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MicroRNAs (miRNAs) are non-coding RNAmolecules that make a significant contribution

to diverse biological processes, and their mutations and dysregulations are closely

related to the occurrence, development, and treatment of human diseases. Therefore,

identification of potential miRNA–disease associations contributes to elucidating

the pathogenesis of tumorigenesis and seeking the effective treatment method

for diseases. Due to the expensive cost of traditional biological experiments of

determining associations betweenmiRNAs and diseases, increasing numbers of effective

computational models are being used to compensate for this limitation. In this study,

we propose a novel computational method, named PMDFI, which is an ensemble

learning method to predict potential miRNA–disease associations based on high-order

feature interactions. We initially use a stacked autoencoder to extract meaningful

high-order features from the original similarity matrix, and then perform feature interactive

learning, and finally utilize an integrated model composed of multiple random forests and

logistic regression to make comprehensive predictions. The experimental results illustrate

that PMDFI achieves excellent performance in predicting potential miRNA–disease

associations, with the average area under the ROC curve scores of 0.9404 and 0.9415

in 5-fold and 10-fold cross-validation, respectively.

Keywords: miRNA-disease associations, high-order features, feature interactions, random forest, logistic

regression

1. INTRODUCTION

MiRNAs are short non-coding RNAs with length about 19–25 nucleotides (Ambros, 2001, 2004;
Bartel, 2004). Since the first miRNA (lin-4) was discovered by Victor Ambros in 1993 (Lee et al.,
1993), miRNA has been the most widely studied class of non-coding RNAs now (Esteller, 2011).
Besides, it has been confirmed that miRNAs commonly exist in plants, animals, viruses, and human
beings, and have an essential effect on cell growth, differentiation, and apoptosis because of its post-
transcriptionally gene regulation by affecting the translation of mRNAs (Wienholds and Plasterk,
2005; Das et al., 2014; Zhao et al., 2017). The important influence ofmiRNAs on biological processes
is manifested in most intronic miRNAs sharing promoter regions with host genes (Zhao et al.,
2015).Therefore, it is natural for scientists to link miRNAs with human diseases and use them as
biomarkers in the treatment of diseases. For example, miR-164a is highly expressed in pediatric
acute lymphoblastic leukemia and pediatric acute myeloid leukemia (Zhang et al., 2009; Li et al.,
2010). Studies demonstrated that miR-21 plays a crucial role in a plethora of biological diseases
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including cancer, cardiovascular diseases, and inflammation
(Kumarswamy et al., 2011). Guay and Regazzi (2015) and
Horsham et al. (2015) observed that the deregulation of miR-
7 expression can potentially affect the adaptive capacity of
β cells, contributing to the development of diabetes. The
model-based computational approach proposed by Wang et al.
(2008) identified five transcription factors and 7 miRNAs to be
potentially responsible for the level of androgen dependency.
Although miRNAs are proved to have close relationship with
human disorders, the traditional biological methods to detect
the underlying association between miRNAs and diseases are
laboratory based, costly, and time consuming. Therefore, it is
urgent and essential to apply computational methods to solve
this issue. Nowadays, many computational methods are proposed
to predict the novel association between miRNAs and diseases,
and they are mainly divided into two categories: one is based
on the assumption that the functional similarity of miRNAs
tends to relate to similar diseases, and the other is based on
machine learning.

According to the hypothesis that the functionally related
miRNAs have a positive relationship with corresponding
diseases, Chen and Zhang (2013) presented three methods
based on the microRNA similarity, phenotype similarity, and
network consistency similarity obtained by both of the two above
similarity values, which are named as MBSI, PBSI, and NetCBI,
respectively. Among these methods, NetCBI is better than the
others with area under the ROC curve (AUC) of 0.8066, which
still needs to be improved. Li et al. (2017) provided DeepWalk
method that utilizes similarities within a known miRNA–
disease association bipartite network to predict the unidentified
miRNA–disease association when biological information, such
as miRNA functional similarity and disease semantic similarity
is unavailable. Although this method could reach the highest
AUC of 0.937, it is incapable to predict associations of new
miRNA or diseases that do not exist in the known network.
Shen et al. (2017) integratedmiRNA functional similarity, disease
semantic similarity, and known miRNA–disease association, and
then employed collaborative matrix factorization to predict the
unknown miRNA–disease association (CMFMDA). CMFMDA
could predict undiscovered miRNAs and diseases without
known associations, but it may bias to miRNAs with more
verified associated diseases. Chen et al. (2016) developed
WBSMDA to reveal the novel miRNA–disease associations
by integrating confirmed miRNA–disease associations, miRNA
functional similarity, disease semantic similarity, and Gaussian
interaction profile (GIP) kernel similarity of diseases and
miRNAs, and obtained an average AUC of 0.8031. Then, they
further raised the AUC to 0.9035 with an original method called
HAMDA (Chen et al., 2017), which employs the hybrid graph-
based recommendation algorithm to uncover the unrecognized
associations between miRNAs and diseases.

