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Objective: Acute lymphoblastic leukemia (ALL) is a malignant disease most commonly
diagnosed in adolescents and young adults. This study aimed to explore potential
signatures and their functions for ALL.

Methods: Differentially expressed mRNAs (DEmRNAs) and differentially expressed long
non-coding RNAs (DElncRNAs) were identified for ALL from The Cancer Genome
Atlas (TCGA) and normal control from Genotype-Tissue Expression (GTEx). DElncRNA–
microRNA (miRNA) and miRNA–DEmRNA pairs were predicted using online databases.
Then, a competing endogenous RNA (ceRNA) network was constructed. Functional
enrichment analysis of DEmRNAs in the ceRNA network was performed. Protein–protein
interaction (PPI) network was then constructed. Hub genes were identified. DElncRNAs
in the ceRNA network were validated using Real-time qPCR.

Results: A total of 2,903 up- and 3,228 downregulated mRNAs and 469 up- and 286
downregulated lncRNAs were identified for ALL. A ceRNA network was constructed for
ALL, consisting of 845 lncRNA-miRNA and 395 miRNA–mRNA pairs. These DEmRNAs
in the ceRNA network were mainly enriched in ALL-related biological processes and
pathways. Ten hub genes were identified, including SMAD3, SMAD7, SMAD5, ZFYVE9,
FKBP1A, FZD6, FZD7, LRP6, WNT1, and SFRP1. According to Real-time qPCR,
eight lncRNAs including ATP11A-AS1, ITPK1-AS1, ANO1-AS2, CRNDE, MALAT1,
CACNA1C-IT3, PWRN1, and WT1-AS were significantly upregulated in ALL bone
marrow samples compared to normal samples.

Conclusion: Our results showed the lncRNA expression profiles and constructed
ceRNA network in ALL. Furthermore, eight lncRNAs including ATP11A-AS1, ITPK1-
AS1, ANO1-AS2, CRNDE, MALAT1, CACNA1C-IT3, PWRN1, and WT1-AS were
identified. These results could provide a novel insight into the study of ALL.

Keywords: acute lymphoblastic leukemia, long non-coding RNAs, functional enrichment analysis, competing
endogenous RNAs, hub genes interaction
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INTRODUCTION

Acute lymphoblastic leukemia (ALL) is a malignant disease
most commonly diagnosed in adolescents and young adults,
especially in patients younger than 15 years. Despite significant
improvements in the management of ALL, the long-term
survival rate of ALL patients, especially adult patients, remains
low (Jabbour et al., 2018; Richard-Carpentier et al., 2019).
Therefore, it is of importance to understand the pathogenesis of
ALL and identify novel diagnostic biomarkers and therapeutic
targets for ALL.

LncRNA is a type of RNA longer than 200 nucleotides.
Dysregulated lncRNA as tumor suppressor genes or oncogenes
plays a key role in a variety of biological processes, such as
cell proliferation, apoptosis, migration, and invasion. Increasing
studies are focusing on the role and mechanism of lncRNA
in the occurrence and development of ALL (Trimarchi et al.,
2014; Arthur et al., 2017). For instance, lncRNA CASC15 could
regulate SOX4 expression in RUNX1-translocated leukemia
(Fernando et al., 2017). LncRNA HOTAIR is closely associated
with acute leukemia patients’ poor prognosis (Zhang et al.,
2016). LncRNA HOXA-AS2 induces glucocorticoid resistance
by promoting ALL cell proliferation and inhibiting apoptosis
(Zhao et al., 2019). Despite the fact that many studies have
shown the diagnostic and prognostic values of lncRNAs in
ALL, it is still required to further understand their regulatory
mechanism. It has been widely accepted that lncRNAs indirectly
regulate gene expression through targeted miRNAs (about
20 nucleotides) at the transcriptional or post-transcriptional
level. Many miRNAs have been found to play a functional
regulatory role in the development of ALL, such as miRNA-
126 (Nucera et al., 2016), miRNA-155 (El-Khazragy et al.,
2019), and miR-141-3p (Zhou et al., 2019). Yet, the regulatory
interactions between lncRNAs and miRNAs in ALL require
to be clarified.

