for IDH wild-type,
log-rank test, Supplementary Figure 7C). Our subtypes were
compared with the subtypes of LGG identified by eight different
methods which had distinct molecular and clinical features
(Ceccarelli et al., 2016). The comparison results were similar
to that obtained from the comparison with WHO subtypes
(Supplementary Figures 8–15). Our method provided the
subtype and prognosis markers from the view of copy number

alterations, which was served as an important complement for
the existing methods.

To further verify our method, we applied our method to
507 lung adenocarcinoma (LUAD) samples and identified a
total of 347 active gene-hallmark pairs containing 234 driver
genes and 28 hallmarks. Based on the active gene-hallmark
pairs, three subtypes were identified for LUAD samples, which
contained 285, 170, 52 samples respectively (Supplementary
Figure 16A). Survival analysis showed that there were significant
differences in overall survival times among these three subtypes
(P = 0.038, log-rank test, Supplementary Figure 16B). In the
subtype 3 with the worst prognosis, specific gene-hallmark
pairs involving driver genes PAIP, RAP1B, AVIL, RAD1, and
C1QTNF3 were identified. For example, amplification of AVIL
specifically and significantly drove immunity signature (P < 0.05,
for ALLOGRAFT_REJECTION, Fisher’s exact test). These results
proved that our strategy has the potential to be extended to
dissecting the driver roles of SCNAs in other cancer types.

It is noteworthy that this study captured a subset of novel
driver genes including IFNA5, IFNA8, and DTX3 with low
SCNAs frequencies in LGG populations. Among these, IFNA5
deletion (5.09% of LGG samples), IFNA8 deletion (5.28% of
LGG samples), and DTX3 amplification (3.52% of LGG samples)
indicated poor survival in LGG. Kao et al. (2018) found that
the upregulation of IFNA5 activated the ERβ-Ube3a interaction
which further facilitated hepatic progenitor cell differentiation.
Human epidemiologic studies showed that SNPs in IFNA8 were
significantly associated with the overall survival of patients with
WHO grade 2 to 3 gliomas (Fujita et al., 2010). Byun et al. (2018)
found that SNPs located in the promoter of IFNA8 affected GBM
patient prognosis. Ding et al. (2020) found that DTX3 played an
important role in the progression, and acted as an anti-oncogene
in esophageal carcinoma. Gatza et al. (2014) discovered that
DTX3 was essential for cell proliferation in breast tumors.

In this work, each candidate PCG was sowed as a seed
in the weighted protein interaction network to identify driver
SCNAs using RWR, so our method was limited to identifying
PCGs rather than non-coding genes and there was no way
to identify seed PCGs that were not in the network. In the
future, this problem may be solved with continuous improvement
and expansion of the network or through different network
forms, such as co-expression network, dysregulated ceRNA
network. Additionally, Pearson correlation coefficient (PCC) was
used to measure correlations between PCGs, which could not
distinguish between direct and indirect relationships and ignored
nonlinear relations between two genes due to only relying on the
information of co-occurring events. Instead of PCC, we could in
future use partial correlation similarly, using conditional mutual
information to construct a direct association network (Zhang
et al., 2013; Zhang X. et al., 2015; Liu et al., 2016).

The present study developed an integrative strategy to
discover the key SCNAs driving dysfunction of cancer hallmarks
and investigate the functional roles of driver SCNAs based on
the weighted protein interaction network in the LGG population,
which complimented previous methods. Our strategy could be
extended to explore other driver factors, with the accumulation
of multi-omics of multiple cancers.
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THE CODE FOR THE INTEGRATIVE
METHOD

The code for the integrative method is available at https://github.
com/zhouyao-max/Driver_SCNAs/tree/master/Driver_SCNAs.
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