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Accurately identifying classification biomarkers for distinguishing between normal and
cancer samples is challenging. Additionally, the reproducibility of single-molecule
biomarkers is limited by the existence of heterogeneous patient subgroups and
differences in the sequencing techniques used to collect patient data. In this study, we
developed a method to identify robust biomarkers (i.e., miRNA-mediated subpathways)
associated with prostate cancer based on normal prostate samples and cancer samples
from a dataset from The Cancer Genome Atlas (TCGA; n = 546) and datasets
from the Gene Expression Omnibus (GEO) database (n = 139 and n = 90, with
the latter being a cell line dataset). We also obtained 10 other cancer datasets to
evaluate the performance of the method. We propose a multi-omics data integration
strategy for identifying classification biomarkers using a machine learning method that
involves reassigning topological weights to the genes using a directed random walk
(DRW)-based method. A global directed pathway network (GDPN) was constructed
based on the significantly differentially expressed target genes of the significantly
differentially expressed miRNAs, which allowed us to identify the robust biomarkers
in the form of miRNA-mediated subpathways (miRNAs). The activity value of each
miRNA-mediated subpathway was calculated by integrating multiple types of data,
which included the expression of the miRNA and the miRNAs’ target genes and
GDPN topological information. Finally, we identified the high-frequency miRNA-mediated
subpathways involved in prostate cancer using a support vector machine (SVM) model.
The results demonstrated that we obtained robust biomarkers of prostate cancer, which
could classify prostate cancer and normal samples. Our method outperformed seven
other methods, and many of the identified biomarkers were associated with known
clinical treatments.
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INTRODUCTION

Prostate cancer is the second most commonly diagnosed
cancer among males worldwide, and it is associated with
miRNA dysfunction (Dankert et al., 2020). Prostate cancer is
a highly heterogeneous disease with various mutations and
tumor cell phenotypes (Peitzsch et al., 2020). The heterogeneity
of prostate cancer causes difficulty regarding diagnosis and
prognosis. Regarding treating prostate cancer patients, it is hoped
that personalized medicine can be developed to mitigate the
issues caused by the huge variations between different patient
subgroups (Peng et al., 2017; Zhou et al., 2019).

The aim of this study was to identify robust biomarkers
associated with prostate cancer, in the form of miRNA-mediated
subpathways (miRNAs), and to evaluate the performance
of our machine learning method based on other cancer
datasets in addition to prostate cancer datasets. To identify
cancer-related miRNAs to aid diagnosis and prognosis, high-
throughput miRNA expression profiling has been used (Jay
et al., 2007; Martens-Uzunova et al., 2012). Many studies
have shown that miRNAs are stable not only in bodies
but also in paraffin blocks (Baker, 2010). As miRNAs are
promising biomarkers for cancer classification, several methods
have been proposed to identify cancer biomarkers based on
miRNA expression profiles, such as instance-based methods
(Breiman et al., 1984; Breiman, 2001) and feature-based
methods (Zararsiz et al., 2017; Peng et al., 2018). However,
the performance of miRNA classification biomarkers in test
sets varies greatly, even among patients with the same disease
phenotype. Several factors, such as tissue heterogeneity, racial
differences, and sequencing errors, contribute to this problem
(Ning et al., 2019).

Many cancer-related pathways can be utilized as important
classification biomarkers (Chen et al., 2021). For diagnosis
prediction, pathway topological analysis can be used to identify
risk classification biomarkers. Therefore, we integrated multiple
types of data to identify the key miRNA-mediated subpathways
of prostate cancer, which included data on the expression
levels of miRNAs and their target genes and the topological
weight of each gene in a global directed pathway network
(GDPN). We employed a support vector machine (SVM)-
based method to identify accurate risk biomarkers of prostate
cancer based on the topological inference of miRNA-mediated
subpathway activity. The method included five steps: merge
pathways and construct network; perform directed random walk
(DRW) (Liu et al., 2013); infer miRNA-mediated subpathway
activity; select features and evaluate classification method; and
obtain risk biomarkers. First, we obtained a dataset from The
Cancer Genome Atlas (TCGA), a Gene Expression Omnibus
(GEO) dataset, and a GEO cell line dataset, which together
comprised 775 normal and human prostate cancer samples.
Moreover, we also identified miRNA–target gene pairs in the
TarBase v8.0 (Karagkouni et al., 2018) miRTarBase (Chou
et al., 2018), and miRecords (Xiao et al., 2009) databases.
Additionally, data on 4,090 samples in 10 other cancer TCGA
datasets were downloaded from UCSC Xena. Thereafter, 343
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