The development of transcriptome analysis and RNA
sequencing technology is increasing the possibility of identifying
lncRNAs that may be involved in the pathogenesis of ALL.
Moreover, further studies on the function of abnormally
expressed lncRNAs may help understand the pathogenesis of
ALL and provide important insights for the treatment of ALL.
In this study, we comprehensively analyzed DElncRNAs and
DEmRNAs in bone marrow samples of ALL. A ceRNA network
was constructed for ALL on the basis of DElncRNA–miRNA and
miRNA–DEmRNA pairs. DEmRNAs in the ceRNA network were
significantly associated with ALL-related biological processes
and pathways. Among DElncRNAs in the ceRNA network,
eight lncRNAs including ATP11A-AS1, ITPK1-AS1, ANO1-AS2,
CRNDE, MALAT1, CACNA1C-IT3, PWRN1, and WT1-AS were
validated by Real-time qPCR, which could become potential
diagnostic and therapeutic targets of ALL.

Abbreviations: ALL, acute lymphoblastic leukemia; DEmRNAs, differentially
expressed mRNAs; DElncRNAs, differentially expressed long non-coding RNAs;
TCGA, The Cancer Genome Atlas; GTEx, Genotype-Tissue Expression; ceRNA,
competing endogenous RNA; PPI, protein–protein interaction; FC, fold change;
GO, Gene Ontology; BP, biological process; CC, cellular component; MF,
molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

MATERIALS AND METHODS

ALL Data Acquisition and Differential
Expression Analysis
LncRNA and mRNA RNA-seq data of 494 bone marrows
with ALL (hematopoietic and reticuloendothelial systems) were
retrieved from TCGA repository1, which were derived from the
IlluminaHiSeq RNA-Seq platform. All the data from three phases
together, including 12 cases of phase 1, 468 cases of phase 2, and
14 cases of phase 3 were enrolled in the study. There were 321
(64.98%) males, 172 (34.82%) females, and 1 unknown (0.02%).
The age distribution of the ALL group is as follows: 403 cases
of 0–14 years old and 91 cases of ≥ 14 years old. All data of
normal tissue samples were obtained from 407 whole blood in
the Genotype-Tissue Expression (GTEx) database2. There were
265 (65.11%) males and 142 (34.89%) females in the control
group. The age distribution of the control group is as follows:
34 cases of 20–29 years old, 34 cases of 30–39 years old, 72
cases of 40–49 years old, 130 cases of 50–59 years old, 132 cases
of 60–69 years old, and 5 cases of 70–79 years old. Complete
description of the multiple ethnicity groups, the biospecimen
procurement methods, and sample fixation was provided in
the GTEx official annotation. Differential expression analyses
between ALL samples and normal samples were carried out using
the EdgeR package in R (Robinson et al., 2010). The obtained
p-values were corrected by false discovery rate (FDR). mRNAs
and lncRNAs with adjusted p < 0.05 and | log 2fold change
(FC)| ≥ 2 were considered as DEmRNAs and DElncRNAs.
Volcano plots and heatmaps were generated using the ggplot2
and packages in R, respectively.

ceRNA Network Construction
After identification of DElncRNAs and DEmRNAs, lncRNA–
miRNA pairs were predicted by miRcode3 that provides > 10,000
lncRNAs (Jeggari et al., 2012). Then, miRNAs that targeted
DEmRNAs were predicted using TargetScan4 (Agarwal et al.,
2015), miRDB5 (Wang, 2008), and miRTarBase database6,
which provides an experimentally validated microRNA–target
interactions database (Huang et al., 2020). After integration of
DElncRNA–miRNA and miRNA–DEmRNA, a ceRNA network
was constructed and visualized using the Cytoscape software
(version 3.5.1) (Shannon et al., 2003).

Functional Enrichment Analyses of
DEmRNAs in the ceRNA Network
Gene Ontology (GO) analysis of DEmRNAs in the ceRNA
network was carried out using Database for Annotation,
Visualization, and Integrated Discovery (DAVID) (Dennis
et al., 2003), including biological process (BP), cellular

1https://portal.gdc.cancer.gov/
2https://gtexportal.org/home/datasets
3http://www.mircode.org/
4http://www.targetscan.org/
5http://www.mirdb.org/
6http://mirtarbase.mbc.nctu.edu.tw/
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TABLE 1 | Primer sequence information for Real-time qPCR.

