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Background: Previous studies have shown that N6-methyladenosine (m6A) is related

to many life processes and physiological and pathological phenomena. However, the

specific regulatory mechanism of m6A sites at the systematic level is not clear. Therefore,

mining the RNA co-methylation patterns in the epi-transcriptome data is expected to

explain the specific regulation mechanism of m6A.

Methods: Considering that the epi-transcriptome data contains homologous

information (the genes corresponding to the m6A sites and the cell lines corresponding

to the experimental conditions), rational use of this information will help reveal the

regulatory mechanism of m6A. Therefore, based on the RNA expression weighted

iterative signature algorithm (REW-ISA), we have fused homologous information and

developed the REW-ISA V2 algorithm.

Results: Then, REW-ISA V2 was applied in the MERIP-seq data to find potential

local function blocks (LFBs), where sites are hyper-methylated simultaneously across

the specific conditions. Finally, REW-ISA V2 obtained fifteen LFBs. Compared with the

most advanced biclustering algorithm, the LFBs obtained by REW-ISA V2 have more

significant biological significance. Further biological analysis showed that these LFBs

were highly correlated with some signal pathways and m6A methyltransferase.

Conclusion: REW-ISA V2 fuses homologous information to mine co-methylation

patterns in the epi-transcriptome data, in which sites are co-methylated under

specific conditions.

Keywords: m6A methylation, homologous information, iterative signature algorithm, biclustering, unsupervised

learning

INTRODUCTION

At present, researchers have identified more than 170 different chemical modifications in
RNA (Frye et al., 2018). N6-methyladenine (m6A) is the most common and abundant
post-transcriptional RNA modification in mRNAs and long non-coding RNAs (Fu et al., 2014),
and its methylation occurs at the sixth position of nitrogen atoms of adenosine. Studies have shown
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that m6A is involved in some RNA metabolic processes such
as mRNA transcription, translation, nucleation, splicing and
degradation (Ping et al., 2014; Lin et al., 2016; Deng et al.,
2018). Besides, m6A also plays an important role in the early
development of eukaryotic cells, sex determination, antiviral
immunity, brain development, and directed differentiation of
hematopoietic stem cells (Zhang et al., 2017, 2019a). In addition
to the above biological processes, m6Amodification is also related
to many pathological phenomena, such as leukemia, glioma and
hepatocellular carcinoma (Lachén-Montes et al., 2016; Chai et al.,
2019).

The m6A methylation in RNA is a dynamic and reversible
process regulated by methyltransferases and demethylases. Since
the main role of m6A methyltransferases is to catalyze RNA to
producem6Amethylationmodifications, these enzymes are often
called “writers.” The most common m6A writer is composed
of core components METTL3, METTL14, WTAP, and other
subunits (Liu et al., 2014; Ping et al., 2014). On the contrary,
m6A demethylases mainly mediate m6A demethylation, so these
enzymes are also known as “erasers.” The common erasers
are FTO, AKLBH5, and so on (Jia et al., 2011). Studies
have shown that m6A has a series of biological functions
because many RNA binding proteins mediate it. These binding
proteins can specifically recognize m6A methylated adenosine
on RNA, so these proteins are often referred to as “readers.”
The common readers include protein YT521-B homologous
(YTH) domain family (Meyer et al., 2015), etc. In recent years,
with the development of methylated RNA immunoprecipitation
sequencing (MeRIP-seq, or m6A-seq) technology (Dominissini
et al., 2012; Meng et al., 2014), many m6A experimental data
continue to emerge, which makes it possible to analyze m6A in
the whole transcriptome. However, since there are a few enzymes,
such as m6A writers, erasers and readers only, each enzyme
may regulate a large number of m6A sites. In other words, the
methylation level of m6A site regulated by the same enzyme may
share the same pattern, which is called the co-methylation pattern
of m6A.