were merged into the GDPN, in which the nodes represented
genes. Next, the method involved inferring the miRNA-mediated
subpathway activity profile using a DRW-based method. Risk
classification biomarkers (i.e., the high-frequency miRNA-
mediated subpathways) were then identified using an SVM
approach. Subsequently, we performed within-dataset analyses
using the three prostate cancer datasets, and we identified
the high-frequency miRNA-mediated subpathways in order
to divide the samples into normal and cancer groups. We
then evaluated the classification performance of these risk
biomarkers in cross-dataset analyses using the prostate cancer
datasets, followed by evaluating the performance in 10 other
cancer datasets.

MATERIALS AND METHODS

An overview of our biomarker identification method is shown in
Figure 1. The method involves five major steps: merge pathways
and construct network; perform DRW; infer miRNA-mediated
subpathway activity; select features and evaluate classification
method; and obtain risk markers. In addition, we transformed
the gene expression profiles into an expression matrix, and we
did the same for the miRNA expression profiles. In an expression
matrix, each row refers to a miRNA/gene and each column refers
to a sample. Next, we integrated the gene and miRNA expression
data, the topological weights in the GDPN, and the miRNA–
target gene pairs into an activity value. Consequently, we inferred
an activity profile, in which each row and each column referred
to one miRNA-mediated subpathway (miRNA) and one sample,
respectively. After identifying biomarkers, the performance of
our SVM model was evaluated using two validation GEO prostate
cancer datasets and 10 other cancer datasets.

Sample-Matched Datasets
We obtained three prostate cancer datasets, each of which
included sample-matched gene and miRNA expression profiles.
We downloaded one dataset (“PRAD-TCGA”) from UCSC
Xena1, which involved sample-matched Illumina HiSeq level
3 gene and miRNA expression profiles. After removing the
rows in which the expression values were equal to 0, we
transformed all gene symbols to Entrez gene IDs. This resulted
in 546 samples (52 normal and 494 cancer samples) with
12,118 genes and 209 miRNAs. To conduct an unbiased
assessment of the performance of our method, we downloaded
an independent dataset (GSE21036) (Taylor et al., 2010), which
contained gene and miRNA expression profiles that were
obtained using the GPL8227 microarray platform, from the
GEO database2. We processed this dataset in the same way
as the “PRAD-TCGA” dataset. It contained sample-matched
data of 139 samples (28 normal and 111 cancer samples)
with 18,941 genes and 373 miRNAs. To supplement this small
independent validation GEO dataset, we downloaded a sample-
matched cell line GEO dataset (GSE14794) on prostate cancer,

1https://xena.ucsc.edu/
2http://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1 | Pipeline showing how miRNA-mediated subpathway activity profiles were inferred based on gene and miRNA expression and topological weights in a
global directed pathway network (GDPN). The method to identify accurate risk biomarkers of prostate cancer involved five steps: merge pathways and construct
network; perform directed random walk; infer miRNA-mediated subpathway activity; select features and evaluate classification method; and obtain risk biomarkers.
z(gi ) refers to a row-normalized vector of the expression of the ith gene over all samples, while a(miRj ) refers to a row-normalized vector of the activity values of the jth
miRNA (namely, the jth miRNA-mediated subpathway) over all samples. The middle part of the figure shows how the activity profiles were inferred. The 343 canonical
KEGG pathways were merged into the GDPN. There are 39,930 directed edges and 7,159 nodes besides the virtual node in the GDPN. The virtual node is
represented as a circle with a dotted line. P0 refers to the matrix of the initial weights of all genes in the GDPN; P∞ refers to the final weights of all genes in the
GDPN. To identify the important upstream genes, regarding assessing the direction of edges between genes, a gene was considered important if it influenced more
downstream genes. The expression level and topological weights of the genes are integrated into a(miRj ).

which contained data that were detected using the GPL6102
and GPL8178 platforms. We used 90 samples (45 control
and 45 cancer samples) with 13,935 genes and 273 miRNAs

(and no duplicates) from this dataset. Lastly, 10 other cancer
TCGA datasets were downloaded from UCSC Xena, which
involved 4,090 samples.
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miRNA–Target Genes Associated With
Prostate Cancer
To identify the precise local subpathway regions associated
with prostate cancer, we obtained reliable miRNA–target gene
pairs from the following databases: TarBase v8.0 (Karagkouni
et al., 2018), miRTarBase (Chou et al., 2018), and miRecords
(Xiao et al., 2009). After removing the duplicates, there were
346,349 human-specific pairs, which consisted of 59 pairs
from miRecords, 135,125 from TarBase, and 319,637 from
miRTarBase. The specific interactions included two types of target
relationships, which had been predicted based on calculations
and verified by experiment.

