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As a pivotal research tool, genome-wide association study has successfully identified
numerous genetic variants underlying distinct diseases. However, these identified
genetic variants only explain a small proportion of the phenotypic variation for certain
diseases, suggesting that there are still more genetic signals to be detected. One
of the reasons may be that one-phenotype one-variant association study is not so
efficient in detecting variants of weak effects. Nowadays, it is increasingly worth
noting that joint analysis of multiple phenotypes may boost the statistical power to
detect pathogenic variants with weak genetic effects on complex diseases, providing
more clues for their underlying biology mechanisms. So a Weighted Combination of
multiple phenotypes following Hierarchical Clustering method (WCHC) is proposed
for simultaneously analyzing multiple phenotypes in association studies. A series of
simulations are conducted, and the results show that WCHC is either the most powerful
method or comparable with the most powerful competitor in most of the simulation
scenarios. Additionally, we evaluated the performance of WCHC in its application to
the obesity-related phenotypes from Atherosclerosis Risk in Communities, and several
associated variants are reported.

Keywords: GWAS, hierarchical cluster, multiple phenotypes, score test, obesity

INTRODUCTION

Traditionally, Genome-Wide Association Studies studies (GWASs) aim to identify genetic variants
associated with certain phenotypes for explaining complex diseases (O’Reilly et al., 2012; Yang
and Wang, 2012). In GWASs, multiple related phenotypes of diseases are typically collected for
getting better understand complex diseases (Yang Q. et al., 2010). For example, hypertension
is directly dependent on the magnitudes of Systolic Blood Pressures (SBP) and Diastolic Blood
Pressures (DBP) (Yang and Wang, 2012). The correlation coefficient between SBP and DBP is
greater than 0.5 in 95% of patients (Gavish et al., 2008), and researchers could acquire SBP
and DBP together for studying hypertension. Similarly, Type 2 Diabetes (T2D) study often
gathers relevant risk factors and a number of diabetes-related quantitative phenotypes. Moreover,
metabolic syndrome encompasses insulin resistance, obesity, atherosclerotic dyslipidemia,
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and hypertension; and these factors are interrelated to share
potential genetic mediators, pathways, and mechanisms
(Huang, 2009). In statistical genetics, jointly analyzing multiple
phenotypes can enhance the power of association tests to
identify genetic markers associated with one or more phenotypes
(Aschard et al., 2014). One of the common approaches for
analyzing multiple related phenotypes is to conduct single-
phenotype separately and report the results for each phenotype
(O’Reilly et al., 2012). However, analysis for one phenotype at
a time will be inevitably subject to multiple testing corrections,
which leads to a power loss in GWAS (Yang Q. et al., 2010). In
recent years, joint analysis of multiple phenotypes has become
catching on because of its enhanced statistical power in the
detection of genetic variants compared to analysis for each
phenotype separately (Yang Q. et al., 2010; Aschard et al., 2014).

Nowadays, jointly analyzing multiple phenotypes has been
developed rapidly, which is of two categories: univariate analysis
and multivariate analysis. Univariate analysis, as the name
suggests, combines various test statistics or p-values of univariate
association analysis by means of different strategies. Recently,
some approaches of univariate analysis have been proposed
for exploring the association between multiple phenotypes and
a genetic variant (van der Sluis et al., 2013; Liang et al.,
2016; Yang et al., 2016). For example, Kwak et al. (Kwak
and Pan, 2016) established an adaptive testing approach,
which employs summary statistics from GWASs to evaluate
the relationship between multiple phenotypes and a genetic
variant. TATES mainly conducts p-values from the association
between phenotypes and Single Nucleotide Polymorphisms
(SNPs) and concurrently adjusting the correlations among
various phenotypes (van der Sluis et al., 2013). Adaptive Fisher’s
combination (AFC) (Liang et al., 2016) combines a number
of optimal p-values from the traditional GWASs. Compared
to multivariate analysis, univariate analysis is generally in a
unified framework and tends to ignore the crucial information
among multiple phenotypes, which may result in reducing
statistical power. In recent years, a series of multivariate analysis
approaches including mixed-effects models (Korte et al., 2012;
Zhou and Stephens, 2014; Casale et al., 2015), Generalized
Estimating Equation (GEE) (Zeger and Liang, 1986; Zhang et al.,
2014), and reverse regression methods (O’Reilly et al., 2012; Yan
et al., 2013; Wang et al., 2016) have been developed. Mixed-effects
models comprise Linear Mixed Effects model (LME) model
and Generalized Linear Mixed effects Model (GLMM), where
the genetic variants are regarded as the fixed effects and the
correlation among phenotypes is considered as random effects.
The GEE method collapses the random effects and random
residual errors in marginal regression models, which makes it
different from LME. The reverse regression methods regard
genotypes as the response variable and multiple phenotypes
as predictors, such as the proportional odds logistic regression
for joint model of multiple phenotypes (MultiPhen) (O’Reilly
et al., 2012). Multivariate analysis methods are complicated, and
few available software has been developed to implement these
methods (Yang and Wang, 2012).