Till this day, some researchers have used clustering methods
to study the co-methylation patterns in epi-transcriptome
data, trying to clarify the functional mechanism of m6A
methylation. Based on MeRIP-seq data, Liu et al. used k-means
clustering, hierarchical clustering, Bayesian factor regression
model and non-negative matrix decomposition to cluster m6A
sites (Liu et al., 2015). To better fit the distribution of epi-
transcriptome data, Zhang et al. proposed an infinite beta
binomial mixture model based on Dirichlet Process (DPBBM)
to reveal the co-methylation patterns (Zhang et al., 2019b).
Besides, our previously proposed RNA Expression Weighted
Iterative Signature Algorithm (REW-ISA) (Zhang et al., 2020)
applied biclustering to the analysis of epi-transcriptome data
for the first time. However, the above methods only used the
read counts of the m6A sites of the IP sample and the input
sample in MeRIP-seq data. They did not fully consider the
homologous information of sites and experimental conditions.
Homology is a central concept in comparative biology, in which
the most basic meaning of homology is to have a common
ancestor. The homologous information of MeRIP-seq data can

be divided into two categories: the genes corresponding to the
m6A sites and the cell lines (or environments) corresponding
to the experimental conditions. Appropriate use of the above-
mentioned homologous information will help discover potential
local functional blocks (LFBs) and better reveal the m6A
regulatory mechanism. Besides, although some of the most
advanced biclustering methods have been developed, such as
runibic (Wang et al., 2016; Orzechowski et al., 2018a), EBIC
(Orzechowski et al., 2018b), QUBIC2 (Xie et al., 2020) and RecBic
(Liu et al., 2020), their goal is to identify the trend-preserving
biclusters. However, when mining m6A co-methylation pattern,
it is expected to obtain locally hyper-methylated biclusters, so
these new methods are not applicable.

Therefore, we proposed an improved RNA expression
weighted iterative signature algorithm (REW-ISA V2), which
fuses the homologous information of sites and experimental
conditions in the iterative search for LFBs. Consistent with
the previous method, each potential LFB is identified by the
row threshold (defined as TR) and column threshold (defined
as TC) during the LFB searching strategy. It is important
to note that REW-ISA V2 updates TR and TC’s selection
process, optimizing the selection of thresholds through the
built-in rich constraint framework. According to the previous
study (Henriques et al., 2015, 2017), REW-ISA V2 is a non-
deterministic greedy algorithm, which can be used to find hyper-
methylated biclusters. Besides, REW-ISA V2 can obtain these
overlapping LFBs when there is overlap between the LFBs
implied in the input data.

To verify the effectiveness of the fusion of homologous
information, REW-ISA V2 was applied to the collected MERIP-
seq data to find potential LFBs. The obtained LFBs were
further analyzed by the Gene Ontology (GO) analysis, Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis,
and enzyme-specific experiments, in an attempt to reveal the
possible regulatory mechanism of m6A. As a result, REW-ISA V2
can better find potential LFBs with high methylation levels in the
epi-transcriptome data.

METHODS

Pre-processing of Real Data
As is known,MeRIP-Seq data profiles the m6A epi-transcriptome
by IP and input samples. Thus, we first need to follow (Chen
et al., 2019) and (Wu et al., 2019) to quantify the information
of m6A sites. Specifically, after downloading the sequencing
data from Gene Expression Omnibus (GEO) in SRA format,
the Tophat2 (Kim et al., 2013) needs to be used to compare
the sequencing data reads with the human reference genome,
and finally obtain the Fragments Per Kilobase of transcript per
Million (FPKM) statistics.

To mine the potential LFBs in the epi-transcriptome data,
only the FPKM statistical information of IP and input samples
are not enough. It is necessary to calculate the m6A methylation
level of each m6A site under each experimental condition. Let
m denote the total number of m6A sites and n denote the total
number of conditions. Therefore, according to the REW-ISA, the
methylation level matrix P ∈ R

m×n and the RNA expression level
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matrixW ∈ R
m×n can be further calculated using the IP sample

and the input samples, as shown in (1, 2).

pij =
tij+α

tij + hij+2α
, (1)

wij = log(tij + hij + 1). (2)

In (1) and (2), tij represents the FPKM of the i-th m6A site under
the j-th condition in the IP sample, and hij represents the FPKM
of the i-th m6A site under the j-th condition in the input sample.
Besides, α in (1) is a very small value, aiming to avoidNaN where
FPKM of both IP and input samples are zeros. The purpose of
introducing the RNA expression level is to provide a confidence
level for m6A methylation level in further biclustering analysis.

