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N’-methylguanosine (m’G) is a typical positively charged RNA modification, playing
a vital role in transcriptional regulation. m’G can affect the biological processes of
mMRNA and tRNA and has associations with multiple diseases including cancers. Wet-lab
experiments are cost and time ineffective for the identification of disease-related m’G
sites. Thus, a heterogeneous network method based on Convolutional Neural Networks
(HN-CNN) has been proposed to predict unknown associations between m’G sites
and diseases. HN-CNN constructs a heterogeneous network with m’G site similarity,
disease similarity, and disease-associated m’G sites to formulate features for m’G site-
disease pairs. Next, a convolutional neural network (CNN) obtains multidimensional and
irrelevant features prominently. Finally, XGBoost is adopted to predict the association
between m’G sites and diseases. The performance of HN-CNN is compared with Naive
Bayes (NB), Random Forest (RF), Support Vector Machine (SVM), as well as Gradient
Boosting Decision Tree (GBDT) through 10-fold cross-validation. The average AUC of
HN-CNN is 0.827, which is superior to others.

Keywords: m7G sites, diseases, heterogeneous network, convolutional neural network, XGBoost

INTRODUCTION

N’-methylguanosine (m’G) is one of the most abundant modifications present in tRNA, rRNA,
and mRNA 5'cap and plays critical roles in regulating RNA processing, metabolism, and function
(Malbec et al., 2019). As an essential post-transcriptional modification, m’G plays an essential
role in gene expression, processing and metabolism, protein synthesis, transcription stability and
other aspects (Pandolfini et al., 2019). m’G is often enriched in the 5UTR region and AG-
enriched contexts. The internal m’G modification is dynamically regulated under both H,O, and
heat shock treatments, with remarkable accumulations in CDS and 3'UTR regions and functions
in promoting mRNA translation efficiency (Malbec et al., 2019). m’Gag methylation of specific
tRNA is associated with human mutation and the corresponding yeast mutation, which is m’G
modification at position 46 in tRNA. Reduced m’Gys modification causes a growth deficiency
phenotype in yeast, which provides a potential mechanism for primordial dwarfism associated with
this lesion (Shaheen et al., 2015).
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Munns et al. (1985) concluded that a specific autoimmune
disorder is associated with the presence of anti-m’G
autoantibodies in 50 patients’ cases. Bradrick (2017) found that
mosquito-borne flaviviruses are important human pathogens,
and m’G of the 5'cap structure is essential for infection. Lin et al.
(2018) developed m’G methylated tRNA immunoprecipitation
sequencing (MeRIP-seq) and tRNA reduction and cleavage
sequencing (TRAC-seq) to conform that Mettl1-mediated tRNA
m’G modification is essential for the proper expression of neural
lineage genes. m’G methyltransferase complex METTL1/WDR4
causes primordial dwarfism and brain malformation. Thus,
m’G sites and human diseases may show associations (Enroth
et al,, 2019). The study of disease-associated m’G may reveal the
pathogenesis of the disease.

However, there is still a lack of systematic research on
RNA modification due to technical limitations. Few studies
have systematically explored the association between m’G sites
and diseases. It is laborious and expensive to find disease-
related m’G sites by wet-lab experiments. Recently, more and
more artificial intelligence methods have been applied in the
analysis of biological data. It can be regarded as a classification
issue for disease-related m’G sites prediction, where the known
association is denoted as 1, 0 otherwise. Some classical classifiers
can be used to solve this problem, such as Naive Bayesian (NB),
Support Vector Machine (SVM), Random Forest (RF), Gradient
Boosting Decision Tree (GBDT), and Matrix Factorization (MF).
With Bayes theorem, NB is proposed, which has a strong bias
for linearity (Ting and Zheng, 2003). The prediction accuracy
decreases dramatically in nonlinear scenarios. SVM is known
to be suitable in small sample and nonlinear scenarios (Chang
and Lin, 2011), which depends on the kernel to map data
to a high-dimensional space. The data about disease-related
m’G sites are high sparsity, so it is not easy to find the
appropriate kernel. RF is an essential method in machine
learning and has been widely used in many fields (Ham et al,,
2005). However, it is not easy to obtain high precision and
generalization performance simultaneously. GBDT is suitable
for regression analysis, but the computation load is too high
(Rao et al., 2019). Consistent with RE it is also not suitable
for sparse data. MF is the classic model of recommendation
system (Lee and Seung, 1999). The low-rank matrix can be used
to predict the association between m’G sites and diseases. But
the higher the requirement of a low-rank matrix, the longer
the training time.