As for methods based on machine learning, Peng et al.
(2019) proposed a learning-based model named MDA-CNN.
The method generates a three-layer network, including miRNA
similarity network, disease similarity network, and protein–
protein interaction network, to extract features and integrates
an autoencoder and a convolutional network to select features

and predict miRNA–disease association, respectively. Although
the highest AUC the MDA-CNN achieved is 0.8897, the method
performs well at the miRNA-phenotype association prediction.
Zheng et al. (2019) presented a model based on machine learning
named MLMDA, which utilizes miRNA sequence information
extracted by k-mer sparse matrix, combing with other similarities
of diseases and miRNAs. Besides, the MLMDA adopts a deep
autoencoder to glean more latent features and uses the random
forest (RF) to predict novel miRNA–disease associations. Chen
et al. (2019) developed a method called EDTMDA, which applies
principal component analysis (PCA) to reducing the dimension
of features and utilizes ensemble learning to gain ultimate scores
between miRNAs and diseases. EDTMDA’s AUC could reach
0.9309 in LOOCV, but the dependence on the known associations
between miRNAs and diseases may lead to a preference for
miRNAs that have more associated diseases. Jiang et al. (2013)
proposed an SVM-based method to identify disease-related
microRNAs, which can distinguish positive microRNA-disease
associations from negative microRNA-disease associations. In
10-fold cross-validation procedure, this method achieved the
AUC of up to 0.8884. Zhang et al. (2019) proposed an
unsupervised deep learning method implemented by variational
autoencoder. The method combines miRNA similarity and
disease similarity with identified associations to get two spliced
matrices as the input of variational autoencoder, and then obtains
the association scores of miRNA and disease. The model is not
affected by the dearth of negative samples, but is hard to interpret.

In conclusion, the aforementioned computational methods
could predict the underlying miRNA–disease associations
effectively, but each one still has its own limits. In this paper,
we propose a novel method called PMDFI, which is an ensemble
approach for miRNA–disease associations prediction based on
feature interaction learning. Our model can be divided into
four parts: data set collection and processing, high-level feature
extraction, feature interaction, and an integrated learning model.
In detail, we gather miRNA–disease associations from HMDD
v2.0, and calculate miRNA functional similarity, disease semantic
similarity, GIP kernel similarly for miRNA, and disease. Then,
after using the stacked autoencoder to extract the high-order
features, we send them to the feature interactive layer to gain
cross features. Finally, we design an ensemble model combining
multiple RFs and logistic regression to predict potential miRNA–
disease associations. In the experimental results, PMDFI has
achieved excellent performance in predicting potential miRNA–
disease associations, with AUC of 0.9404 and 0.9415 under 5-fold
and 10-fold cross-validation, respectively.

2. MATERIALS AND METHODS

2.1. Datasets for MDA Prediction
The experimentally supportedmiRNA–disease associations come
from HMDD v2.0, which is derived from Li et al.’s work (Li
et al., 2014). HMDD v2.0, a manual collected database, is used
to annotate in details the miRNA–disease associations from
genetics, epigenetics, circulating miRNAs, and miRNA-target
interactions. We gather 5430 miRNA–disease association pairs
encompassing 495 miRNAs and 383 diseases from the HMDD
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v2.0. In order to represent the associations between miRNA m(i)
and disease d(j), we construct an adjacency matrix A495×383,
where element A(i, j) = 1 indicates that miRNA has a definite
association with disease, and element A(i, j) = 0 indicates that
the association between miRNA and disease is uncertain. Matrix
A is a sparse matrix with 5,430 of “1,” i.e., 5,430 miRNA–disease
association pairs, and we take these pairs as positive samples.
As for the negative samples, according to Zhou et al. (2020), all
“0”s (miRNA–disease pairs with no definite association) in the
matrix A are divided into 23 clusters with k-means clustering,
and the same amount of samples are randomly selected from
each cluster to form 5,418 negative samples. It is worth noting
that, in order to ensure the validity of comparative experiments,
the positive and negative samples in our datasets are the same as
Zhou et al.’s work.