GDPN Construction
We obtained 343 canonical pathways from the KEGG database
based on annotations of the differentially expressed target
genes of the differentially expressed miRNAs. We then used
the pathway interactions in the KEGG database to create
a directed graph, and we merged this into a GDPN using
“SubpathwayMiner” software3 (Li et al., 2009). If genes appeared
in diverse pathways, we merged them and kept the topological
graphs. Finally, the GDPN included 39,930 directed edges and
7,159 gene nodes. Each edge direction could be traced back to
the type of interaction between the pair of gene nodes according
to the KEGG database, i.e., if gene P inhibited/activated gene Q,
the edge direction pointed to gene Q. To ensure node weights
flow in the network, we added a virtual node to the GDPN,
with each node pointing to the virtual node and the virtual
node pointing to all the nodes in the GDPN. We confirmed
that the distributions of the GDPN node degree approximately
followed power-law distributions, with R2 = 0.72 (in-degree), 0.77
(out-degree), and 0.71 (total degree). Our method obeyed an
important rule of the DRW algorithm, which involved having a
low proportion of nodes that had higher degrees in the network
(Watts and Strogatz, 1998).

Performing DRW on the GDPN
The DRW algorithm simulated a walker that started at a source
node and randomly stayed at the source or traveled to its neighbor
node (Liu et al., 2013). New topological weights for the nodes
in the GDPN were reassigned using the DRW algorithm, which
is similar to the PageRank algorithm (Brin and Page, 1998).
The PageRank algorithm is used by the Google search engine to
search for related webpages; the higher the number of linkages
that are directed toward a webpage, the more important it is.
However, in our DRW algorithm, the direction of the linkages
was reversed when compared to their direction in the PageRank
algorithm, i.e., a gene that influenced more downstream genes
was considered more important (Draghici et al., 2007). To
calculate the new weights, the standard formula of the DRW
algorithm was as follows:

Pt+1 = (1− r)MTPt + rP0 (1)

3https://github.com/chunquanlipathway

where MT is a row-normalized adjacency matrix (each element
is divided by the sum of all elements in a row); r ∈ [0, 1] is the
restart probability (r was set to 0.7), which slightly affected the
result of the DRW algorithm (Kohler et al., 2008; Lv et al., 2015);
and P0 is a unit vector of the initial probabilities, which equaled
|t − score| (absolute value), generated based on t-test of normal
vs. cancer samples. To start the process, P0 was assigned to each
GDPN node (the initial probability of the virtual node equaled
0) and several iterations were required until |Pt+1 − Pt| ≤ 10−10.
Eventually, Pt converged to a stable state P∞, which was a vector
of the new topological weights and was considered to represent
the GDPN topological information.

Inferring the Activity Profile From Gene
Expression and GDPN Topological
Information
For each differentially expressed miRNA between the normal and
cancer samples, we determined their target genes and analyzed
the differences in expression between the normal and cancer
samples. Only target genes that were significantly differentially
expressed (t-test p-value < 0.05) were used to infer the activity
value of the miRNA-mediated subpathways. The significantly
differentially expressed target genes {g1, g2, · · · , gnj } of miRNA j
(miRj) were incorporated into an activity value, namely, miRNA-
mediated subpathway activity a(miRj). In light of this, we have
the following:

Constraint:
t(miRj) · t(gi) < 0 (2)

a(miRj) =

∑nj
i=1 P∞(gi) · sgn(t(gi)) · z(gi)√∑nj

i=1(P∞(gi))2
(3)

where t() is |t − score|of miRNAs or genes based on a t-test
between the normal and cancer samples; sgn() is a sign function
{if sgn[t(gi)] is equal to a positive number, sgn() returns +1,
otherwise, it returns –1}; z(gi) is the normalized expression vector
of gene gi; P∞(gi) is the topological weight obtained by DRW;
a(miRj) is the jth miRNA of the activity; and nj is the total number
of significantly differentially expressed target genes. For Equation
3, Equation 2 is a constraint that ensures an inverse correlation
between the expressions of miRNAs and their target genes.
For example, to calculate the activity value of downregulated
miRNAs, we integrated the expression of their upregulated target
genes and the topological weights of their upregulated target
genes into a special value. For upregulated miRNAs, we used
the same method to calculate miRNA-mediated subpathway
activity. Thus, the rows and columns indicated the miRNA-
mediated subpathways (miRNAs) and samples, respectively and
each value in the activity profile referred to the activity level of
one miRNA in one sample.