In this paper, a deep learning framework based on
heterogeneous networks and convolutional neural networks
is proposed to find disease-associated m’G sites. The site-
site similarities were calculated according to the chemical
structure of m’G site, and the disease-disease similarities
were achieved by miRNAs based on induced disease sets.
Simultaneously, the known associations between the m’G
site and the disease were incorporated into the heterogeneous
network. Then, the convolutional neural network (CNN)
was then adopted to extract multidimensional feature,
making full use of the sparse data. Finally, XGBoost was
used to predict the associations between m’G sites and
various diseases.

MATERIALS AND METHODS

Datasets

m7GDiseaseDB is an m’ G-disease association database by taking
1218 disease-associated genetic variants as a bridge, which may
lead to gain/loss of the m’G sites, with implications for disease
pathogenesis involving m’G RNA methylation (Song et al,
2020). Among them, 768 associations between 741 m’G sites
and 177 diseases were extracted via 741 variants with high
confidence levels in m7GDiseaseDB. Specifically, the genomic
locations, host genes of those sites were also included for further
feature calculation.

In the mathematical view, let R € RM*N be the association
matrix consisting of M sites S = {s1, 52, - - - , sm} and N diseases
D ={dy, ds, -, dx}. If there is an association between m’G site
si and disease dj, R;; is 1, 0 otherwise.

Heterogeneous Network Based on

Convolutional Neural Network

Figure 1 illustrates the framework HN-CNN. A heterogeneous
network was constructed with site-site similarity, disease—disease
similarity and the known m’G-disease associations to generate
feature pairs. Then, each feature pair was transformed into
a vector with high-dimensional hidden information by CNN.
XGBoost predicts the candidate samples lastly, which chooses the
regression classification tree as a base learner.

Feature Vector Construction

Chemical properties of m’G sites were utilized to depict the
m’G feature just as previously described in similar work (Chen
etal., 2019). Based on the chemical features of m’G sites, the site
similarities were calculated by Jaccard coeflicient which is defined
as Equation as (1):

JANB| |A N B
|[AUB| ~ |A|+ |B| — |ANB]

Jaccard similarity = (1)
where A and B represent the chemical feature of two sites.

In addition, the disease-disease similarity is calculated by
DisSetSim (Hu et al,, 2017), which is an online system for
calculating similarity with diseases names and open source
databases. Disease-related genes, functional annotation of genes
and the gene functional network of human are involved in
calculating disease-disease similarity. Heterogeneous network
adopts site-site similarity, disease-disease similarity, combined
with the known association between m’G sites and diseases,
shown directly in Figure 2A.

HN-CNN pays more attention to the latent description
of associations of m’G sites and diseases. Similarities and
association are included in the heterogeneous network. Taking
s5 and d, in Figure 2B as an example, vector related to ss
is selected from the association matrix and site-site similarity,
which is different from other sites. Vector related to d, is selected
from disease-disease similarity and the association matrix to
form the vector of d,. Those two vectors combine to form the
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FIGURE 1 | Framework of HN-CNN. “Feature Vector Construction” is a heterogeneous network based on feature extraction, which is constructed with similarities
and known m7G-disease association. “Feature Extraction Based on CNN” is a CNN-based feature extraction followed by XGBoost. In “XGBoost Classifier,”
XGBoost predicts the candidate samples, which chooses the regression classification tree as a base learner.

Feature Extraction Based on CNN
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feature pair about s5 and d;, and each pair is unique. Therefore,
the feature pair retains the commonness and the characteristics.
Commonness means that the vector representing the same site
or disease is invariant. Characteristics means the combination of
site-disease is unique, which is different from any other feature
pairs. Finally, the feature pair, which is shown in Figure 2B, is the
connection between heterogeneous network and CNN.

Feature Extraction Based on CNN

Convolutional neural network (CNN) has a deep learning
structure, which can mine hidden information. It is superior to
the single network in terms of feature extraction and model fitting
(Shin et al., 2016). The input layer becomes a multidimensional
characteristic surface through the convolutional layer, and the
propagation mode between the convolutional layers is shown
in Equation (2). Then, features are mapped by pooling, and
maximum pooling is shown in Equation (3). Finally, the selected
features are flattened to form the final feature vectors:

N
1 I—1%71 1
Hj=o() H; "k + bj) )
i=1
where HJl is the j-th feature map of the i-th layer, N is the

number of the i-th layer’s kernels, kfj is the j-th element in the

i-th convolution kernel at the [ layer, b]l- is the bias parameters, o
is the activation function:

Pooling]l- = maxpxq(HJl) (3)

Where max;x4 chooses the maximum from H]l< with the pxg-

size pooling. The Poolingjl- is the j-th pooling vector in the
I-th layer.