In this article, we establish a novel allele-based approach
aiming at detecting association between multiple phenotypes

and a genetic variant for improving the power in association
studies. We first employ the Hierarchical Clustering based
on Different methods for calculating Correlation coefficients
(HCDC) (Fu, 2020) to cluster the enrolled phenotypes into
several groups. Then, inspired by Weighted Combination of
multiple Phenotypes (WCmulP) (Zhu et al., 2018), which
provides optimal weights in linear combination, we perform
WCmulP in each cluster to generate a novel phenotype by
virtual of combining the multiple phenotypes. Subsequently,
for every cluster, score test derived from the logistic regression
model is constructed to test the association between the
genetic variant and the novel phenotype. The permutation
procedure is employed to evaluate the p-values of the score
test statistics, and their minimum is taken as the test statistic
for detecting association between the genetic variant and
all phenotypes. Consequently, the Weighted Combination of
multiple phenotypes following Hierarchical Clustering method
(WCHC) is proposed. Using extensive simulation scenarios, we
compare the performance of WCHC with that of six existing
methods: O’Brien’s method (O’Brien, 1984), MultiPhen (O’Reilly
et al., 2012), MANOVA (Cole et al., 1994), SHet (Zhu et al.,
2015), TATES (van der Sluis et al., 2013), and WCmulP (Zhu
et al., 2018). The results reveal that WCHC is either the most
powerful test or comparable with the most powerful tests among
the methods we compared in most of the simulation scenarios.
Finally, we evaluate the performance of WCHC approach by
utilizing the obesity-related phenotypes from a real dataset,
Atherosclerosis Risk in Communities (ARIC) Study from dbGaP,
and 11 obesity-associated SNPs are detected.

MATERIALS AND METHODS

Proposed WCHC
Suppose a sample of N individuals each have M quantitative
phenotypes Y1,Y2, . . . ,YM and genotype G at a genetic variant.
It is straightforward to calculate the correlation coefficient
between two sets of phenotypes. Based on our previous work
(Fu, 2020), the hierarchical clustering is conducted, and finally
we have K clusters C1,C2, . . . ,CK . Let Mk denote the number
of phenotypes in the kth cluster Ck, k = 1, 2, . . . ,K. We take
the first cluster C1 as an example to show the subsequent
procedure. Without loss of generality, assume Y1,Y2, . . . ,YM1
are the M1 phenotypes in the first cluster. Borrowing the
allele-based regression idea (Zhu et al., 2018), we introduce
x2i−1 = x2i = 1, x2i−1 = x2i = 0, and x2i−1 = 1 and x2i = 0, if
the genotype of the ith individual is AA, aa, and Aa, respectively,
i = 1, 2, . . . ,N. By analogy, let y2i,j = y2i−1,j be the value of the
jth phenotype of individual i, i = 1, 2, . . . ,N, j = 1, 2, . . . ,M1.
Based on {xl, yl,1, yl,2, . . . , yl,M1}

2N
l=1, we establish the following

model:

logit P(xl = 1|yl,1, yl,2, . . . , yl,M1) = β0 + β1yl,1 + β2yl,2

+ · · · + βM1yl,M1 , l = 1, 2, . . . , 2N

to test the association between multiple phenotypes
Y1,Y2, . . . ,YM1 and a genetic variant.
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Instead of the conventional score test that is vulnerable
in the case of big M1, we adopt the following test statistic
(Zhu et al., 2018):

T1 =

2N∑
l=1

(xl − x̄)(yl − ȳ),

where x̄ = 1
2N
∑2N

l=1 xl, ȳ =
1

2N
∑2N

l=1 yl, yl =
∑M1

j=1 wjyl,j, wj =∑2N
l=1(xl−x̄)(yl,j−ȳj)∑2N

l=1(yl,j−ȳj)2 , ȳj = 1
2N
∑2N

l=1 yl,j, j = 1, 2, . . . ,M1. Similarly,

we have the corresponding test statistics T2, . . . ,TK when we
study the association of the genetic variant and the multiple
phenotypes in the clusters C2, . . . ,CK , respectively. Further, let
p1, p2, . . . , pK be the p-values of T1,T2, . . . ,TK , respectively,
and we propose our test statistic:

TWCHC = min{p1, p2, . . . , pK} .

As it is not easy to derive the distribution of the test statistics
T1,T2, . . . ,TK under the null hypothesis of no association, the
permutation procedure described below is employed to calculate
the p-value of TWCHC .

(1) In each of the B permutations, we random shuffle the
genotypes and then get the statistics T(b)

1 ,T(b)
2 . . . ,T(b)

K , b =
0, 1, 2, . . . ,B. Note that b = 0 is corresponding to the original
data (no permutation).

(2) Calculate p(b)
k by:

p(b)
k =

#{d:T(d)
k >T(b)

k for d=0,1,...,B}
B , for k = 1, 2, . . . ,K.

and then T(b)
WCHC = min{p(b)

1 , p(b)
2 , . . . , p(b)

K } for
b = 0, 1, 2, . . . ,B;

(3) Then, the p-value of TWCHC is given by:

#{b : T(b)
WCHC < T(0)

WCHC for b = 1, 2, . . . ,B}
B

.

The hierarchical clustering based on our previous work (Fu,
2020) is as follows: In summary, we can find a partition
ψ that partitioned M phenotypes into K disjoint clusters
C1,C2, . . . ,CK , where ψ={C1,C2, . . . ,CK} with

⋃K
k=1 Ck =

{1, 2, . . . ,M} and Ck
⋂

Cl = ∅(k 6= l). Specifically, applying the
bottom-up hierarchical clustering approach, we begin with each
phenotype as a singleton cluster and then subsequently merge
pairs of clusters with the largest similarity until all clusters have
been merged into a single cluster that contains all phenotypes.
The largest similarity in each iteration is referred as the height
of the merged cluster in the dendrogram. A stopping criterion
determines the number of clusters, which is similar to an
established principle (Bühlmann et al., 2013). Suppose hb is the
largest similarity between two clusters in iteration b (b ≥ 1) or
the height of iteration b. We define:

b̂ = arg min
b≥1

(
hb+1 − hb

)
.

Then, the number of clusters identified at the iteration b̂ is chosen
to determine the K clusters C1,C2, . . . ,CK . On the calculation
of correlation coefficient, the Pearson correlation coefficient,
multiple correlation coefficient, and canonical correlation

coefficient are respectively employed according to the number of
phenotypes in the merged two clusters.

The source code for WCHC method can be found in https:
//github.com/YQHuFD/WCHC.