Evaluating Classification Performance
We performed fivefold cross-validation in within-dataset analyses
of the “PRAD-TCGA,” GSE21036, and GSE14794 datasets. In
each of the three within-dataset analyses, we randomly split
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the samples into five equal parts and selected four for training
(training set) and one for testing (test set). Furthermore, the
training set was randomly split into three equal parts, of which
two (training subset) were used to build the classifiers and select
candidate features, and the remaining one (test subset) was used
to optimize the classifiers and select the risk biomarkers. First, we
used a Student’s t-test to obtain the p-values of the differences in
the miRNA-mediated subpathway activities between the normal
and prostate cancer samples in the training subset, and we sorted
them by ascending p-value. We used the top 50 miRNA-mediated
subpathways of the training subset as candidate biomarkers to
establish the first classifier. The first classifier was built based
on the candidate biomarker with the smallest p-value. Then, we
added the candidate biomarker with the second-ranked p-value
to it. If the area under the curve (AUC) increased, this candidate
biomarker was kept in the risk biomarker set; otherwise, it was
removed. We performed this process 50 times. We obtained the
first optimized classifier and the average AUC from the first test
subset. Thus, we could obtain three optimized classifiers from
three test subsets. Then, we evaluated each of the three optimized
classifiers by the five test sets in turn. We could obtain 15 AUCs.
The experiment was repeated 10 times in each within-dataset
analysis. We obtained the average AUC among the resulting 150
classifiers, which was used to represent the overall performance
of our SVM-based method. Each SVM model was built using
the “e1071” package in R (Meyer, 2013), which provides an R
interface to libsvm. The functions “svm()” and “predict()” were
used to build each SVM model and to predict the sample types,
respectively. The “e1071” package was also used to perform the
evaluation in the cross-datasets analyses.

Regarding the two cross-datasets analyses (“TCGA–
GSE21036” and “TCGA–GSE14794”), we performed fivefold
cross-validation, with the “PRAD-TCGA” dataset being used
as the training set and GSE21036 or GSE14794 being used as
the test set. We split the “PRAD-TCGA” samples into five equal
parts and selected four for training (training subset) and the
remaining one for testing (test subset). The validation process
was similar to that in the within-dataset analyses. The training
subsets were used to build the classifier and provide candidate
biomarkers, and the test subset was used to optimize the classifier
and select risk biomarkers. In each of the two cross-datasets
analyses, five classifiers were optimized (optimizing the AUCs)
by five test subsets in turn. The final performances of these
classifiers were tested on the test set. For an unbiased assessment
of the performance of our method, each validation experiment
(“TCGA–GSE21036” and “TCGA–GSE14794”) was repeated
10 times, and the average AUC was generated among the
resulting 50 classifiers.

RESULTS

Inferred miRNA-Mediated Subpathway
Activity Profile
Using the “PRAD-TCGA” dataset (before going on the do the
same with the GSE21036 and GSE14794 GEO datasets), we
employed Equation 1 to calculate the topological weight of

each gene node in the GDPN. Equations 2, 3 were used to
infer the miRNA-mediated subpathway (miRNA) activity profile.
The rows and columns of the activity profile matrix refer
to the miRNA-mediated subpathways (miRNAs) and samples,
respectively. This matrix had 220 rows (miRNAs) and 546
columns (samples). We then computed the Student’s t-test
p-values for the miRNA-mediated subpathways in the activity
profile and sorted them by ascending p-value. The top 50 miRNA-
mediated subpathways were then used as candidate biomarkers
and were subjected to SVM procedures using the “e1071” package
in R. The number 50 was chosen based on the plateauing of the
AUCs. To obtain validated risk biomarkers for prostate cancer
and evaluate the performance of our method, fivefold cross-
validation was performed 10 times. The AUC fluctuated between
0.848 and 0.998. We counted the frequency of each miRNA-
mediated subpathway (miRNA) among the 150 SVM constructed
classifiers and sorted by descending frequency. We only kept the
miRNA-mediated subpathways with a frequency > 50 for further
analysis, and we designated them as the high-frequency risk
biomarkers. Thus, for the “PRAD-TCGA” dataset, 10 miRNA-
mediated subpathways were identified as risk biomarkers. We
used these 10 risk biomarkers to perform hierarchical clustering
based on the miRNA-mediated subpathway activity profile
(Figure 2A). Next, we obtained risk biomarkers based on the two
GEO datasets and performed hierarchical clustering using their
miRNA-mediated subpathway activity profiles (Figures 2B,C).
Figures 2A–C show that the risk biomarkers of the various
datasets could clearly separate normal and cancer samples.