2.2. MiRNA and Disease Information
Profiles
2.2.1. MiRNA Functional Similarity
The miRNA functional similarity is useful to predict the
functions of unknown miRNAs and study the interactions
between miRNAs, because miRNAs with similar functions tend
to trigger pathologically similar diseases. The miRNA functional
similarity matrix can be represented as follows:

FS = [m1,m2, · · · ,mnm]
T ,mi ∈ ℜkm (1)

where nm is the number of miRNAs and km is the size of the
vector that represents an miRNA.

Here, we download miRNA function similarity between
miRNA pairs directly from http://www.cuilab.cn/fles/images/
cuilab/misim.zip, which calculated by Wang et al.’s work based
on advanced MISIM method (Wang et al., 2010). The miRNA
functional similarity matrix FS is a matrix with 495 rows and
495 columns, and element FS(mi,mj) represents the functional
similarity betweenmiRNA(i) andmiRNA(j).

2.2.2. Disease Semantic Similarity
If an miRNA has been proved to be linked to a certain disease,
it is possible that the miRNA is also related to other diseases
with similar phenotypes. Therefore, the semantic similarity of
the disease is effective in large-scale research on the association
between disease and miRNA. The disease semantic similarity is
described as directed acyclic graph (DAG), and

DAG(d) = {d,T(d),E(d)} (2)

where d is the disease itself, T(d) is a set of nodes consisting of
disease D and all its ancestor nodes, and E(d) corresponds to the
edge set of the direct link from the parent node to the child node.

We collect disease semantic similarity from MeSH database
(http://www.ncbi.nlm.nih.gov/), which has been widely adopted
to study miRNA–disease associations (Zou et al., 2016). And each
disease in DAG can be calculated as follows:

{

D1D(d) = 1 if d = D

D1D(d) = max
{

0.5× D1D
(

d′
)

| d′ ∈ child of d
}

if d 6= D
(3)

and

DV(D) =
∑

d∈T(d)

DD(d) (4)

Then the semantic similarity score between diseases(i) and
diseases(j) is defined as follows:

SS(d(i), d(j)) =

∑

t∈T(d(i))∩T(d0j)

(

Dd(i)(t)+ Dd(j)(t)
)

DV(d(i))+ DV(D(j))
. (5)

2.2.3. GIP Kernel Similarly for miRNA and Disease
GIP kernel similarity originates from the topological structure of
the known interaction network, which is beneficial for predicting
the miRNA–disease associations (Wang et al., 2010). We adopt
a binary vector IP(d), a row in the adjacency matrix, to express
the interaction profile of disease d with each miRNA, and the
disease GIP kernel similarity between disease d(i) and d(j) can
be calculated as follows:

GSd
(

di, dj
)

= exp
(

−γd
∥

∥IP
(

di
)

− IP
(

dj
)
∥

∥

2
)

(6)

and

γd = λ′d/

(

1

n

n
∑

i=1

∥

∥IP
(

di
)∥

∥

2

)

(7)

where n is the number of human diseases and equals to 383, γd
is an adjustable parameter of the kernel bandwidth, and λ′

d
= 1

according to van Laarhoven et al.’s work (van Laarhoven et al.,
2011). Similarly, we can use a binary vector IP(m) to express the
interaction profile of miRNA m with each disease, and the GIP
kernel similarly between miRNAm(i) andm(j) can be calculated
as follows:

GSm
(

mi,mj

)

= exp
(

−γm
∥

∥IP (mi) − IP
(

mj

)∥

∥

2
)

(8)

and

γm = λ′m/

(

1

m

m
∑

i=1

‖IP (mi)‖
2

)

(9)

wherem is the number ofmiRNAs and equals to 495, for the same
reason, λ′m is set to 1.

2.3. PMDFI Framework
In this study, we construct a model named PMDFI to predict
potential miRNA–disease associations. The flowchart of PMDFI
is shown in Figure 1. In the data set collection and processing
stage, we gather 495 miRNAs and 383 diseases from the HMDD
v2.0 database to form an adjacency matrix A495×383, including
5430 miRNA–disease pairs with definite associations. Then,
we acquire miRNA functional similarity (FS), disease semantic
similarity (SS), and GIP kernel similarity for miRNA (GSm)
and disease (GSd). For each miRNA–disease pair, we extract
four one-dimensional features, which include a 1 × 495 miRNA
functional similarity feature, a 1×383 diseases semantic similarity
feature, and a 1 × 495 and 1 × 383 GIP kernel similarity for
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FIGURE 1 | Flowchart of PMDFI model to predict potential microRNAs (miRNAs)–diseases associations. The model can be divided into four parts: data set collection

and processing, high-order feature extraction, feature interaction, and an integrated learning model. First, we gather miRNA–disease associations from HMDD v2.0,