Comparison of Methods
For convenience, let 1n be the all ones vector of length n and 0n
be the all zeroes vector of length n, where n is a positive integer.
We first list the following existing methods for power comparison
with the proposed WCHC.

OB (O’Brien’s method) (O’Brien, 1984): Using a linear
combination of univariate statistics, the OB statistic, 1TM6−1Tuni,
is developed. It is the most powerful statistic when a class of
statistics is a linear combination of Tuni, where Tuni is the vector
of univariate statistics and 6 is the variance–covariance matrix of
Tuni .
MultiPhen (Joint model of Multiple Phenotypes) (O’Reilly

et al., 2012): Modeling the genotype data as ordinal response and
phenotypes as predictors, MultiPhen employs likelihood ratio
test to evaluate the null hypothesis in the proportional odds
logistic regression.

MANOVA (Multivariate ANalysis Of Variance) (Cole et al.,
1994): In the standard MANOVA, there are a total of M
phenotypes, and the M ×M symmetrical background variance–
covariance matrix 6 is unconstrained. It has ((M + 1)×M)

/
2

freely estimated elements in covariances and variances. Standard
MANOVA tests the null hypothesis that the M regression
coefficients are all zeroes, which is asymptotically equal to the
F-test.

SHet (Test for Heterogeneous genetic effects) (Zhu et al.,
2015): The test statistic of SHet, SHet , is based on SHom, which
is the most powerful statistic when the genetic effects are

homogeneous. SHom =
1TM(CorrW)−1Tuni(1TM(CorrW)−1Tuni)

T

1TM(WCorrW)−11M
, where

Corr is the correlation matrix of Tuni, W is a diagonal matrix of
weights for the univariate statistic. SHet is the maximum of SHom’s
satisfying various thresholds. Specifically, only the statistics with
absolute values greater than the given threshold are employed;
Corr and W are partially used corresponding to the selected
statistics. The p-value of SHet could be estimated by simulation.

TATES (Trait-based Association Test that uses Extended
Simes procedure) (van der Sluis et al., 2013): TATES combines
the p-values of univariate analysis for getting a comprehensive
p-value, while correcting the correlation between phenotypes.
The TATES p-value is denoted as min

(
Mep(j)
Me(j)

)
, where p(j) is the

jth (j = 1, . . . ,M) sorted p-value in ascending order; Me and
Me(j) denote the effective number of independent p-values among
all M phenotypes and m specific phenotypes, respectively. The
effective numbers can be obtained from the correlation matrix of
p-values.

WCmulP (Weighted Combination of multiple Phenotypes)
(Zhu et al., 2018): WCmulP can be taken as a component of
WCHC. The original phenotypes are not used clustering and
directly applied the logistic regression. Then the T statistic is
proposed to test the association between the phenotypes and
genetic variants. Lastly, the permutation procedure is used to
derive the distribution of the test statistic T.
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Simulation Studies
Assume that the population is in Hardy–Weinberg equilibrium
(HWE), and the genotypes of the genetic variants follow the
binomial distribution with parameter 2 and the minor allele
frequency (MAF). We set MAF = 0.3 in this simulation study
for all scenarios. The multiple phenotypes are generated via the
following factor model (van der Sluis et al., 2013):

y = λx+ cγf +
√

1− c2 × ε,

where y = (y1, . . . , yM)T is the M phenotypes; x is the genotype;
λ= (λ1, . . . ,λM)T is the vector of effect sizes of the variant on
the M phenotypes; f is the vector of factors; f = (f1, . . . , fR)T ∼
MVN(0, 6),6 = (1− ρ)I + ρA; I is the identity matrix; A is a
matrix with elements of 1; R is the number of factors; and ρ

is the correlation between factors; γ is an M × R matrix; c is a
constant; ε = (ε1, . . . , εM)T is a vector of random errors; and
ε1, . . . , εM are mutually independent and follow the standard
normal distributions. Consider the following six models with
varied numbers of factors.

Model 1: There is only one factor, and the genotype has an
influence on all phenotypes with the same effect size. Namely,
R = 1, λ = β1M , and γ = 1M .

Model 2: There are two factors and a genotype has
an effect on one factor with the same effect. That is,
R = 2, λ = (0TM/2, β1TM/2)

T , and γ = bdiag(1M/2, 1M/2), which
represents the block diagonal matrix of 1M/2 and 1M/ 2 .

Model 3: There are two factors, and a genotype
has an effect on the second factor with different sizes.
That is, R = 2, λ=(0TM/2,

β
M+1 [1 : M/2]T + β1TM/2)

T and
γ = bdiag(1M/2, 1M/2), where [1 : M/2] represents the vector of
components 1, 2, . . . ,M/ 2 .

Model 4: There are four factors, and a genotype has an
impact on the last factor with the same size. That is, R = 4,
λ=(0T3M/4, β1TM/4)

T , and γ = bdiag(1M/4, 1M/4, 1M/4, 1M/ 4 ).
Model 5: There are four factors, and a genotype

has an effect on the last factor with different sizes.
Namely, R = 4, λ=(0T3M/4,

β
M+1 [1 : M/4]T + β1TM/4)

T ,
γ = bdiag(1M/4, 1M/4, 1M/4, 1M/ 4 ).

Model 6: There are four factors, and a genotype has an
impact on the last two factors with different effect directions.
That is, R = 4, λ=(0TM/2, −

β
M+1 [1 : M/4]T − β1TM/4, β1TM/4)

T ,
γ = bdiag(1M/4, 1M/4, 1M/4, 1M/ 4 ).