The results indicated that our method could identify risk
biomarkers that could be used to divide samples into normal and
cancer groups (Figures 2A–C). Additionally, the risk biomarkers
(miRNAs) were found to be related to prostate cancer, as
indicated by data from the Human MicroRNA Disease Database
(HMDD) (Supplementary Table 1-miRNAs).

Integrating Topological Information Into
the Activity Value
We identified risk biomarkers (miRNAs) based on the differences
in miRNA-mediated subpathway activities between normal
and cancer samples, which could help us to understand the
biological mechanisms underlying cancer. We only considered
target genes of miRNAs with p < 0.05 in the GDPN. The
target genes of miRNAs with significantly differential expression
were designated SDE target genes. To better understand the
functions of the miRNA-mediated subpathways, these SDE
target genes were annotated using KEGG pathways, and the
pathways were sorted by ascending p-value. The pathways
with a false discovery rate (FDR) < 0.05 and p < 0.01
(Benjamini and Hochberg method) were further analyzed. The
SDE target genes of the 10 risk biomarkers (miRNA-mediated
subpathways) in the “PRAD-TCGA” dataset were annotated
with 299 KEGG pathways. Among these pathways, we selected
the 41 pathways with 10 occurrences. Of these 41 pathways,
31 (82.93%) were related to prostate cancer, according to
studies in PubMed (Supplementary Table 1-Pathways). The
pathways associated with the SDE target genes of the 10 risk
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FIGURE 2 | Hierarchical cluster analysis of high-frequency miRNA-mediated subpathways in within-dataset analyses. Based on the results of 150 classifiers, the risk
biomarkers identified in the (A) “PRAD-TCGA,” (B) GSE14794, and (C) GSE21036 analyses were subjected to hierarchical cluster analysis. Rows and columns
represent miRNA-mediated subpathways (miRNAs) and samples, respectively.

biomarkers included “Phosphatidylinositol-3-kinase (PI3K)-Akt
signaling pathway” (hsa04151, Figure 3A), “mammalian target
of rapamycin (mTOR) signaling pathway” (hsa04150), “mitogen-
activated protein kinase (MAPK) signaling pathway” (hsa04010),
and “cAMP signaling pathway” (hsa04024). The PI3K-Akt
signaling pathway is a major research topic in prostate cancer
treatment development, with more and more researchers paying
close attention to it (Morgan et al., 2009; Toren and Zoubeidi,
2014). In prostate cancer, the activation of this pathway appears
to be a characteristic of many aggressive cases, and this activation
is observed more frequently as prostate cancer progresses to
become a drug-resistant, metastatic disease (Toren and Zoubeidi,
2014). Many studies have shown that the PI3K-Akt signaling
pathway plays a crucial role in prostate cancer metastasis and
progression, along with the mTOR signaling pathway (Morgan
et al., 2009; Bitting and Armstrong, 2013; Kim et al., 2017;
Popolo et al., 2017). Moreover, the PI3K-Akt-mTOR and MAPK
pathways can cooperate to facilitate prostate cancer growth
and drug resistance (Shorning et al., 2020). Prostate cancer cell
growth and invasion also involve the prostaglandin E2 receptor
EP4 via the cAMP-PKA/PI3K-Akt signaling pathway (Xu et al.,
2018). Thus, many studies have shown that oncogenic activation
of the PI3K-Akt-mTOR pathway is a frequent event in prostate
cancer that facilitates tumor formation, disease progression, and
drug resistance (Shorning et al., 2020).