REW-ISA V2
To eliminate the effect of global sites or conditions on P,
REW-ISA V2 performs standard normalization on the whole,
rows and columns of P in turn to eliminate the global effect,
as shown in (3–5). Pnw, Pnr , and Pnc represent the matrices
obtained after whole normalization, row normalization, and
column normalization, respectively.

pnwij =
pij −mean(P)

max(P)−min(P)
, (3)

pnrij =
Pnwij −mean(Pnw

i· )

max(Pnw
i· )−min(Pnw

i· )
, (4)

pncij =
pnrij −mean(Pnr

·j )

max(Pnr
·j )−min(Pnr

·j )
. (5)

In (3–5), mean(·) represents calculating the mean value, max(·)
represents calculating the maximum value, andmin(·) represents
calculating the minimum value. Pnw

i· represents the i-th row in
Pnw, and Pnr

·j represents the j-th column in Pnr . Then min-

max normalization is performed on the overall data to generate
Pt , which will facilitate subsequent combination with RNA
expression level.

ptij =
pncij −min(Pnc)

max(Pnc)−min(Pnc)
. (6)

For the RNA expression level matrix W, since its distribution
fluctuates with the MeRIP-seq data, it is necessary to perform
the min-max normalization on W to generate Wt , which acts as
confidence matrix for Pt .

wt
ij =

wij −min(W)

max(W)−min(W)
. (7)

Suppose that k-1 (2 ≤ k ≤ K) LFBs have been found, and the
k-th LFB is currently being searched. Assuming that the k-th
LFB is Bk, the site indicator ρk and the condition indicator κk
are used to indicate the sites and conditions contained in Bk.
Specifically, the site indication ρik is one if the i-th site is present
in Bk (zero otherwise). The condition indication κjk is one if
the j-th condition is present in Bk (zero otherwise). The average

methylation level µ
p

k
and average expression level µw

k
of Bk can

be further calculated, as shown in (8, 9), respectively.

µ
p

k
=

∑m
i=1

∑n
j=1 p

t
ijρikκjk

∑m
i=1 ρik

∑n
j=1 κjk

, (8)

µw
k =

∑m
i=1

∑n
j=1 w

t
ijρikκjk

∑m
i=1 ρik

∑n
j=1 κjk

. (9)

Each time a LFB is found, the average methylation level and
average expression level of the LFB should to be removed
from Pt and Wt . The purpose of removing is to prevent the
algorithm from falling into a loop looking for a strong LFB. Let
residual matrix P(k) represent the methylation level matrix after
eliminating the µp of the first k-1 LFBs,

p
(k)
ij = ptij −

∑k−1

z=1
(µ

p
zρizκjz). (10)

Then, P(k) turns into PR(k) after row min-max normalization
and turns into PC(k) after column min-max normalization.
Similarly, let W(k) represent the RNA expression level matrix
after eliminating the µw of the first k-1 LFBs,

w
(k)
ij = wt

ij −
∑k−1

z=1
(µw

z ρizκjz). (11)

After obtaining the above PR(k), PC(k) and W(k), combined
with the homologous information of sites and conditions, the
algorithm begins to search for LFBs iteratively. The algorithm
running from a randomly selected site’s subset U′ and updates
the conditions’ subset V′ according to (12).



















eCU′v = 1
|U ′|

∑

u ∈ U′ (w
(k)
uv · p

R(k)
uv ) v ∈ V

tCU′v =
∣

∣

∣

∣

ρ(PtU ′v ·W
t
U ′v,

∑

b∈HC
v
(Pt

U′b·W
t
U′b)

|HC
v |

)

∣

∣

∣

∣

v ∈ HC
v , H

C
v ∈ V ,

V ′ = {v ∈ V :

∣

∣

∣
eCU′ v · t

C
U′ v −

1
|V|

∑

v∈V eCU′ v · t
C
U′ v

∣

∣

∣
>

TC√
|U ′| } (12)

where V is the conditions set of Pt , refers to the u-th site
under the v-th condition in PR, is the RNA expression level
of the u-th site under v-th condition, HC

v represents the
subset of homologous conditions corresponding to the v-th
condition. ρ(·) represents to calculate Pearson similarity, |·|
represents to calculate absolute value (or module). Besides, TC

is a hyperparameter, and its function is to select the subset of
conditions V ′. In (12), eCU ′v is calculated based on PR(k) andW(k),
which represents the average methylation level score of the v-th
condition combined with the confidence of the expression level.
tCU ′v is calculated based on Pt and Wt , representing the average
similarity score of the v-th condition relative to its homologous
conditions subset. In the process of calculating eCU ′v and, only the
sites involved in U ′ are considered.