For these six models, the within-factor correlation is c2 and the
between-factor correlation is ρc2. For estimating type I error rates
and powers, we fix N = 1,000 unrelated subjects, the number of
phenotypes M = 16, 32. By means of setting β = 0, we generate all
phenotypes that is independent of genotypes to evaluate the type
I error rates of all methods, including OB, MultiPhen, MANOVA,
SHet, TATES, WCmulP, and WCHC. The corresponding Q–Q
plot of type I error rates is shown in Supplementary Figures 1–
6. Importantly, to evaluate powers, we not only vary the values
of β (while within-factor correlation c2 = 0.5 and between-factor
correlation ρc2 = 0.1) but also change the values of within-
factor correlation c2 = 0.3, 0.5, 0.7, and 0.9 (while between-factor
correlation ρc2 = 0.1).

The calculation of heritability is as follows: the heritability of

genotypes to the j-th phenotype is given by h2(yj) =
var(x)λ2

j

var(x)λ2
j +1
≈

var(x)λ2
j . The heritability of genotypes to the total M phenotypes

is given by h2
=
∑M

j=1 h
2(yj) ≈ var(x)

∑M
j=1 λ2

j . Then given
the parameters λ, M, and MAF, we can calculate h2 for the
different models.

Simulation Results
We set different nominal significance levels, various numbers
of phenotypes, and distinct number of factors to estimate the
type I error rates of WCHC and other six methods. For each
simulation scenario, the p-values of WCHC, WCmulP, and
SHet are evaluated by 2,000 permutations; and the p-values of
MANOVA, MultiPhen, TATES, and OB are evaluated by their
asymptotic distributions. The type I error rates of the seven
methods are estimated using 2,000 replicated samples. For 2,000
replicated samples, the 95% confidence intervals (CIs) for type
I error rates of nominal levels 0.01 and 0.05 are about (0.0056,
0.0144) and (0.0404, 0.0596), respectively. The evaluated type
I error rates of WCHC and other six methods are presented
in Table 1 (M = 16) and Table 2 (M = 32). It is observed
from these two tables that most of the type I error rates of
WCHC are within 95% CIs, which shows the validity of the
developed WCHC. Meanwhile, the type I error rates of WCmulP,
SHet, MANOVA, MultiPhen, TATES, and OB are not obviously
deviated from the nominal levels. See more information in Q–Q
plots (Supplementary Figures 1–6).

In order to compare powers of these seven methods, we
plot power against the genetic effect β (in Figures 1, 2) and
the within-factor correlation c2 (in Figures 3, 4). Note in the
calculation of power, the p-values of WCHC, WCmulP, and SHet
are evaluated by 1,000 permutations; the powers of the seven
methods are estimated based on 1,000 replicated samples at a
significance level of 0.05. The following observations can be
drawn from the simulation.

(1) As expected, in each model, the powers of all seven
methods increase as the genetic effect β increases (see
Figures 1, 2). (2) Except in models 1 and 6, WCHC is the
most powerful test in all the methods under most of the
simulation scenarios (see Figures 1–4). (3) As the number
of phenotypes increases from M = 16 to M = 32, WCHC
exhibits more obvious advantages over other methods except in
Model 1 and 6 (see Figures 1, 2). (4) No matter changes of
genetic effects β or variations of correlation coefficients between
different phenotypes, MANOVA and MultiPhen have the similar
performance in all six models. (5) Generally, in each model, the
power of all methods decreases with the increase of correlation
coefficients of within factors between phenotypes. (6) OB is the
most powerful test when the genetic effects are homogeneous
(Model 1). However, OB’s power decreases when there exist
opposite directions (Model 6) or when the genetic variant has an
influence on a small proportion of phenotypes (Model 5). (7). In
general, WCHC, WCmulP, and TATES are more powerful than
SHet, OB, MANOVA, and MultiPhen when the genetic variant
affects a portion of phenotypes (Models 2–6). (8). WCHC shows
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TABLE 1 | Type I error rates of the seven methods in three simulation settings.

Type I error rates

R = 1 R = 2 R = 4

Methods α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05

WCHC 0.009 0.0505 0.011 0.065 0.007 0.0455

WCmulP 0.0095 0.0495 0.012 0.0595 0.01 0.047

MANOVA 0.013 0.0495 0.0105 0.054 0.0075 0.0555

MultiPhen 0.014 0.0495 0.011 0.055 0.0095 0.0505

TATES 0.0105 0.0465 0.011 0.049 0.007 0.0445

SHet 0.008 0.0515 0.009 0.0535 0.0115 0.0425

OB 0.007 0.045 0.0095 0.055 0.009 0.0475

Sample size N = 1,000, the number of phenotypes M = 16, c2 = 0.5, ρc2 = 0.1, and minor allele frequency (MAF) = 0.3. The p-values of WCHC, WCmulP, and SHet
are estimated by 2,000 permutations. The type I error rates of all seven method are estimated via 2,000 replicated samples at the significance of α. R is the number of
factors. The number in bold indicates that the type I error rate is out of 95% CIs of the nominal significance level.

TABLE 2 | Type I error rates of the seven methods in three simulation settings.

Type I error rates

R = 1 R = 2 R = 4

Methods α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05

WCHC 0.0095 0.0525 0.0105 0.0525 0.0105 0.0565

WCmulP 0.013 0.0545 0.0135 0.051 0.01 0.05

MANOVA 0.0175 0.072 0.0115 0.059 0.009 0.0535

MultiPhen 0.0155 0.072 0.0115 0.054 0.01 0.055

TATES 0.0105 0.048 0.0115 0.0475 0.011 0.049

SHet 0.0125 0.061 0.0095 0.0475 0.005 0.0415

OB 0.011 0.0555 0.0135 0.0555 0.01 0.044

Sample size N = 1,000, the number of phenotypes M = 32, c2 = 0.5, ρc2 = 0.1, and minor allele frequency (MAF) = 0.3. The p-values of WCHC, WCmulP, and SHet
are estimated by 2,000 permutations. The type I error rates of all seven method are estimated via 2,000 replicated samples at the significance of α. R is the number of
factors. The number in bold indicates that the type I error rate is out of 95% CIs of the nominal significance level.

obvious advantages over other methods when the genetic variant
only affects part of the phenotypes with the same direction.
One possible reason is that in the models of generating data,
the genetic variant has effects of the same directions on some
phenotypes and has no effect on the remaining ones. The
hierarchical clustering is capable of grouping similar phenotypes
together, so as to reduce the dimensions of association test for
improving the power to detect the associated phenotypes.