and form the similarity matrix between miRNA and disease; second, we adopt a stacked autoencoders to extract high-order features; then, we use the interaction

features layer to learn the interaction between different features. Finally, we combine multiple random forest (RF) with logistic regression to predict potential

miRNA–disease associations.
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miRNAs and disease. Then these features are input in parallel
into the stacked autoencoder to extract high-order features,
instead of directly concatenating and averaging them. In this
way, our method has the ability to learn the internal deep
connections in the feature matrix, which have been previously
ignored due to the lack of miRNA functional similarity or
diseases semantic similarity. In the feature interaction layer,
the high-order features derived from stacked autoencoder are
sent to perform feature interaction learning, which aims at
obtaining four cross features containing the internal potential
relationship of miRNA (disease) and the interaction information
among those features. Finally, the obtained cross features are
independently input into the four RF models for training, and
a set of four prediction scores is calculated for each sample
input. During each iteration, we constantly adjust the weight of
each RF model, and adopt a logistic regression to make a final
comprehensive prediction.

2.3.1. Stacked Autoencoder to Extract High-Order

Features
These four similarities matrix information (FS, SS,GSm, and
GSd) have inevitable restriction that they are unable to
present the inner deep connections among different miRNAs
(diseases) due to low-order feature representations. To tackle
this obstacle, inspired by Song et al.’s work (Song et al., 2019),
we use a stacked autoencoder to extract meaningful high-order
features for miRNA and disease from the established similarity
network. The autoencoder is an artificial neural network that
can learn the efficient representation of input data through
unsupervised learning (Vincent et al., 2008; Shu et al., 2018).
As a powerful feature detector, the autoencoder encodes the
original input feature and reduces the dimensionality to find
implicit associations between the input feature, and extracts
expressive high-order features. As shown in Figure 2, the stacked
encoder consists of two parts: an encoder (also known as
the recognition network) and a decoder (also known as the
generation network). The encoder converts the input feature into
an internal representation, and the decoder converts the internal
indicates conversion to output.

In order to learn high-order features, we build a stacked
autoencoder that includes three hidden layers with 256, 128,
and 64 units. The stacked autoencoder means that the feature
vectors in the previous autoencoder are used as the input of
the next autoencoder, and the whole training process is greedy
in a layered manner. In our model, the feature information of
FS =

{

fs1, fs2, · · · , fs495
}

, SS = {SS1, SS2, · · · , SS495},GSd =
{

d1, d2, · · · , d383
}

and GSm = {m1,m2, · · · ,m495} is input into
stacked autoencoder H1, H2, H3, and H4, respectively, and
divided into four parallel groups for high-order feature extraction
by minimizing the discrepancy between the input features and
the reconstruction ones.

Initially, we set NL andNGias the number of units in the input
layer and the ith hidden layer, and use one feature vector x ∈

RNL×1 to represent those input feature vectors. Subsequently,
during the encoding process, the autoencoder transforms x into a
latent representation g(i) through a composite mapping of linear
transformation and non-linear activation function f , as shown in

the following equation:

g(i) = f
(

W
(i)
1 x+ b

(i)
1

)

(10)

where i is ith hidden layer, g(i) ∈ RNGi is the latent feature,

W
(i)
1 ∈ RNGi×NL is the encoding weight matrix, b

(i)
1 ∈ RNGi is

the bias vector, and f (·) is the sigmoid function.
Here, we adopt three hidden layers, i.e., i = 3. Then there is

the process of decoding, which learns features inverse mapping.
The latent representation y(i) is mapped to a feature vector
as follows:

y(i) = f
(

W
(i)
2 g(i) + b

(i)
2

)

(11)

similarly, g(i) is the latent data, W
(i)
2 ∈ RNL×NGi is the decoding

weight matrix, b
(i)
2 is the bias vector.

Given a training feature vector x(k), which can be
shown as: x(k) =

{

fS(k), ss(k), d(k),m(k) (Denotedasχ =

{FS, SS, GSd, GSm}), we can learn the underlying features by
minimizing the reconstruction error of the cost function:

HN(X,Y , θ) =
1

2

m
∑

K=1

‖x(k)− y(k)‖22 + λ‖θ‖22 (12)

whereN= 1, 2, 3, 4, andY represents all the reconstructed feature
vectors, y(k) is the kth reconstructed feature vector, x(k) is the
kth training feature vector, m is the number of training feature
vectors, λ is the weight decay parameter, θ = {W, b}, W is the
weight, and b is the biases of the autoencoder.