Gene symbol Primer sequence (5′–3′)

Human GAPDH 5′-CGGAGTCAACGGATTTGGTCGTAT-3′ (forward)
5′-AGCCTTCTCCATGGTGGTGAAGAC-3′ (reverse)

Human ANO1-AS2 5′-CCGGAACAAGAACCTCGCTC-3′ (forward)
5′-GGTCCTCGCCTACCATCCAA-3′ (reverse)

Human PWRN1 5′-ACATTCGAAACCCAGGTGCC-3′ (forward)
5′-GGAAGTGGATGCTGACGCTC-3′ (reverse)

Human MALAT1 5′-GGTTCAGAAGGTCTGAAGCTC-3′ (forward)
5′-CCCAGAAGTGTTTACACTGCT-3′ (reverse)

Human CACNA1C-IT3 5′-GCCAGGACCAAGACACCAAGAC-3′ (forward)
5′-TTGGGCAGGGCTCGGTTCC-3′ (reverse)

Human ITPK1-AS1 5′-AATCCTGTGCGCTGTCATCC-3′ (forward)
5′-GATTGCTCTTGGCTGTGCCT-3′ (reverse)

Human ATP11A-AS2 5′-ACAGTCCCTTCCCTTACGCT-3′ (forward)
5′-TGAACGCTGCACTTGTGGAC-3′ (reverse)

Human CRNDE 5′-GAGGACGTGCTGGGGCT-3′ (forward)

5′-CTGAGTCCATGTCCCGAATC-3′(reverse)

Human WT1-AS 5′-GCCTCTCTGTCCTCTTCTTTGT-3′ (forward)

5′-GCTGTGAGTCCTGGTGCTTAG-3′ (reverse)

component (CC), and molecular function (MF). Moreover,
Kyoto Encyclopedia of Genes and Genomes (KEGG) was
analyzed using the clusterProfiler in R (Yu et al., 2012).
Furthermore, the KEGG results were visualized using the
Cytoscape plug-in ClueGO. p < 0.05 was set as the cutoff value.

PPI Network
The interactions between proteins were predicted using the
Search Tool for the Retrieval of Interacting Genes (STRING)
database7 (minimum required interaction score > 0.4)
(Szklarczyk et al., 2019). Furthermore, PPI networks were

7http://string-db.org/

embodied using the Cytoscape v3.5.0 software. In addition, we
used Molecular Complex Detection (MCODE) plugin to identify
the hub genes in the PPI network. The criteria were set as follows:
MCODE scores > 3 and number of nodes > 4. The top 10 hub
genes were identified using the ranking method of degree.

Real-Time qPCR
Bone marrow samples were isolated from 25 ALL patients and
15 healthy participants and red blood cells were removed. Total
RNA was extracted from bone marrow samples and then was
stored at −80°C. Extracted samples were lysed using 1 ml of
Trizol and placed for 5 min on ice. RNA concentration and purity
were determined using a NanoDrop UV spectrophotometer.
Then, RNA was reverse transcribed into cDNA. Primer sequences
of ATP11A-AS1, ITPK1-AS1, ANO1-AS2, CRNDE, MALAT1,
CACNA1C-IT3, PWRN1, and WT1-AS were designed and
synthesized by Shanghai Shengong Biological Engineering Co.,
Ltd. (Shanghai, China). The primer sequences are listed in
Table 1. PCR amplification had the following conditions: 95°C for
3 min; 40 PCR cycle reactions (95°C for 20 s; 60°C for 30 s).
GAPDH was used as a control. Relative expression levels of
lncRNAs were calculated using 2−11CT method. Differences
between the two groups were analyzed using Student’s t-test.
p-value < 0.05 was considered statistically significant.