Overall, from all the power simulation results, we could draw
that our proposed WCHC has advantages over other methods in
most scenarios, and especially in some scenes, the ascendancy
is obvious. In other scenarios, WCHC is comparable with the
most powerful test.

REAL DATA ANALYSIS

We applied our proposed method WCHC to the real data
analysis from ARIC study (see more details in The ARIC
Investigators, 1989). In brief, sponsored by the National Heart,
Lung, and Blood Institute (NHLBI), ARIC is a prospective
cohort study of atherosclerosis risk in community. It records the

changes of the incidence of atherosclerosis-related diseases and
cardiovascular risk factors in distinct races, regions, genders, and
time, aiming at investigating the etiology and natural process of
atherosclerosis (Morrison et al., 2013). We obtain the genotyped
and clinical phenotypic data in ARIC from dbGaP server of the
United States National Center for Biotechnology Information
(accession number: phs000090.v4.p1).

To evaluate the performance of WCHC in real data, we
use the seven methods to analyze obesity-related phenotypes in
ARIC. We selected nine continuous traits with regard to obesity
including weight, body mass index (BMI), average skinfold
thickness of the triceps brachii, mean subscapular skinfold
thickness, waist, hip girth, waist-to-hip ratio, calf girth, and wrist
breadth and three covariates including age, gender, and race. The
specific description of these variables is listed in Table 3, and
the correlation structure of obesity-related phenotypes is given in
Supplementary Figure 7. A set of 12,701 subjects across 272,027
SNPs were left for subsequent analysis after excluding subjects
with missing data in any of the 12 variables as well as the genetic
variants with missing rate greater than 0.2 or HWE < 10−4.
Every phenotype is adjusted for those three covariates using linear
regression model.
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FIGURE 1 | Power comparisons of the seven methods as a function of β in the six models. Sample size is N = 1,000, the number of phenotypes is M = 16, c2 = 0.5,
ρc2 = 0.1, and MAF = 0.3. The power of all the seven methods is estimated by 1000 replicated samples at a significance level of 0.05.
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FIGURE 2 | Power comparisons of the seven methods as a function of β in the six models. Sample size is N = 1,000, the number of phenotypes is M = 32, c2 = 0.5,
ρc2 = 0.1, and MAF = 0.3. The power of all the seven methods is estimated by 1000 replicated samples at a significance level of 0.05.
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FIGURE 3 | Power comparisons of the seven methods as a function of c2 in the six models. Sample size is N = 1,000, the number of phenotypes is M = 16,
ρc2 = 0.1 and MAF = 0.3. β = 0.09 for model 1 and 2; β = 0.08 for model 3; β = 0.1 for model 4 and 5; β = 0.07 for model 6. The power of all the seven methods is
estimated by 1000 replicated samples at a significance level of 0.05.
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FIGURE 4 | Power comparisons of the seven methods as a function of c2 in the six models. Sample size is N = 1,000, the number of phenotypes is M = 32,
ρc2 = 0.1, and MAF = 0.3. β = 0.1 for model 1 and 4–6; β = 0.09 for model 2; β = 0.08 for model 3. The power of all the seven methods is estimated by 1000
replicated samples at a significance level of 0.05.
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Based on these adjusted phenotypes related to obesity, we
employ WCHC and other six methods to detect associated SNPs.
Two groups are obtained after clustering the nine phenotypes
in the real data analyses by the hierarchical clustering in
WCHC. One of the clusters only includes wrist breadth, while

the other encompasses the remaining phenotypes. Because of
multiple testing correction, we adopt the significance threshold of
1× 10−7, not the traditional genome-wide significance threshold
of 5 × 10−8. There are totally 11 SNPs that are significant for at
least one method (Table 4). Previous studies (Frayling et al., 2007;

TABLE 3 | Summary statistics of obesity-related indexes and covariates in ARIC.

Index All Gender Race

Male Female p-value White Black p-value

N 12,771 5,704 7,067 – 9,633 3,138 –

Male, % 44.66 – – – 47.02 37.44 9.11 × 10−21

Age, years 54.09 ± 5.73 54.450 ± 5.75 53.76 ± 5.69 6.76 × 10−13 54.34 ± 5.68 53.34 ± 5.80 5.51 × 10−17

Weight, lb 173.13 ± 36.85 188.27 ± 31.46 160.92 ± 36.36 <2.2 × 10−16 169.61 ± 35.69 183.99 ± 38.25 1.90 × 10−74

Weight missing, % 0.149 0.158 0.142 0.995 0.083 0.351 0.002

BMI, kg/m2 27.66 ± 5.30 27.54 ± 4.18 27.75 ± 6.05 0.020 27.01 ± 4.86 29.65 ± 6.05 9.98 × 10−104

BMI missing, % 0.149 0.158 0.142 0.995 0.083 0.351 0.002

Triceps, mm 25.26 ± 10.02 19.34 ± 7.87 30.04 ± 8.97 <2.2 × 10−16 24.54 ± 9.08 27.48 ± 12.23 1.73 × 10−34

Triceps missing, % 0.157 0.175 0.142 0.798 0.093 0.351 0.004

Scapular, mm 24.48 ± 11.59 22.22 ± 9.19 26.31 ± 12.92 1.13 × 10−94 21.85 ± 9.33 32.59 ± 13.89 1.60 × 10−299