Although the feature pairs were achieved in the previous
section, the data is sparse with little information. The
convolutional layer comprises multiple convolution kernels,
which mine different characteristics of feature pairs. Therefore,
the generated feature pairs are extracted by CNN. After that,
feature vectors are formed, which contain not only various but
also different information. In this paper, the associations of
adjacent data in feature pairs are weak, so the convolution step
size is set as 1 to make full use of each known data and mine
each data’s hidden information. If the step size becomes bigger,
some information will be ignored. The convolution kernel’s
width was set as 2 to explore the association between m’G
sites and diseases. To extract more dimensional information
and mine the diverse relationships in feature pairs, the more
convolution kernels are used, the better performance we have.
However, the more computing resources and the longer the
computation time are needed with too many kernels, along
with the higher repetition rate. Considering high sparsity
between the data, such as the sparsity of disease-disease
similarity is 72.78%, the number of convolution kernels is
set to 32. Meanwhile, the prediction accuracy is the best by
experiment. If the number of convolution kernels is reduced,
the accuracy will be decreased for mining the information
of feature pairs deficiently. When the number of convolution
kernels is increased, the accuracy is also decreased for repeated
or useless features.
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FIGURE 2 | Heterogeneous network and feature pair. (A) The heterogeneous network. (B) The demo of s5 and d». (C) The related matrixes directly.
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Then, the data are passed into the pooling layer. The pooling
layer can reduce the input information dimension, keep the
characteristic invariance, select the primary information, and
reduce the redundancy information. In this paper, the size of
maximum pooling is 2 x 2. Length 2 can screen out the data with
prominent characteristics between sites and diseases; width 2 can
effectively remove the duplicate data and screen out the critical
information that has been expanded to the higher dimension.

Finally, feature pairs have been processed into vectors
containing various kinds of information, but those vectors
contain a large amount of information, with many types. The
pooled vectors are compressed by full connection to integrate
the feature data. The final feature vectors V = {v‘f, vg, e vﬁ} are
formed, where # is the number of known associations, and d is the
number of neurons in the full connection layer. In this paper, d is
set to 256. When d is less than 256, the performance dramatically
decreases due to less information in V. The performance also
decreased due to too much or even useless information in V. V
contains categorical information, optimizing by cross-entropy, to

make V highly relevant to the original information, and V is used
by subsequent classifiers.

XGBoost Classifier

XGBoost classifier is adopted to predict associations between
m’G site and disease. It retains the feature information better
and weakens the influence of parameters on final accuracy. As an
integrated learning algorithm that optimizes distributed gradient
enhancement, XGBoost has good performance in generalization
by regulation and second-order Taylor expansions (Torlay et al.,
2017). In this article, the regression classification tree is chosen
as a base learner, whose input is V, and output is shown in
Equation (4):

K
Ji=> fiv).fk € E (4)
k=1

where y; is the result, v; is the i-th vector in eigenvector V, f; is
the k-th decision tree, K is the number of leaf nodes, and E is
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the set of classification regression trees. The optimized objective
function for XGBoost is shown in Equation (5):

n K
L=>"1Giy)+ > Q) (5)

i=1 k=1

where y; is the ground truth, and (4, y;) is binary cross-entropy
loss and shown in Equation (6):

131, i) = yiln(1 + e7) 4+ (1 — y;) In(1 + &) (6)

Q(fr) is regularization to prevent overfitting and enhance
generalization ability. Q(f;) is shown in Equation (7):

Q) = yT+ A Il )

where y is the complexity cost by adding new leaf nodes. T is the
number of leaves in a tree. ||w||? is the sum of the square of each
leaf node. 1 is the regularization coefficient about the L2 norm
[Iwl| >.

There are several hyperparameters in XGBoost such as
the complexity cost of adding new leaf nodes y and the
regularization coefficient 4. To achieve better AUCs, cross
validation is inlaid into XGBoost to find the best parameters with
y €{0,0.2,0.4,0.6,0.8,1} and 1€{0, 0.01, 0.001}. Meanwhile, early
stopping is adopted to avoid overfitting.

RESULTS

In this paper, HN-CNN is proposed to predict the association
between m’G sites and diseases, and the performance is evaluated
by 10-fold cross-validation. The original correlation matrix only
marks the known relationship of m’G sites and diseases that can
be considered positive, but the unknown does not mean negative.
Thus, the same number of the negative is selected from unknown
data randomly, and both the positive and the negative constitute
the dataset. The set is divided into 10 parts on average, among
which nine parts are used for training and the remaining 1 part
for testing. The above operation should be repeated 10 times and
the AUC should be recorded every time. It should be noted that
the test set cannot be repeated in 10 training sets. After 10-folds,
the average of 10 AUCs is the final result.