2.3.2. Feature Interaction
In the previous section, we have obtained four different types
of high-order features (Dfs, Dss, Dgs−m

, and Dgs−d
) derived

from miRNA functional similarity, disease semantic similarity,
and GIP kernel similarity for miRNA and disease. However,
these four features are unilateral feature representations, which
only express the degree of closeness among different miRNAs
(diseases) and extract their meaningful latent connections. An
effective prediction accuracy not only depends on valuable
high-order features, but also on the feature interactive
information. Therefore, we obtain cross features by combining
different high-order features and use them to learn feature
interaction information.

In our model, a feature interaction layer is adopted to gain the
interaction information between different high-order features.
Considering the miRNA–disease associations, we combine the
two features of miRNA with the two features of disease,
respectively, and gain a total of four cross features. In order to
predict the association between a specific miRNA and a certain
disease,Dfs andDss are simultaneously mapped to the same space
to obtain cross features, which can be expressed as:

D1 =

[

DfS

DSS

]T

(13)
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FIGURE 2 | Extract high-order features based on autoencoder.

Similarly, the other three cross features are shown as follows:

D2 =

[

Dgs−
m

Dss

]T

(14)

D3 =

[

Dfs

Dgs−d

]T

(15)

D4 =

[

Dgs−m

Dgs−d

]T

(16)

As a result, the high-order features of miRNA and disease are
mapped to different spaces for feature interaction, and four
unilateral high-order features are converted into four cross
features with deep interactivity.

2.3.3. Ensemble Model Based on Multiple RF and

Logistic Regression
An RF consists of an set of classification trees, and each tree
divides the feature space into different regions based on the
division of each node in the tree. During the training process,
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the randomness allows the trees to give independent estimates,
which collectively contribute to achieve accurate and robust
results. Here, we use four RFs and each RF is consisted of 300
independent trees. The core idea of our model is to input four
interactive cross features into respective RF in parallel for self-
learning and model building, and then merge the four RFs with
logistic regression to make comprehensive predictions.

Our dataset includes 5,430 positive samples labeled as “1,” and
5,418 negative samples labeled as “0.” The input sample xk of
each four cross features covers diversified feature information
and the four cross features could be represented as fk =
{

D
(k)
1 , D

(k)
2 , D

(k)
3 , D

(k)
4

}

,
(

DN ∈ ℜ1×64, (N = 1, 2, 3, 4)
)

. And we

use θR =
{[

x1; f1
]

,
[

x2; f2
]

, · · · ,
[

xm; fm
]}

to denote all training
miRNA–disease pairs, where m is the number of all training
sample pairs. In order to train a robust model, all samples are
randomly input into the random forest for pre-training. For a
sample xk, the interactive cross features fk are input into the
corresponding RF, and a set of prediction score can be obtained

and expressed as, p(k) =
{

p
(k)
1 , p

(k)
2 , p

(k)
3 , p

(k)
4

}

. p
(k)
N is a probability

score between 0 and 1, which represents the degree of association
between a miRNA and a disease. Subsequently, we use logistic
regression to do the final classification task for each miRNA–
disease pair, instead of simply averaging the probability score of
the four RF regression models. We consider the score P(k) of each

sample pair xk as a new feature x′(k) =
{

x
′(k)
1 , x

′(k)
2 , x

′(k)
3 , x

′(k)
4

}

and assign it a weight W(k) =
{

w
(k)
1 ,w

(k)
2 ,w

(k)
3 ,w

(k)
4

}

, and

constantly update the weights during each iteration. After logistic
regression training, the comprehensive prediction performance
can be expressed as: Y = wTx′ + b, where b is a constant. Finally,
We conduct 5-fold cross-validation and 10-fold cross-validation
on all samples to test the performance of our method.

3. RESULTS AND DISCUSSION

3.1. Evaluation Criteria
To assess the performance of PMDFI, we adopt 5-fold cross-
validation (5-CV) and 10-fold cross-validation (10-CV) as well
as several widely used measures, including recall, precision, F1-
score, AUC, and area under the PR curve (AUPR). And these
measures are calculated as follows:

Recall =
TP

TP + FN
(17)

Precision =
TP

TP + FP
(18)

F1− score =
2× Precision× Recall

Precision + Recall
(19)

where TP, FP, TN, and FN represent the true positive, false
positive, true negative, and false negative, respectively.