RESULTS

Identification of DElncRNAs and
DEmRNAs for ALL
The workflow of this study is shown in Figure 1. According
to adjusted p-value < 0.05 and | log2 fold change (FC)| ≥ 2,
2903 up− and 3228 downregulated mRNAs were identified
for ALL, as shown in the volcano plot (Figure 2A and

FIGURE 1 | The workflow of this study.
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FIGURE 2 | Identification of DEmRNAs and DElncRNAs for ALL. Volcano plot showing DEmRNAs (A) and DElncRNAs (B) for ALL. As shown in heatmaps, the
differences in expression patterns of DEmRNAs (C) and DElncRNAs (D) between ALL bone marrow samples and normal samples. Red represents upregulation and
green represents downregulation. DEmRNAs: differentially expressed mRNAs; DElncRNAs: Differentially expressed lncRNAs; ALL, Acute lymphoblastic leukemia.

Supplementary Material 1). Furthermore, there were 469 up−
and 286 downregulated lncRNAs for ALL (Figure 2B and
Supplementary Material 2). Heatmaps depicted the differences
in expression patterns of all DEmRNAs (Figure 2C) and
DElncRNAs (Figure 2D) between ALL bone marrow samples
and normal samples.

Construction of ceRNA Network for ALL
The miRNAs that targeted DEmRNAs were predicted using
TargetScan, miRDB, and miRTarBase databases. After
integration of prediction results from the three databases,
297 DEmRNAs were intersected and identified for the
construction of ceRNA network (Figure 3). Furthermore,
DElncRNA–miRNA relationships were predicted using
miRcode database. By comprehensively analyzing DElncRNA–
miRNA and miRNA–DEmRNA pairs, a ceRNA network
was constructed for ALL (Figure 4). There were 845
lncRNA–miRNA pairs (Supplementary Material 3) and

395 miRNA–mRNA pairs (Supplementary Material 4) in
the ceRNA network.

Functional Enrichment Analysis of
DEmRNAs in the ceRNA Network
As depicted in heatmaps, there were obvious differences in the
expression patterns of all DEmRNAs in the ceRNA network
between ALL bone marrow samples and normal samples
(Figure 5A). Bubble diagrams showed the top 40 GO enrichment
analysis results enriched by DEmRNAs in the ceRNA network
(Figure 5B). We found that these mRNAs were mainly enriched
in ALL-related biological processes such as transcription,
programmed cell death, apoptosis, cell cycle, proliferation, and
so on. Figure 6 depicted the relationships between DEmRNAs
and enriched biological processes including morphogenesis
of an epithelium, kidney epithelium development, ureteric
bud development, mesonephric epithelium development, and
mesonephric tubule development. As for KEGG pathway
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FIGURE 3 | Venn diagram showing 297 differentially expressed mRNAs targeted by miRNAs via intersection of prediction results of TargetScan, miRDB, and
miRTarBase database.

FIGURE 4 | A ceRNA network construction for acute lymphoblastic leukemia. Blue rhombus represents lncRNAs; green circle represents miRNAs and red triangle
represents mRNAs.
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FIGURE 5 | GO enrichment analysis of DEmRNAs in the ceRNA network. (A) Heatmaps showing differences in the expression patterns of all DEmRNAs in the
ceRNA network between ALL bone marrow samples and normal samples. Red stands for upregulation and green stands for downregulation. (B) The top 40 GO
enrichment analysis results including biological process, cellular component, and molecular function. DEmRNAs: Differentially expressed mRNAs.

FIGURE 6 | The top five biological processes enriched by DEmRNAs in the ceRNA network. DEmRNAs: Differentially expressed mRNAs.
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enrichment analysis results, these DEmRNAs were mainly
enriched in pathways in cancer, cell cycle, small cell lung
cancer, p53 signaling pathway, Wnt signaling pathway,
pentose phosphate pathway, and non-small cell lung cancer
(Figures 7A,B).

Identification of Hub Genes in the PPI
Network
The DEmRNAs in the ceRNA network were imported into
STRING database. Then, a PPI network was constructed for
ALL (Figure 8A). Two PPI subnetworks were then constructed

(Figures 8B,C). Ten hub genes were identified for ALL, including
SMAD3, SMAD7, SMAD5, ZFYVE9, FKBP1A, FZD6, FZD7,
LRP6, WNT1, and SFRP1.