Evaluation Metrics

HN-CNN predicts the positive probability of association between
m’G sites and diseases. A threshold  is needed when validation.
If the probability is more prominent than 6, the sample is
considered as positive. On the other hand, it is identified as
negative. True positive rates (TPR) and false positive rates
(FPR) are calculated according to the prediction and the truth
[Equations (8) and (9)] (Hanczar et al., 2010):

TP

TPR= — (8)
TP + EN
FP
FPR= —— )
TN + FP

where TP is true positive, FP is false positive, TN is true negative,
and FN is false negative. If 6 changes, TPR and FPR will also
change. The receiver operating characteristic (ROC) curve is
drawn with different TPRs and FPRs (Moses et al., 1993). ROC
curve can display the performance of the model intuitively, but
it cannot compare models accurately. The area under the ROC
curve (AUC) can be used to evaluate the performance of classifier,
which ranges from 0 to 1. The more AUC is close to 1, the better
performance the classifier has (Fawcett, 2006). So, we choose the
ROC curve and AUC to measure the models.

The AUC is the mean of m runs of 10-fold cross-validation,
which is calculated by Equation (10):

L 1 m 1 10
AUC= — Z(IO ;AUC,-)

j=1

(10)

where m is the number of experiments, AUC; is the i-th AUC in
10-fold cross-validation. In this paper, m = 10.

Comparison With Other Methods

To verify the advantages of CNN in extracting features, features
that are not processed by CNN were compared with the features
processed by CNN, which are classified with base classifiers such
as GBDT, NB, SVM and RF. The result is shown in Figure 3A.
The ordinate in the figure is the result of 10-fold cross verification,
which is the average AUC. All average AUCs are calculated by 10-
times of 10-fold cross-validation. The legends “Base Classifier”
and “CNN and Base Classifier” are distinguished by whether
the feature pair has been processed by CNN. “CNN and Base
Classifier” means that feature pairs are processed with CNN, but
the models of “Base Classifier” are not, which put feature pairs
into classifiers directly.

According to the results in Figure 3A, it can be analyzed
that the prediction accuracy is significantly improved after CNN
extracts the feature with the same parameters and classifiers,
which is the most obvious in the RF classifier. Without CNN,
the mean AUC is 0.539 by RF. However, the average AUC is
0.698 with CNN, which increased by about 0.16. Besides, it is
observed in Figure 3A that only the base classifiers without
CNN have a greater impact on the prediction results. The
average AUC directly predicted by SVM is 0.681, which is about
0.14 higher than that of RF. Classifiers with CNN improve
the prediction effect and reduce the gap between classifiers.
Therefore, CNN can effectively mine hidden data and improve
classification accuracy.

The XGBoost was chosen as the final classifier for two
reasons. XGBoost is an integrated machine learning algorithm
based on decision trees, and its generalization performance is
better than a single classifier. In other words, XGBoost finds
the optimal solution within a fixed range of parameters. The
results of XGBoost and other methods are shown in Figure 3B.
CNN+GBDT in X-coordinate means that the features are
extracted by CNN and classified by GBDT, and so on. The
ordinate is the average AUC of 10-fold cross-validation. It can
be analyzed that XGBoost is superior to the base classifiers.
The average AUC of HN-CNN is 0.830, which is 0.111 higher
than CNN+NB. Therefore, HN-CNN has the advantage in

Frontiers in Genetics | www.frontiersin.org

March 2021 | Volume 12 | Article 655284


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Zhang et al. HN-CNN: m’ G Site-Disease Association Prediction
A 080 [__IBase Classifier B 0% ' ' ' ' j
I CNN and Base Classifier
0.75 4 - 0.85 | é 4
*»
0.70 . ! 0.80 4
@) - D) .
D 0.65 0.75 4
= ﬁiﬂ . 2 :
0.60 | 0.70 4 b
; &
[
0.55 @ 0.65 - -
0.50 T T T T 0.60 T T T T T
GBDT NB RF SVM CNN+GBDT ~ CNN+NB CNN+RF CNN+SVM HN-CNN
FIGURE 3 | The AUCs of HN-CNN and other methods. (A) The AUCs of base classifiers with/without CNN. (B) The AUCs of HN-CNN and base classifiers with CNN.

TABLE 1 | Case study.