Moreover, we obtained new topological weights for the
SDE target genes in the GDPN and sorted by descending
weight. Among the top 100 SDE target genes (with topological
importance), 22 genes were involved in the pathways with
10 occurrences regarding the SDE target genes of the 10 risk
biomarkers (miRNA-mediated subpathways) in the “PRAD-
TCGA” dataset. Several of the 22 genes are known to be important
genes involved in prostate cancer. For example, coiled coil
domain containing 6 (CCDC6) and DEAD-box RNA helicase p68
(DDX5) were annotated to “Pathways in cancer” (hsa05200) and
“Transcriptional misregulation in cancer” (hsa05202), which are
associated with cancer initiation and progression. Furthermore,
eukaryotic translation initiation factor 4E (EIF4E) was annotated
to the “PI3K-Akt signaling pathway” (hsa04151) and “mTOR
signaling pathway” (hsa04150). CCDC6 protein turnover is
regulated by the de-ubiquitinase USP7, which also controls

androgen receptor (AR) stability (Criscuolo et al., 2019).
Therefore, CCDC6 might be a predictive biomarker for the
effectiveness of USP7 inhibitor and PARP inhibitor combination
treatment in advanced prostate cancer (Criscuolo et al., 2019).
DDX5 is an important AR transcriptional co-activator in prostate
cancer and is overexpressed in late-stage disease (Clark et al.,
2013). It is recruited to the AR transcriptional complex and
required for the transcriptional regulation of AR-targeted genes
(You et al., 2019). EIF4E plays a key role in protein synthesis
and tumorigenesis (Xie et al., 2020). Regulation of EIF4E
is partly achieved via phosphorylation (Furic et al., 2010).
Ectopic expression of EIF4E prevented phenethyl isothiocyanate
(PEITC)-induced translation inhibition and conferred significant
protection against PEITC-induced apoptosis (Hu et al., 2007).

After discovering that hsa-miR-106b and hsa-miR-20b were
the two biomarkers shared by the three datasets (“PRAD-TCGA,”
GSE21036, and GSE14794 datasets), we used KOBAS 3.0 to
annotate their differentially expressed target genes with Gene
Ontology (GO) terms. We then extracted the shared Gene
Ontology (GO) terms (Figure 3B). The results showed that the
differentially expressed target genes were associated with protein
binding and cellular metabolic processes.

Finally, to assess the importance of the topological structure,
10, 20, 30, 40, and 50% of the miRNA–target gene pairs were
randomly deleted. Figure 3C shows that the average AUC
decreased as the percentage of deleted pairs increased. However,
the average AUCs of our method remained stable when we
deleted only 20% or only 30% in the “TCGA–GSE14794” and
“TCGA–GSE21036” analysis, respectively. Lower stability was
observed in the “TCGA–GSE14794” analysis, which might be
caused by the fewer samples in the cell line dataset (GSE14794).
The results indicate that stable performance might be best
achieved by our method of integrating multi-omics data and
topological weights, allowing risk biomarkers that can robustly
classify samples to be identified.

Our Method Applied to Prostate Cancer
Datasets
To compare our method with other methods, we searched
PubMed for studies involving similar methods, but there were no
similar methods. However, we identified five classical methods
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FIGURE 3 | (A) Landscape of PI3K-Akt signaling pathway (hsa04151). Red represents the target genes of hsa-miR-106b, and the intensity of red represents the
level of differential expression. (B) Shared Gene Ontology (GO) terms of the target genes of hsa-miR-106b and hsa-miR-20b obtained by using KOBAS 3.0. (C) Line
graph indicating the importance of the topological information. The x-axis refers to the percentage of deleted miRNA–target gene pairs; the y-axis refers to the
corresponding AUCs.

to compare with our method, and these were pathway-based
methods. They were the Mean method, Median method (Guo
et al., 2005), component analysis (PCA) method (Bild et al.,
2006), pathway activity inference using condition-responsive
genes (PAC) method (Lee et al., 2008), and a previous DRW
method (Liu et al., 2013). Furthermore, another two traditional
methods, which classify samples based on single molecules (genes
or miRNAs) were used in the comparison. The evaluation was
performed similarly to the evaluation described by Lee et al.