Correlation Between Hub Genes and
DElncRNAs
Correlation analysis between hub genes and DElncRNAs was
performed by corrplot package. The significant correlations
between DElncRNAs and hub genes are shown in Figure 9
and Supplementary Material 5. There was strong correlation
between WT1-AS and FZD7 (r = 0.751907203; p < 0.0001).

FIGURE 7 | KEGG pathway enrichment analysis of DEmRNAs in the ceRNA network. (A) Seven enriched KEGG pathways. (B) Visualization of KEGG enrichment
analysis results. DEmRNAs: Differentially expressed mRNAs.
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FIGURE 8 | Identification of hub genes in the PPI network. (A) Construction of PPI network based on the DEmRNAs in the ceRNA network. (B,C) Two PPI
subnetworks for ALL. Red represents upregulation and green represents downregulation. DEmRNAs: Differentially expressed mRNAs.

Furthermore, PWRN1 and SMAD3 were significantly correlated
(r = 0.521493415 and p = 4.32E−08).

Validation of Eight lncRNAs in Bone
Marrow of ALL
Among all DElncRNAs in the ceRNA network, the most
significant difference between 10 lncRNAs (AC009093.1,
C17orf77, ATP11A-AS1, ITPK1-AS1, ANO1-AS2, ITCH-IT1,
CRNDE, MALAT1, CACNA1C-IT3, and PWRN1) in the ceRNA
network and WT1-AS (which was closely related to hub gene
FZD7) was selected for verification. However, as the primers of
AC009093.1, C17orf77, and ITCH-IT1 for RQ-PCR were not
ideal, the remaining eight lncRNAs were validated. As Figure 10
shows, these eight lncRNAs were significantly upregulated in
ALL bone marrow samples (n = 25) compared to normal samples
(n = 15) by Real-time qPCR.

DISCUSSION

In this study, we constructed a ceRNA network for ALL
based on DElncRNA–miRNA and miRNA–DEmRNA
relationships. Among all DElncRNAs in the ceRNA network,
eight lncRNAs were validated in ALL bone marrow samples
using Real-time qPCR. These lncRNAs might become potential
biomarkers for ALL.

To explore potential functions of DEmRNAs in the ceRNA
network, we performed functional enrichment analysis. We
found that these mRNAs were mainly enriched in ALL-related

biological processes such as transcription (Gocho and Yang,
2019), programmed cell death (Hass et al., 2016), apoptosis, cell
cycle (Jing et al., 2018), and proliferation (Sun et al., 2019).
The DEmRNAs in these biological processes could modulate
the development of ALL. Furthermore, these DEmRNAs were
significantly associated with pathways in cancer, cell cycle,
p53 signaling pathway, Wnt signaling pathway, and pentose
phosphate pathway. It has been widely accepted that the p53
signaling pathway is a promising drug target in ALL (Trino
et al., 2016). In particular, alterations of the tumor suppressor
gene TP53 were frequently found in pediatric ALL (Demir et al.,
2020). As for the Wnt signaling pathway, it was significantly
correlated with the pathogenesis of ALL (Montano et al., 2018).
Recent findings reported that inhibiting Wnt/β catenin could
reverse multidrug resistance in children ALL (Fu et al., 2019).
Moreover, the pathway is regulated by many factors. For example,
miR-181a-5p could promote ALL cell proliferation via targeting
the Wnt pathway (Lyu et al., 2017). Our results indicated that
the DEmRNAs in the ceRNA network could be involved in the
pathogenesis of ALL.

We constructed a PPI network for B-ALL on the basis of
DEmRNAs in the ceRNA network. Ten hub genes were identified
for ALL, including SMAD3, SMAD7, SMAD5, ZFYVE9,
FKBP1A, FZD6, FZD7, LRP6, WNT1, and SFRP1. Among them,
the loss of the Smad3 protein has been identified as a key
feature of acute T-cell lymphoblastic leukemia (Wolfraim et al.,
2004). Smad7 is a promising therapeutic target for B-cell ALL
(Guo et al., 2018). Furthermore, microRNA-181a might regulate
its expression for pediatric ALL (Nabhan et al., 2017). Wnt
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FIGURE 9 | Heatmaps showing the correlation between hub genes and DElncRNAs. DEmRNAs: Differentially expressed mRNAs. The right bar indicates the color
legend of Pearson correlation values.