3.2. Prediction of miRNA–Disease
Association Based on PMDFI
We use 5-fold and 10-fold cross-validation to evaluate
the performance of PMDFI in predicting miRNA–disease

associations. In 5-CV (10-CV), all sample pairs are randomly
divided into five (10) equal groups, and four (nine) groups of
them are regarded as training samples, and the remaining one
group is used as test samples. Table 1 lists the results of 5-CV
and 10-CV obtained by PMDFI, and indicates that under 5-CV
(10-CV), the AUC, AUPR, Precision, Recall, and F1-score of
PMDFI are 0.9404 (0.9415), 0.9373 (0.9385), 0.8663 (0.8669),
0.8812 (0.8832), and 0.8736 (0.8748), respectively. The average
AUC of our model exceeds 0.94 in either the 5-fold cross-test or
the 10-fold cross-test. Therefore, the results fully demonstrate
that PMDFI has a good performance in predicting the latent
associations between miRNAs and diseases.

3.3. Comparison With Existing
State-of-the-Art Methods
In order to systematically evaluate the performance of
PMDFI, we compare our method with other state-of-the-
art computational models, such as GBDT-LR (Zhou et al.,
2020), LMTRDA (Wang et al., 2019), and RFMDA (Chen et al.,
2018). GBDT-LR is a original model that combines gradient
boosting decision tree with logistic regression to prioritize
miRNA candidates for diseases. LMTRDA is a logistic model
tree used to predict miRNA–disease associations by fusing
multi-source information. RFMDA is a computational model
of random forest for miRNA–disease associations prediction
based on machine learning. The comparison between PMDFI
and these models is carried out based on 5-CV and illustrated
specifically in Table 2. From the table, PMDFI, GBDT-LR,
LMTRDA, and RFMDA models achieve AUC of 0.9404, 0.9274,
0.8479, and 0.7388, respectively, and PMDFI presents the
best performance. PMDFI outperforms GBDT-LR by 1.3%,
LMTRDA by 9.25%, and RFMDA by 20.16% in terms of AUC.
Figure 3 further describes the comparison of our method with
other methods in 5-CV with the format of histograms, and
the leftmost one represents our method. In conclusion, except
that the recall is 0.0736 lower than RFMDA, PMDFI makes a
significant improvement in the field of prediction for potential
miRNA–disease associations.

TABLE 1 | The results of 5-fold and 10-fold cross-validation obtained by PMDFI.

C. val. AUC AUPR Precision Recall F1-score

5-CV 0.9404 0.9373 0.8663 0.8812 0.8736

10-CV 0.9415 0.9385 0.8669 0.8832 0.8748

TABLE 2 | The comparison of different methods based on 5-fold cross-validation.

Method AUC AUPR Precision Recall F1-score

PMDFI 0.9404 0.9373 0.8663 0.8812 0.8736

GBDT-LR 0.9274 0.9014 0.8315 0.8273 0.8302

LMTRDA 0.8479 0.8217 0.8013 0.6190 0.7076

RFMDA 0.7388 0.7034 0.6253 0.9548 0.7453
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FIGURE 3 | Histograms of the results of different methods based on 5-fold cross-validation.

3.4. Comparison With Different Interactive
Cross Features
In order to further illustrate the contribution of distinct
interactive cross features to the potential miRNA–disease
associations prediction, we separately input cross features

D1 (Dfs ⊕ Dss), D2
(

Dfs ⊕ Dgs−d

)

, D3
(

Dgs−m
⊕ Dss

)

, and

D4
(

Dgsm⊕ Dgs−d

)

into the RF model for training, without
integrating the overall performance of the four cross features.
Table 3 displays the performance of each interactive cross
features on miRNA–disease potential association prediction.
In the table, the AUC and AUPR score of the four interactive
cross features fluctuate in the range of 0.9249 ± 0.0143 and
0.9213 ± 0.0121, respectively. And the cross feature D1 has the
worst performance with an AUC of 0.9106, which is 2.98% lower
than the optimal score. Besides, the D4 cross feature has the
best performance compared to other three, and its AUC, AUPR,
Precision, Recall, and F1-score are 0.9392, 0.9334, 0.8630, 0.8834,
and 0.8730, respectively. Although D4 is the best performer

TABLE 3 | Comparison of the performance of four interactive cross features.

Method AUC AUPR Precision Recall F1-score

D1 (Dfs ⊕ Dss) 0.9106 0.9093 0.8289 0.8388 0.8338

D2
(

Dfs ⊕ Dgs−d

)

0.9283 0.9240 0.8513 0.8692 0.8601

D3
(

Dgs−m ⊕ Dss

)

0.9239 0.9193 0.8381 0.8642 0.8509

D4
(

Dgsm⊕ Dgs−d

)

0.9392 0.9334 0.8630 0.8834 0.8730

PMDFI 0.9404 0.9373 0.8663 0.8812 0.8736

among the four cross features, the performance of it is still slightly
worse than that of the integration of the whole four features.
For a clearer comparison, we also draw a line graph of the four
interactive cross features and their combinations in terms of AUC
and AUPR values. Figure 4 gives a clue that the performance of
integrating the four interactive cross features is the best, and its
AUC and AUPR values are both at the highest point.
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FIGURE 4 | Line chart of area under the ROC curve (AUC) and area under the PR curve (AUPR) scores of different interaction cross features.