Then, the subsets of sites are updated following (13).



















eRuV ′ = 1
|V′|

∑

v∈V′ (w
(k)
uv · pC(k)uv ) u ∈ U

tRuV ′ =
∣

∣

∣

∣

ρ(PtuV ′ ·Wt
uV ′ ,

∑

a∈HR
u
(Pt

aV′ ·Wt
aV′ )

|HR
u |

)

∣

∣

∣

∣

u ∈ HR
u ,H

R
u ∈ U ,

U ′ = {u ∈ U :

∣

∣

∣
eRuV′ · tRuV′ − 1

|U|
∑

u∈U eRuV′ · tRuV′

∣

∣

∣
>

TR√
|V ′| }

(13)
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where U is the sites set of Pt , refers to the u-th site
under the v-th condition in PC, HR

u represents the subset of
homologous sites corresponding to the u-th site. Besides, TR is
a hyperparameter, and its function is to update the subset of
sites U ′. eR

uV′ represents the average methylation level score of
the u-th site combined with the confidence of the expression
level. tRuV ′ represents the average similarity score of the u-th
site relative to its homologous sites subset. In the process of
calculating eRuV ′ and tRuV ′ , only the conditions involved in V ′

are considered.
Using the preset hyperparameters TR and TC,

U′ and V′ are updated iteratively by (12, 13) until
convergence is satisfied (or the maximum number of
preset iterations is reached). The convergence condition is
shown in (14).

|U ′ ∩ U ′′|
|U ′ ∪ U ′′|

≥ ε (14)

where ε is the default convergence criteria, and its value is slightly
<1. U" represents the site’s subset in the previous iteration, and
U′ represents its subset in the current iteration. If the algorithm
converges within the maximum number of iterations, it means
that the k-th LFB, Bk = {U ′, V ′} has been found. The flow
chart of searching for the k-th LFB by REW-ISA V2 is shown in
Figure 1.

Then the algorithm will return to (8) and continue to look
for the next LFB. Conversely, if the convergence condition of
(14) is not satisfied when the algorithm reaches the maximum
number of iterations, REW-ISA V2 will automatically terminate
and output all previously obtained LFBs. We recommend setting
ε to 0.99 and the maximum number of iterations not <50.
The closer the value of ε is to 1 and the greater the maximum
number of iterations, the more accurate the LFBs obtained
by REW-ISA V2. The REW-ISA V2 algorithm based on R
language can be downloaded freely from https://github.com/
labiip/REWISAV2.

FIGURE 1 | The flow chart of searching for the k-th LFB by REW-ISA V2.

Frontiers in Genetics | www.frontiersin.org 4 May 2021 | Volume 12 | Article 654820

https://github.com/labiip/REWISAV2
https://github.com/labiip/REWISAV2
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhang et al. REW-ISA V2

Enrichment Constraint Framework
It can be seen from (12, 13) that the selection of TR and TC will
greatly affect the biological significance of the obtained LFBs.
Therefore, based on Meng et al. (2009), we introduced a grid
search-based enrichment constraint framework for the algorithm
to optimize TR and TC selection further. For LFBs obtained under
different TR and TC combinations, we need to extract the genes
corresponding to them6A sites in each LFB and then performGO
analysis based on “clusterProfiler” (Yu et al., 2012) for each LFB.
For the range of TR and TC, we recommend setting it between
0 and 3, and the step size is 0.1. On this basis, the range of
specific thresholds should be appropriately adjusted according to
the input real data. Assuming that a LFB is obtained, the number
of genes corresponding to the m6A site contained in it isM. The
number of GO terms obtained by GO analysis of the LFB is l.
Then the weighted enrichment score (WE_score) (Li et al., 2012)
of this LFB can be calculated by (15).

{

si = − log(pi)

WE_score = s1m1/M+s2m2/M+···+slml/M
m1/M+m2/M+···+ml/M+mnon/M

,
(15)

where pi is the p-value of the i-th GO term, mi is the number of
genes of the i-th GO term enriched, mnon is the number of genes
covered by LFB but not enriched by any GO term. The higher the
WE_score, the stronger the biological significance of this LFB.