Disease Gene GO p-value Gene description
Combined oxidative phosphorylation deficiency FOXRED1 BP 1.03E-04 Mitochondrial respiratory chain complex assembly
Xeroderma pigmentosum EVC BP 2.82E-04 Cartilage development
BP 1.26E-03 Connective tissue development
Moyamoya disease TPH MF 7.09E-04 Isomerase activity
Joubert syndrome DNAJC5 BP 2.30E-04 Synaptic vesicle exocytosis
BP 2.98E-04 Synaptic vesicle cycle
BP 5.08E-04 Vesicle-mediated transport in synapse
BP 1.23E-03 Neurotransmitter secretion
BP 1.23E-03 Signal release from synapse
Brody myopathy PET117 BP 1.03E-04 Mitochondrial respiratory chain complex assembly

feature extraction and classification, which greatly improves the
prediction accuracy.

Case Study

The number of known associations is much less than the
unknown, which can also be interpreted as the positive is much
less than the negative. To weaken the influence of the negative,
negative samples equal to the number of positive samples were
selected randomly. The highest test accuracy in the 10-fold cross-
validation was selected as the final prediction model, which
predicts the positive probability of all unknown samples. We
selected five of the top 20 to analyze and show the results
in Table 1. R. analyzes the related genes with GO based on
“clusterProfiler” (Yu et al, 2012). Among the results, CC is
short for cellular component, MF is the molecular function, and
BP is the biological process. Each gene description is described
by p-value. If the p value is close to 0, the gene description
is more obvious.

Combined oxidative phosphorylation deficiency is caused
by homozygous or compound heterozygous mutations in the
ELAC2 gene, which is a mitochondrial tRNA processing gene
(Haack et al., 2013). FOXREDI can cause complex I deficiency
and effect protein function (Calvo et al., 2010). Mitochondrial
respiratory chain complex assembly mainly causes mitochondrial

diseases (Deutschmann et al., 2014). There is a high correlation
between disease and FOXRED], in line with the laws of biology.

Xeroderma pigmentosum is a rare genetic disease
characterized by extreme photosensitivity, resulting in a
higher incidence of cutaneous tumors (Cleaver et al., 1999). EVC
is essential for cartilage development (Pacheco et al., 2012). The
p-value of connective tissue development is 1.26E-03, whose
mutations contribute to tumor formation.

Moyamoya disease is a chronic, occlusive cerebrovascular
disease with unknown etiology characterized by bilateral steno-
occlusive changes at the terminal portion of the internal
carotid artery and an abnormal vascular network base of the
brain (Sakurai et al, 2004). Moyamoya disease is associated
with various diseases, like atherosclerosis, autoimmune diseases,
Down syndrome. TPIl1 is a crucial enzyme in carbohydrate
metabolism, negatively associated with tumor size (Jiang et al.,
2017). Therefore, TPI1 may inhibit the size of tumors and induce
Moyamoya disease.

Inheritance of Joubert syndrome is autosomal and recessive,
which is characterized by hypoplasia of the cerebellar vermis
(Kendall et al.,, 1990; Lee et al., 2012). DNAJC5 encodes the
cysteine string protein, which is a presynaptic protein implicated
in neurodegeneration (Cadieux-Dion et al, 2013). It causes
autosomal dominant Kufs disease (Jarrett et al., 2018). One of
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Kufs’ phenotypes is generalized tonic-clonic seizures, which is
similar to related disorders of Joubert syndrome (Chance et al.,
1999; Josephson et al., 2001).

Brody myopathy is a rare muscle disorder characterized by
exercise-induced impairment of muscle relaxation and stiffness
(Odermatt et al, 2000). Petll7 is shown to reside in the
mitochondrial matrix, associated with the inner membrane
(Taylor et al., 2017). Its gene description hence mitochondrial
respiratory efficiency, which is mitochondrial respiratory chain
complex assembly (Cogliati et al., 2013). So, it may be further
manifested as Brody myopathy symptoms.

DISCUSSION AND CONCLUSION

It is efficient and time-saving to predict the association between
m’G sites and diseases. HN-CNN integrates diverse information
through heterogeneous networks. It adopts CNN to help
extract latent relationships in feature pairs, which focuses on
personalized associations between m’G sites and diseases. At
last, XGBoost is used to classify whether there exists association
with more generalization. In the 10-fold cross-validation, HN-
CNN gets better results than the other methods. The predicted
results are analyzed through R to show better demonstrated
the reliability of the experimental method in case study. In the
future, the data will be updated, and the sparsity will be reduced.
HN-CNN will obtain better prediction results in the association
prediction due to the amount of data.
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