Scapular missing, % 0.446 0.561 0.354 0.107 0.353 0.733 0.009

WC, cm 96.94 ± 13.83 99.23 ± 10.93 95.09 ± 15.54 1.25 × 10−68 96.19 ± 13.33 99.25 ± 15.02 5.34 × 10−24

WC missing, % 0.141 0.123 0.156 0.798 0.104 0.255 0.092

HC, cm 104.55 ± 10.31 102.85 ± 8.09 105.93 ± 11.63 2.81 × 10−68 103.50 ± 9.478 107.79 ± 11.98 7.52 × 10−72

HC missing, % 0.141 0.140 0.142 0.999 0.104 0.255 0.092

WHtR 0.926 ± 0.078 0.963 ± 0.054 0.895 ± 0.081 <2.2 × 10−16 0.928 ± 0.079 0.920 ± 0.076 4.66 × 10−8

WHtR missing, % 0.149 0.140 0.156 0.999 0.114 0.255 0.131

Calf, cm 37.44 ± 3.67 38.06 ± 3.17 36.95 ± 3.95 1.48 × 10−68 37.39 ± 3.58 37.60 ± 3.93 0.006

Calf missing, % 0.157 0.210 0.113 0.248 0.114 0.287 0.062

Wrist, mm 53.62 ± 5.18 57.78 ± 3.66 50.27 ± 3.53 <2.2 × 10−16 53.59 ± 5.26 53.74 ± 4.91 0.137

Wrist missing, % 0.117 0.123 0.113 0.999 0.073 0.255 0.022

N is the number of subjects; BMI is body mass index; Triceps is average skinfold thickness of the triceps brachii; Scapular is mean subscapular skinfold thickness; WC is
waist; HC is hip girth; WHtR is waist-to-hip ratio; Calf is calf girth; and Wrist is wrist breadth. The distributions of normal index is described by mean ± standard deviation;
the distributions of non-normal indicators are described by means (25% quantile, 75% quantile). For normal distribution indicators, the differences between groups are
evaluated using the t-test (the variances of two groups are homogeneous) or the approximate t-test (the variances of two groups are heterogeneous). For non-normally
indicators, Wilcoxon signed rank test is used to test the differences between indicators to get the p-values of differences. For discrete indicators, the chi-square test is
used for hypothesis testing and then deriving p-values. Bold number indicates p < 0.05. ARIC, Atherosclerosis Risk in Communities.

TABLE 4 | Significant SNPs and the corresponding p-values in the analysis of ARIC.

Chr SNP OB MultiPhen MANOVA SHet TATES WCmulP WCHC

3 rs17017947 1.57 × 10−12 NA 1.02 × 10−11 0 0.314 0.513 0.672

10 rs41470552 0.062 NA 6.25 × 10−9 1.15 × 10−4 0.035 0.078 0.141

11 rs7927943 0.099 3.33 × 10−6 5.57 × 10−6 8.00 × 10−7 1.16 × 10−8 1 × 10−7 1.00 × 10−7

11 rs1945647 0.038 6.27 × 10−6 1.2 × 10−5 7.00 × 10−7 1.77 × 10−8 0 1.00 × 10−7

11 rs7114045 3.73 × 10−5 5.47 × 10−6 5.66 × 10−8 0.003 0.018 0.051 0.108

12 rs7968682 0.414 5.36 × 10−8 8.34 × 10−8 0 0.018 0.079 0.006

16 rs9939609 0.082 3.39 × 10−8 1.85 × 10−8 0 2.97 × 10−10 0 1.00 × 10−7

16 rs8050136 0.186 8.66 × 10−8 4.29 × 10−8 0 2.86 × 10−9 0 1.00 × 10−7

20 rs201561 0.138 2.91 × 10−6 2.48 × 10−6 6.30 × 10−6 7.99 × 10−7 0.035 1.00 × 10−7

20 rs1570004 0.184 7.77 × 10−5 5.28 × 10−5 1.90 × 10−6 6.12 × 10−8 0.001 1.00 × 10−7

20 rs1014883 0.457 3.00 × 10−5 1.83 × 10−5 1.60 × 10−6 3.19 × 10−4 0.011 1.07 × 10−4

The p-values of WCHC, SHet, and WCmulP are estimated using 107 permutations; the p-values of OB, MultiPhen, MANOVA, and TATES are estimated using asymptotic
distributions; and the bold number indicates p-value ≤ 1 × 10−7. HWE ≥ 10−4 for the identified SNPs; “NA” indicates MultiPhen is not available, as the genotype at the
specified SNP does not take all three values of 0, 1, and 2 in these data. 0 indicates p-value < 10−7. SNP, single-nucleotide polymorphism; ARIC, Atherosclerosis Risk in
Communities; HWE, Hardy–Weinberg equilibrium.
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Heard-Costa et al., 2009; Lindgren et al., 2009; Meyre et al.,
2009; Thorleifsson et al., 2009; Willer et al., 2009; Heid et al.,
2010; Speliotes et al., 2010; Bradfield et al., 2012; Wen et al.,
2012; Berndt et al., 2013; Monda et al., 2013; Locke et al.,
2015; Shungin et al., 2015) have reported that FTO leads to
obesity through population studies and experimental researches
elaborating relevant mechanisms. Among the 11 identified SNPs,
rs9939609 and rs8050136 are involved in FTO. Additionally,
rs7968682 is reported to be associated with height (Yang T. L.
et al., 2010; Takeshita et al., 2011). Few other SNPs have been
assessed to explore the association with obesity or obesity-related
phenotypes. From Table 4, we can see that both WCHC and
MANOVA identified six SNPs; TATES identified five SNPs; both
WCmulP and SHet identified four SNPs; MultiPhen identified
three SNPs; and OB only identified one SNP, which may be due
to that the true genetic effects of most of SNPs are heterogeneous
for all phenotypes. In summary, the number of SNPs identified by
WCHC is comparable with the largest number of SNPs identified
by other tests. These real data analysis results are consistent with
our simulation results.