However, as the number of genes corresponding to the sites
in LFB increases, WE_score will also show an increasing trend,
as shown in Supplementary Figure 1. Therefore, only using
WE_score to evaluate the biological significance of obtained LFBs
is not perfect, and the number of genes corresponding to the
sites in LFBs also needs to be considered. Assume that the data
analyzed contain a total of Mall genes, and further assume an
obtained LFB is containing M genes and record its WE_score as
Wm. We randomly select M genes from all genomes, and their
WE_score is recorded asWrm. The relative promotion rate (RPR)
of WE_score can be further calculated, as shown in (16).

RPR =
M(Wm −Wrm)

MallWrm
. (16)

The larger the RPR is, the larger the area of the obtained LFB
is, and the more biological significance of the obtained LFB is.
On the one hand, in the actual process of mining LFBs, we hope
to get more LFBs. On the other hand, we hope to get LFBs
with rich biological significance. Therefore, the number of LFBs
obtained by each pair of threshold combinations is obtained
by grid search under different TR and TC combinations. The
threshold combinations corresponding to the maximum number
of LFBs are selected. Then, the average RPR of the LFBs is
calculated based on the selected combination of TR and TC.
Finally, the optimal TR and TC are the threshold combinations
corresponding to the maximum average RPR.

RESULTS

We collected 32 samples from 10 publicly human m6A MeRIP-
seq datasets (Dominissini et al., 2012; Meyer et al., 2012; Fustin

et al., 2013; Batista et al., 2014; Schwartz et al., 2014; Wang et al.,
2014; Barbieri et al., 2017; Li et al., 2017; Pendleton et al., 2017)
to mine potential LFBs, most of which can be retrieved from the
MeT-DB V2.0 database (Liu et al., 2018). Table 1 summarizes
the MeRIP-seq real data set used in this project. Then, calculate
the corresponding P and W through (1) and (2), and perform
REW-ISA V2. Within the range of TR being 0.1-2 with step
size 0.1, and TC being 0.1–2 with step size 0.1, TR and TC are
optimized through the enrichment constraint framework. The
experiments were repeated ten times for each parameter setting.
Although optimizing TR and TC based on the gathered biological
significance may produce biased results. However, this process
provides guidance for the selection of TR and TC. Finally, under
the optimal TR of 0.4 and the optimal TC of 0.7, a total of fifteen
LFBs are obtained. The number of m6A sites, the number of
genes corresponding to m6A sites and the number of conditions
contained in these LFBs are shown in Supplementary Table 1.

For the above-mentioned real data set, Bimax (Prelić et al.,
2006), Xmotifs (Murali and Kasif, 2003), Plaid (Lazzeroni
and Owen, 2002), ISA (Bergmann et al., 2003), REW-ISA
(Zhang et al., 2020), FBCwPlaid (Chen et al., 2021), runibic
(Orzechowski et al., 2018a), and QUBIC2 (Xie et al., 2020)
were all included for comparison with REW-ISA V2. To make
the LFBs obtained by the above methods have significant
biological significance, the parameters of these methods have
been appropriately adjusted. For each LFB obtained by each
method, the two enrichment indicators, WE_score and RPR,
were both calculated for evaluation. The comparison results
are shown in Figures 2A,B, respectively. As can be seen from
Figure 2A, the average WE_score of the LFBs obtained by
the REW-ISA V2 algorithm is higher than that of ISA and
REW-ISA, which indicates that the fusion of homologous
information is effective for mining LFBs. Although the average
WE_score of LFBs obtained by REW-ISA V2 is lower than that
of the FBCwPlaid algorithm, there are significant differences
in RPR between the two methods. After further analysis of
the LFBs, we found that this was caused by the size of
LFBs found by REW-ISA V2 was smaller than that found by
the FBCwPlaid algorithm. In other words, the LFBs found
by REW-ISA V2 had higher enrichment scores with fewer
corresponding genes. Besides, we can find that runbic and
QUBIC2 do not perform well in the task of m6A hyper-
methylation pattern recognition. It may be due to the following
two points. On the one hand, the two algorithms mainly
identify the trend-preserving biclusters, which is different from
the hyper-methylation bicluster. On the other hand, the LFBs
obtained are generally small. This also reflects the need of
developing biclustering methods for epi-transcriptome data. In
a word, the average RPR of LFBs inferred by REW-ISA V2 is
significantly higher than that of other biclustering algorithms,
which means that the LFBs obtained by REW-ISA V2 may be
more biologically significant.