FIGURE 5 | The ROC curves of different classifier models.
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3.5. Comparison With Different Classifier
Models
In our method, we use an ensemble learning model composed
of multiple RFs to predict the potential miRNA–disease
associations. To confirm the excellence of the RF-based ensemble
learning model, we compare it with several common classifier
models, such as SVM, k-nearest neighbor (KNN), and decision
tree (DT), using a common data set and feature set. Figure 5
is the ROC curve of these four classifier models, where the
AUC of SVM, KNN, DT, and PMDFI are 0.9336, 0.8348, 0.9171,
and 0.9404, respectively. From the picture, the performance of

TABLE 4 | The specific outcomes based on different feature representation

methods.

Method AUC AUPR Precision Recall F1-score

FeaRep1 0.9083 0.9119 0.8430 0.8543 0.8486

FeaRep2 0.9307 0.9252 0.8554 0.8731 0.8641

FeaRep3 0.9367 0.9327 0.8619 0.8746 0.8682

PMDFI 0.9404 0.9373 0.8663 0.8812 0.8736

SVM is slightly worse than PMDFI; the AUC of DT is 2.33%
lower than PMDFI; the performance of KNN is the worst among
them, and its AUC is 10.56% lower than PMDFI. In summary,
our method, RF-based PMDFI, has a curve above all the other
three ones, which stands for the best performance in predicting
miRNA–disease associations.

3.6. Analysis of High-Order Feature
Extraction and Feature Interaction
Unlike other models that directly use miRNA and disease
similarity feature information, our method PMDFI utilizes high-
order feature extraction and feature interaction to represent
features. In order to verify the validity of the proposed
feature representation approach, we compare it with other three
methods. The first one is DBNMDA (Chen et al., 2020), which
directly extracts the features of all miRNA–disease pairs to pre-
train the Restricted Boltzmann Machine (RBM). The second one
is DBMDA (Zheng et al., 2020), which utilizes the autoencoder to
resize the miRNA (disease) similarity features and then fuses the
features during the feature set construction stage. The third one
is GBDT-LR (Zhou et al., 2020), which uses gradient boosting
decision tree (GBDT) to extract distinguishing features and

FIGURE 6 | Histograms of comparison of performance based on different feature representation methods.
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feature combinations. We name the feature representation in
each of the aforementioned three methods as FeaRep1 (based
on DBNMDA), FeaRep2 (based on DBMDA), and FeaRep3
(based on GBDT-LR). Table 4 reveals in details the outcome of
distinct feature representation methods. The AUC of the feature
representation method used in the PMDFI are 3.21, 0.97, and
0.37% higher than FeaRep1, FeaRep2, and FeaRep3, respectively.
And we plot more straightforward histograms to illustrate the
results of the comparison, as shown in Figure 6. From the figure,
the feature representation method used by PMDFI, the rightmost
one, is superior to the other three methods in all evaluation
dimensions. To summarize, the experiment further demonstrates
that high-order feature extraction and feature interaction have
profound contributions to predicting the potential relevance of
miRNA–disease.

3.7. Case Studies
To analyze the prediction performance of PMDFI in practical
situations, we conduct several common disease case studies with
PMDFI, including breast cancer, melanoma, and lymphoma.
We initially train all known miRNA–disease associations in
the HMDD v.2.0 with PMDFI, and then list top-10 predicted
miRNAs for validation using two other databases, namely
dbDEMC 2.0 (Yang et al., 2017) and miRCancer (Xie et al.,
2013). The dbDEMC 2.0 is a database designed to store and
display differentially expressed miRNAs in detected human
cancers, which contains 2,224 differentially expressed miRNAs
in 36 cancer types. And the miRCancer is a microRNA–cancer
association database, which currently records 878 relationships
between 236 miRNAs and 79 human cancers.