CHARACTERISTICS OF THE
SIGNIFICANT VARIANTS

Table 5 shows the annotations of the identified SNPs based
on the Ensemble website1 and SCAN website2. From Table 5,
we can see that the significant SNPs are located in intergenic
or intron region, and most of them have been reported
to be associated with BMI, height, or T2D. Generally, they
have been reported in GWAS. We could also explore the
expression of genes associated with the significant SNPs,
although they are located in intergenic or intron region.
Therefore, we make full use of Qtlizer3, eQTLGen4, and
PsychENCODE5, which are the largest integrating various tissues,
blood, and brain expression Quantitative Trait Locus (eQTL)
samples, respectively. Instead of restricting analysis to the
SNPs in Table 5, we considered using a larger list of SNPs
with proxy variants, which are in Linkage Disequilibrium
(LD) with the SNPs in Table 5 (r2

≥ 0.8) via Qtlizer
website. We restricted the eQTL association criteria with
False Discovery rate (FDR) < 0.05. The results of eQTLs
in Qtlizer, eQTLGen, and PsychENCODE are displayed in
Supplementary Data Sheets.

In order to further study the biology function of the
genetic variants, we performed enrichment analysis on genes
associated with these 11 SNPs in Table 5 and the proxy
variants (see qtlizer.results in Supplementary Data Sheet)
in the three websites/consortiums (Qtlizer, eQTLGen, and
PsychENCODE). After summarizing all genes in the three tables
(see qtlizer.results, eQTLGen.results, and PsychENCODE.results

1https://asia.ensembl.org
2http://scandb.org
3http://genehopper.de/qtlizer
4https://www.eqtlgen.org/
5http://resource.psychencode.org/

in Supplementary Data Sheet), we got all the genes associated
with the eQTLs (see Gene sheet in Supplementary Data Sheet).
A total of 76 genes were obtained to do the gene set analysis
by virtue of different biological databases for investigating
biological processes, cell components, molecular functions,
metabolic pathways, phenotypes with relevant diseases, and
protein interactions. The results of enrichment analysis and
protein–protein interaction (PPI) are given in Figures 5, 6.
According to the Gene Ontology (GO) enrichment analysis
chart in Figure 5, GO items mainly focus on the cellular
response to hydrogen and regulation of lipid kinase activity,
which may be parts of the metabolic process. Moreover, the
Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic
pathway in Figure 6 presents that the enriched genes possess
taurine and hypotaurine metabolism and endocrine resistance,
which indicates that the obesity-related variants detected by
WCHC and other methods in ARIC might be involved in
the metabolic pathways, which releases the signal that our
results are in a certain degree of credibility. Subsequently,
we draw a PPI network diagram through the STRING6 to
reveal that most of the proteins (nodes) encoded by the genes
have certain interactions (edges), which suggests the proteins
related the expression of genes might interact with each other
for controlling a variety of biological phenomena including
endocrine development, cellular response to hydrogen, and
metabolic processes.

Overall, our results showed that WCHC and other six methods
could identify significant genetic variants for obesity phenotypes
in real data analysis from ARIC. More importantly, functional
annotations of genetic variants and enrichment analysis support
that the variants are closely related to biological functions and
metabolic pathways of obesity.

DISCUSSION

In this article, we proposed WCHC to perform multivariate
analysis of multiple phenotypes in association studies due to
the following reasons. (1) Multiple correlated phenotypes are
usually measured in complex disease for genetic association
studies. Compared to univariate analysis, multivariate analysis
considers multidimensional structure information. It indicates
certain variance–covariance is included in multiple phenotypes.
(2) Association analysis of multiple phenotypes separately
cannot present genetic interactions between phenotypes. More
and more evidence reveals that joint analysis of multiple
related phenotypes, which considers the interactions between
phenotypes comprehensively, can boost the power of detecting
genetic variants associated with complex diseases. No matter
whether the effects of genetic variants on phenotypes are
consistent or not, WCHC provides a relatively simple way to
incorporate the correlations between phenotypes into analysis.
(3) Actually, we are not sure which phenotype or linear
combination of phenotypes is more likely to elucidate the
genetic structure of complex diseases. WCHC adopts clustering

6https://www.string-db.org/
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TABLE 5 | Characteristics of the significant SNPs.

SNPs Chr. Position
(GRCh38)

Alleles
(Alt/Ref)

Gene
(nearest)

Feature Expression genes Reported
(yes/no)

Reported
phenotypes

GWAS
references

rs17017947 3 276,171 A/C CHL1 Intron – No – –

rs41470552 10 102,222,133 T/G PITX3 Intergenic – No – –

rs7114045 11 101,479,689 C/T TRPC6 Intron – No – –

rs1945647 11 81,602,715 C/T MTND6P25 Intergenic GNAI2, STK40, LIMK1,
LIG4,

HLTF, ZNF511, CBLL1,
NUDT17,

POLR3C, DAGLB,
KDELR2, NUP93,

PRCC, C16orf80, RAB33B,
LRP8

No – –

rs7927943 11 81,637,194 C/T MTND6P25 Intergenic WSCD2, GNAI2, ZFHX3,
NUP93,

FAM60A, LIMK1, MAP4,
FLJ31958, LIG4, HLTF

No – –

rs7968682 12 65,978,100 G/T HMGA2 Intergenic – Yes Height, birth
weight

rs8050136 16 53,782,363 C/A FTO Intron HES7, LATS2 Yes BMI, T2D,
adiposity

rs9939609 16 53,786,615 T/A FTO Intron CR1, CR1L, ZNRF1,
ANKRD50,

LATS2, TSPYL4, HES7

Yes BMI, T2D

rs1014883 20 21,863,992 A/G RPL41P1 Intergenic ANTXR2 No – –

rs1570004 20 35,370,450 A/T UQCC Intron – Yes Height –

rs201561 20 22,018,575 G/C RPL41P1 Intergenic P2RX3, EHD4 Yes Balding type 1

Annotations are from Ensemble website (https://asia.ensembl.org) and SCAN website (http://scandb.org); intron denotes the SNP is located between exons; intergenic
denotes the SNP is located between genes. Expression genes denotes annotations added after analysis of transcriptional levels of eQTL in cell lines from HapMap CEU
and YRI samples using Affymetrix human exon 1.0 ST array. GWAS references refer to the identifications of PubMed. SNP, single-nucleotide polymorphism; GWAS,
genome-wide association study; eQTL, expression quantitative trait locus.