To further explore the biological significance of the obtained
LFBs, we selected four LFBs with more sites from the fifteen
LFBs. As can be seen from Supplementary Table 1, for the four
selected LFBs, they cover 1,256, 1,619, 824, and 1,148 genes,
respectively. An important feature of any biclustering is the
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TABLE 1 | MeRIP-seq datasets used in the study.

ID GEO accession Cell line Treatment Source

1–4 SRR456542–SRR456549,

SRR456551–SRR456557

HepG2 UV, HGF, IFN, UT Dominissini et al., 2012

5–6 SRR903368–SRR903379 U2OS CTL, DAA Fustin et al., 2013

7–10 SRR847358–SRR847377 HeLa Ctrl, METTL3-, METTL14-,

WTAP-

Liu et al., 2014

11–12 SRR1182582–SRR1182590 ES/NPC hNPC, hESC Schwartz et al., 2014

13–18 SRR1182591–SRR1182596,

SRR494613–SRR494618,

SRR5080301–SRR50312

HEK293 Ctrl, WTAP-, METTL3-,

METTL16-

Meyer et al., 2012;

Schwartz et al., 2014;

Pendleton et al., 2017

19–21 SRR1182597–SRR1182602 OKMS D0, D5_WITH_DOX,

D5_WO_DOX

Schwartz et al., 2014

22–26 SRR1182603–SRR1182630 A549 Ctrl, METTL3-, METTL14-,

WTAP-, KIAA1429-

Schwartz et al., 2014

27–28 SRR3066062–SRR3066069 AML Ctrl, FTO+ Li et al., 2017

29–30 SRR5239086–SRR5239109 AML2 Ctrl, METTL3- Barbieri et al., 2017

31–32 SRR1035213–SRR1035224 ESC T0, T48 Batista et al., 2014

FIGURE 2 | Compare the LFBs obtained by the nine methods through two enrichment evaluation indicators. (A) The WE_score comparison of LFBs obtained by each

method. (B) The RPR comparison of LFBs obtained by each method. The connecting line between the boxes is the mean connecting line.

identified subsets of conditions, so the conditions contained
in the four selected LFBs are explored in detail, as shown
in Supplementary Table 2. The methylation level heatmaps of
the four selected LFBs are shown in Figure 3. For the KEGG
pathway analysis, six KEGG pathways known to be regulated
by RNA methylation were selected (Dominissini et al., 2012;
Xiang et al., 2017), such as apoptosis, DNA repair, fatty acid
metabolism, etc. Then, Fisher’s exact test was used to verify
whether each LFB was significantly enriched in some specific
pathways. The output p-value shows the correlation between

the four LFBs obtained and six biological pathways, as well
as the importance of multiple hypothesis correction. We could
see from Supplementary Table 3 that the four selected LFBs
are significantly enriched in the ultraviolet (UV) response
up. Although the enrichment degree of LFB2 is lower than
that of the other three LFBs in the UV response up, its
enrichment in the apoptosis is significantly higher than that
of the other three LFBs, indicating that LFB2 may further
affect apoptosis through some other m6A-related pathways.
Besides, LFB1, LFB3, and LFB4 are also significantly enriched in
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FIGURE 3 | Heatmaps of methylation level of the four selected LFBs. (A) The methylation level heatmap of the LFB1. (B) The methylation level heatmap of the LFB2.

(C) The methylation level heatmap of the LFB3. (D) The methylation level heatmap of the LFB4.

DNA repair, which may be related to DNA damage caused by
ultraviolet radiation. Since m6A has been proved to be related
to stem cell differentiation and cancer progression (Batista et al.,
2014), there is a reasonable explanation for enriching LFB1

and LFB3 in fatty acid metabolism. As the main components
of neutral fat, phospholipids and glycolipids, fatty acids can
meet various body needs and regulate metabolism, growth
and development (Azain, 2004). The p53 pathway enriched
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in LFB4 indicates that LFB4 may be related to stress signal,
regulation of intracellular homeostasis, chromosome segregation,
and cell division (Harris and Levine, 2005). Through the above
analysis, it is not difficult to see that the LFBs obtained by
REW-ISA V2 have more significant biological significance than
the randomly selected LFB. Therefore, an in-depth analysis
of the LFBs obtained may help reveal the specific regulatory
mechanism of m6A.