According to recent studies, we choose three prevalent
diseases as our case studies and the results are listed in Table 5.
The first one is breast cancer, as the most common cancer
affecting women, which accounts for 23% of all cancers and
14% of cancer deaths (Jemal et al., 2011; Anastasiadi et al.,
2017). The studies have shown that loss of the tumor suppressor
miRNA or overexpression of the oncogenic miRNA may lead
to the occurrence or metastasis of breast cancer (Serpico et al.,
2014). Therefore, finding the relationship between miRNAs and
breast cancer offers a direction for the diagnosis and treatment
of breast cancer. From Table 5, we can see that nine out of the
10 predicted breast cancer related miRNAs appear in dbDEMC
2.0 or miRCancer. The second disease is Melanoma, which
is the most serious type of skin cancer. It is caused by the
cancerous transformation of skin cells when prolonged exposing
under the ultraviolet light (Rastrelli et al., 2014). Pencheva et al.
(2012) have identified a set of miRNAs that are deregulated
in independent metastatic lines derived from multiple patients
with melanoma, which manifests the importance to research
the association between miRNAs and melanoma. The data from
the middle line of Table 5 illustrate that the PMDFI model has
accurately predict all the top 10 melanoma-related miRNAs. The
last disorder is malignant lymphoma, which is a large group
of tumors with considerable heterogeneity. Although it occurs
in the lymph nodes, due to the distribution characteristics of
the lymphatic system, lymphoma is a systemic disease that can
invade almost any tissue and organ in the body (Dean et al., 2005;

TABLE 5 | The candidate miRNAs associated with breast cancer, melanoma, and

lymphoma.

Diseases miRNA Evidence

hsa-mir-150 dbDEMC 2.0;miRCancer

hsa-mir-15b dbDEMC 2.0

hsa-mir-130a dbDEMC 2.0;miRCancer

hsa-mir-196b dbDEMC 2.0

Breast cancer hsa-mir-98 dbDEMC 2.0;miRCancer

hsa-mir-106a dbDEMC 2.0;miRCancer

hsa-mir-142 miRCancer

hsa-mir-378a Unconfirmed

hsa-mir-30e miRCancer

hsa-mir-372 dbDEMC 2.0;miRCancer

hsa-mir-150 miRCancer

hsa-mir-373 miRCancer

hsa-mir-127 dbDEMC 2.0

hsa-mir-181b dbDEMC 2.0

Melanoma hsa-mir-10b dbDEMC 2.0;miRCancer

hsa-mir-224 dbDEMC 2.0;miRCancer

hsa-mir-101 dbDEMC 2.0;miRCancer

hsa-mir-223 dbDEMC 2.0

hsa-mir-27a dbDEMC 2.0;miRCancer

hsa-mir-30c dbDEMC 2.0

hsa-mir-34a dbDEMC 2.0;miRCancer

hsa-mir-34c Unconfirmed

hsa-mir-9 dbDEMC 2.0;miRCancer

hsa-mir-29a dbDEMC 2.0;miRCancer

Lymphoma hsa-mir-222 dbDEMC 2.0

hsa-mir-7a dbDEMC 2.0

hsa-mir-29b dbDEMC 2.0;miRCancer

hsa-mir-181b dbDEMC 2.0

hsa-mir-145 dbDEMC 2.0;miRCancer

hsa-mir-221 dbDEMC 2.0

Paydas et al., 2016). Zheng et al. (2018) list several examples to
describe miRNAs’ role in the development of B-cell lymphoma,
both as oncogenes and tumor suppressor genes, and nine out of
the 10 predicted lymphoma-associated miRNAs are verified in
dbDEMC 2.0 or miRCancer.

4. CONCLUSION

Given the significance that the miRNA–diseases associations
make to the diagnosis of diseases and superiority that
computer have compared to biological experiments, emerging
computational models pop up in the miRNA–disease
associations prediction realm. In this paper, we propose a
novel computational model called PMDFI, which is an ensemble
learning method to predict the miRNA–disease associations
based on feature interactive learning. Our method not only
integrates the four RF models of separated cross features, but
also incorporates logistic regression to provide comprehensive
predictions by assigning adjustable weights. Moreover, we
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apply stacked autoencoders to extracting meaningful high-
order features from miRNA functional similarity, disease
semantic similarity, and GIP kernel similarity of miRNA
and disease. And we also construct a feature interaction
layer to promote the interactions between distinct features.
As a result, PMDFI reaches the average AUC of 0.9404
and 0.9415 under 5-fold and 10-fold cross-validation and
successfully predicted miRNA–disease associations within three
case studies.

However, there is room for improvement in the future.
First, with the rapid development of sequencing technology,
all types of data have exploded, and we will integrate those
multi-source data to dramatically improve the robustness of the
model. Second, in future researches, we would devote ourselves
to discovering more original features of miRNAs and diseases
to boost the performance and explore some brand-new feature
calculation methods. Third, concerning the negative samples,
we randomly select them from unlabeled samples, which may
include unreliable false samples. To offset these negative effect on
the eventual prediction, we would introduce the measurement of
reliable negative samples in the future.
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