approach and linear combination of multiple phenotypes to
account for the complex genetic information, which not only
takes the similarity between phenotypes into consideration but
also considers the heterogeneity, so it is helpful to explore the
genetic mechanism of diseases.

Our results manifested that WCHC has correct type I error
rates and is either the most powerful test or comparable
with the most powerful tests among the seven methods we
adopted. None of the other methods observes consistently
good performances under the simulation scenarios. OB is the
most powerful test when the genetic effects are homogeneous,
while it loses power dramatically when genetic effects are
heterogeneous, especially if there exists opposite directions of
genetic effects. In most simulation scenarios, SHet, MANOVA,
MultiPhen, and TATES have similar powers, and they are less
powerful than WCHC, and WCHC is more powerful when
the genetic variant influences a part of phenotypes. However,
WCmulP is less powerful in this scenario. Furthermore, in
real data analysis, WCHC and MANOVA identified the largest
number of significant SNPs (six SNPs). Therefore, the real
data analysis results demonstrate that WCHC has excellent
performance in detecting SNPs associated with complex disease
with multiple related phenotypes such as obesity. As for the

methods giving such different results when applied to the real
ARIC data, we think that the parametric information of real
data is unknown for us. Therefore, we may try various methods
to analyze the real data for getting reliable results as much
as possible. In our opinion, no method can guarantee 100%
accuracy. We can only be cautious to say that the significant
loci are more likely to be true signals, but further verification
is still needed.

In the context of association studies, population stratification
(PS) refers to allele frequency difference between populations
uncorrelated to the outcome of interest, but due to systematic
ancestry differences. PS may cause confounding effects seriously
if not adjusted properly (Knowler et al., 1988; Lander and
Schork, 1994). Methods such as principal component analysis
(PCA) (Zhu et al., 2002; Chen et al., 2003; Zhang et al., 2003;
Price et al., 2006; Bauchet et al., 2007), linear mixed model
(LMM) (Kang et al., 2010; Zhang et al., 2010; Hoffman, 2013),
multidimensional scaling (MDS) (Li and Yu, 2008), robust PCA
based on resampling by half means (RPCA-RHM) (Liu et al.,
2013), and robust PCA based on the projection pursuit (RPCA-
PP) (Liu et al., 2013) can be used to adjust for PS. We propose
to apply PCA to control for PS when samples from different
populations are involved.
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FIGURE 5 | GO enrichment analysis of significant SNPs probability regulating associated genes expression. (A) Red, blue, and green bars indicate biology progress,
cellular components, and molecular function categories, respectively. The numbers above the bar charts indicate the number of genes in each of the biological
categories; (B) Bar charts of GO enrichment analysis; (C) Volcano plot of GO enrichment analysis. For more knowledge about GO enrichment, please check the
website http://geneontology.org/docs/go-enrichment-analysis/.

FIGURE 6 | KEGG enrichment analysis and PPI network diagram of significant SNPs probability regulating associated genes expression. (A) Bar chats of KEGG
enrichment analysis; (B) Volcano plot of KEGG enrichment analysis; (C) PPI interaction network diagram, data are from https://www.string-db.org/.

In real data analysis, as the number of phenotypes
elevates, the chance of missing at least one subject increases
exponentially, especially in epidemiological and clinical

research (Ali et al., 2011; Dahl et al., 2016). We removed
412 subjects with missing either phenotypes or covariates
from 13,113 observations. It is worth noting that the sample
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mean substitution (Ali et al., 2011; van der Sluis et al.,
2013) is a simple, unconditional method that does not
depend on other variables, which is a common strategy
replacing the missing values with plausible values for the
variable with missing values. However, it may contribute
to biased estimates where data are not missing completely
at random (Ali et al., 2011). Additionally, imputation is a
more complicated approach that fills in missing values with
estimated values via model-based methods or conditional
imputation, comprising multiple imputation (MI), multivariate
normal imputation (MVNI), and fully conditional specification
(FCS) (Raghunathan et al., 2001; Buuren et al., 2006;
De Silva et al., 2017).

One weakness of WCHC is that the test statistic does
not have an asymptotic distribution and its p-value needs
to be calculated by permutation procedure, which is time-
consuming as compared with approaches whose test statistics
have asymptotic distributions. To conduct GWAS, a small
number of permutations (e.g., 1,000) can be used to select
genetic variants that reveal evidence of association, and then
a large number of permutations are employed to estimate
the selected significant genetic variants. We adopted this
strategy to analyze the real dataset. Consequently, it seems
to be efficient, and the bioinformatics analysis of significant
variants supports our results. In conclusion, in the field of
genotype–phenotype association studies, WCHC is an effective
method for association analysis of multiple phenotypes, which
considers both the correlations and differences among the
multiple phenotypes. WCHC provides a convenient approach
of association analysis for researchers to discover potential
genes causing complex diseases, which does not need to assume
the genetic model, and there is no limit to the number
of phenotypes. Because the genetic structure of phenotypes
is usually unknown, WCHC provides a convenient statistical
method for the application of massive multi-phenotypic
data in the future.
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