To check whether the detected LFBs have biological
significance, we further conducted the enzymes substrate
specificity experiments on the four selected LFBs. Since LFB
covers hyper-methylated sites and conditions, the sites and
conditions involved in each LFB are more likely to be
the target sites of m6A methyltransferases. Therefore, we
studied the association between each selected LFB and four
m6A methyltransferases, including METTL3, METTL14, WTAP
as well as KIAA1429. For this purpose, 38,845 METTL3
targeted gene sites, 19,099 METTL14 targeted gene sites, 35,144
WTAP targeted gene sites, and 1,784 KIAA1429 targeted
gene sites included in the real data were first identified
by TREW tool (Liu et al., 2018). After REW-ISA V2, we
summarized the distribution of target RNA methylation sites
involved in each LFB (Supplementary Table 4). Then, the
association between the sites in each selected LFB and m6A
methyltransferases target sites was further evaluated by Fisher’s
exact test. The experimental enrichment results are shown in
Supplementary Table 5, where p-value indicates the significance
of association between sites and methyltransferase target sites.
The results showed that the sites contained in the four
selected LFBs were significantly enriched in the target sites
of the four methyltransferases. This means that under specific
conditions, the LFBs obtained by REW-ISA V2 were indeed the
collaboratively hyper-methylated sites, which will help biologists
to further study the specific regulation mechanism of m6A. The
detailed analysis process and results can be obtained in the
Supplementary Materials.

DISCUSSION

Although more and more studies have shown that the
modification of m6A in RNA is related to many important
biological functions, the specific regulatory mechanism of m6A
is still unclear. To quickly and effectively predict potential
functional m6A sites from the epi-transcriptome data, it is
important to develop some computational algorithms, which
will help us have a more comprehensive understanding of m6A-
related life processes. Based on REW-ISA, in this article, we
developed REW-ISA V2 to better reveal the potential local co-
methylation patterns across subsets of conditions. REW-ISA V2
was implemented on the real MeRIP-seq data, and a total of 15

LFBs were obtained. Further comparison and analysis show that,
compared with other biclustering algorithms, the LFBs obtained
by REW-ISA V2 has more significant biological significance.

REW-ISA V2 could obtain reliable biclustering patterns
because of the use of homologous information. More specifically,
the sites’ methylation levels corresponding to the same gene will
show a similar trend with a high probability. Similarly, conditions
derived from the same cell line will have similar trends in all sites.
Therefore, the rational use of homologous information will help
to better mine local co-methylation patterns. Of course, REW-
ISA V2 still has some deficiencies that need to be improved in
the future. First of all, REW-ISA V2 uses simple multiplication
to fuse homologous information, which inevitably introduces
noise at the same time. Secondly, because the database on which
GO analysis depends is incomplete, the enrichment constraint
framework designed is prone to human error. Finally, the
enrichment constraint framework built into REW-ISAV2 usually
takes a long time. In the future, we will use BSig (Henriques and
Madeira, 2018) to better evaluate the obtained LFBs and develop
a new computational model to overcome these limitations.
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Orzechowski, P., Pańszczyk, A., Huang, X., and Moore, J. H. (2018a). runibic: a

Bioconductor package for parallel row-based biclustering of gene expression

data. Bioinformatics 34, 4302–4304. doi: 10.1093/bioinformatics/bty512

Orzechowski, P., Sipper, M., Huang, X., and Moore, J. H. (2018b). EBIC:

an evolutionary-based parallel biclustering algorithm for pattern discovery.

Bioinformatics 34, 3719–3726. doi: 10.1093/bioinformatics/bty401

Pendleton, K. E., Chen, B., Liu, K., Hunter, O. V., Xie, Y., Tu, B. P., et al. (2017).

The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase

intron retention. Cell 169, 824–835.e14. doi: 10.1016/j.cell.2017.05.003

Ping, X., Sun, B., Wang, L., Xiao, W., Yang, X., Wang, W., et al. (2014).

Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine

methyltransferase. Cell Res. 24, 177–189. doi: 10.1038/cr.2014.3
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