FIGURE 10 | Validation of eight lncRNAs in ALL bone marrow samples using Real-time qPCR. (A) ATP11A-AS1; (B) ITPK1-AS1; (C) ANO1-AS2; (D) CRNDE;
(E) MALAT1; (F) CACNA1C-IT3; (G) PWRN1; and (H) WT1-AS. Control: n = 15; ALL: n = 25.
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signaling pathway can enhance hematopoietic cell proliferation
(Doubravska et al., 2008). It could mediate growth and prognosis
of B-cell progenitor ALL, which could be a potential treatment
strategy in ALL (Khan et al., 2007; Mochmann et al., 2011). In the
pathway, FZD6, FZD7, LRP6, and WNT1 were marker proteins.
LRP6 has been reported to be a candidate tumor suppressor
gene in pre-B ALL (Montpetit et al., 2004). Furthermore,
low expression of SFRP1 was significantly associated with
clinical outcomes of patients with Philadelphia-positive ALL
(Martin et al., 2008).

Consistently with differential expression analysis results,
eight lncRNAs including ATP11A-AS1, ITPK1-AS1, ANO1-
AS2, CRNDE, MALAT1, CACNA1C-IT3, PWRN1, and WT1-AS
were significantly upregulated in ALL bone marrow, indicating
that these abnormally expressed lncRNAs could be involved
in the development of ALL. Among them, CRNDE was
upregulated in the bone marrow of B-cell precursor acute
lymphoblastic leukemia (BCP-ALL) patients and BCP-ALL cell
lines (NALM-6 and RS4;11). Functionally, CRNDE upregulated
CREB expression by suppressing miR-345-5p, thus promoting
cell proliferation and reducing cell apoptosis in BCP-ALL
(Wang W. et al., 2020). A large amount of research has
reported that aberrantly expressed MALAT1 was involved in
a variety of cancers, such as breast cancer metastasis (Kim
et al., 2018), colon cancer (Wu et al., 2018), and non-small
cell lung cancer (Li et al., 2018). Abnormally expressed is in
significant association with poor prognosis in childhood ALL
(Pouyanrad et al., 2019). Furthermore, miR-125b in combination
with miR-99a and/or miR-100 could inhibit the expression of
MALAT1 in vincristine-resistant children ALL cells (Moqadam
et al., 2013). PWRN1 was significantly underexpressed in gastric
cancer tissues and cells (Chen et al., 2018). Overexpressed
PWRN1 could inhibit the proliferation and metastasis of
gastric cancer cells and tumor growth. Furthermore, PWRN1
may regulate miR-425-5p expression by acting as its sponge
in gastric cancer cells. ITPK1-AS1 expression could predict
gastric cancer patients’ survival (Hu et al., 2019). WT1-AS
has been characterized as a tumor-suppressive lncRNA in
several cancers including cervical squamous cell carcinoma
(Zhang et al., 2019), gastric cancer (Du et al., 2016), papillary
thyroid carcinoma (Le et al., 2020), non-small cell lung
cancer cell (Jiang et al., 2020), and hepatocellular carcinoma
(Lv et al., 2015). Besides, WT1-AS can regulate WT1 on
oxidative stress injury and apoptosis of neurons in Alzheimer’s
disease via inhibition of the miR-375/SIX4 axis (Wang Q.
et al., 2020). However, other lncRNAs have not been reported
yet. According to our results, these lncRNAs deserve more
research on ALL.

However, there are several limitations in this study. First, since
there was no normal control of ALL in TCGA database, data of
407 whole blood in the GTEx database were obtained as control.
Given that ALL primarily affects younger individuals, the age
distribution of the control group is not ideally matched with
the ALL from TCGA database, which may cause confounding.
Second, the sample size of this study is small, and larger
clinical samples should be used to verify these lncRNAs. In
addition, this study lacks functional experiments. In future

research, we will further the function and clinical value of
these lncRNAs in ALL.

CONCLUSION

In our study, a ceRNA network was constructed for ALL. Among
all DElncRNAs in the ceRNA network, eight lncRNAs were
validated in ALL bone marrow samples using Real-time qPCR,
which might provide a novel insight into the further study of ALL.
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