(Hu et al., 2007), who evaluated the classification performance
of miRNA-mediated subpathways by fivefold cross-validation in
a within-dataset analysis. To ensure an unbiased comparison, the
SVM models were built based on the same datasets and evaluated
based on the top 50 candidate biomarkers. As mentioned, in
addition to pathway-based classification methods, two traditional
classifiers were established based on genes and miRNAs,
respectively; these classifiers were built with genes/miRNAs that
belonged to the GDPN.
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Figure 4 depicts a summary of the average AUC and
Accuracy in the within-dataset and cross-datasets analyses. The
average AUC (0.9525) and Accuracy (0.9296) of our method in
three within-dataset analyses (“PRAD-TCGA,” GSE14794, and
GSE21036 analyses) were calculated. We then examined the
minimum standard deviation of the AUCs and Accuracies, which
were 0.007 and 0.011 (Figures 4A,B), respectively. The average
AUC and Accuracy outperformed the corresponding values
for the pathway-based methods in the within-dataset analyses
(Supplementary Table 1-Wilcoxon signed-rank test).

The results indicated that the miRNA-mediated subpathways
could classify the sample phenotypes (normal vs. cancer). The
results also revealed that our method was an effective strategy,
integrating topological information into miRNA-mediated
subpathway activities for sample classification. Thus, our
classification biomarkers were more discriminative and stabler.

Furthermore, we performed cross-datasets analyses (“TCGA–
GSE21036” and “TCGA–GSE14794”) using the three prostate
cancer datasets. The “PRAD-TCGA” dataset was used as the
training set, and GSE21036 and GSE14794 were used as the test
sets. The average AUC (Accuracy) in the “TCGA–GSE21036”
and “TCGA–GSE14794” analyses were 0.9434 (0.9123) and
0.8015 (0.8903), respectively. For these cross-datasets analyses,
the average AUC (Accuracy) of our SVM model was larger
than corresponding values for the pathway-based, gene-based,
and miRNA-based methods (Figures 4C,D). The average AUC
(Accuracy) in the “TCGA–GSE14794” analyses compared to the
“TCGA–GSE21036” analyses was slightly decreased, due to the
imbalance between the training and test sets. Although the three
prostate cancer datasets were obtained using different sequencing
platforms and patient samples, the average AUC and Accuracy
associated with our method were > 0.80. Therefore, our method
detected accurate classification biomarkers (miRNA-mediated
subpathways), which may be useful for diagnosis, and they had
strong generalization ability and classification power.

Evaluating Our SVM Model in Another 10
Cancer Datasets
So far, we have shown that the set of classification biomarkers
(miRNA-mediated subpathways) work for prostate cancers.
The consistency of these biomarkers was demonstrated by
evaluating the SVM model both in within-dataset and cross-
datasets analyses. Nevertheless, we had to consider whether the
activity profile could be used to classify samples of other cancers.
A total of 31 cancer datasets were downloaded from UCSC
Xena (see text footnote 1). To avoid overfitting, we subjected
10 datasets to further analysis, each of which had >200 samples
and sample-matched miRNA and gene expression profiles. We
performed 10 fivefold cross-validation experiments on the 10
datasets (150 AUCs and Accuracies were calculated) and obtained
the average AUCs and Accuracies (Figures 5A,B). To ensure
an unbiased evaluation, the activity profiles in the 10 datasets
were calculated to build the classifiers, and the frequency of each
miRNA-mediated subpathway in each cancer was counted. The
miRNA-mediated subpathways with frequency >50 were used as
risk biomarkers for each cancer. A total of 56 risk biomarkers

were used for further analysis, and most of them were related
to specific cancers. Only eight miRNA-mediated subpathways
occurred in >5 cancers, while 19 occurred in a single cancer only.
The result implied that our method could detect cancer-specific
risk biomarkers (miRNAs).

For example, hsa-let-7c, hsa-let-7i, hsa-let-7b, and hsa-let-7g
occurred in seven, six, five, and five, respectively. Overwhelming
evidence has demonstrated that the miRNA let-7 family (−a,
−b, −c, −d, −e, −f, −g, and −i) plays regulatory roles at
the transcriptional and post-transcriptional levels among various
species, and their aberrant expression might be closely linked
to the pathogenesis of cancers (Gibadulinova et al., 2020; Liu
et al., 2020). According to our method, hsa-miR-191 appeared
130 times in the frequency list of liver hepatocellular carcinoma
(LIHC), and it has been reported to play an important role
in hepatocellular carcinoma (HCC) (Tian et al., 2019). Its
overexpression reversed the anti-tumor effect of ANRIL on
HepG2 cell proliferation, apoptosis, migration, and invasion
(Huang et al., 2018). The hsa-miR-141 appeared in kidney renal
clear cell carcinoma (KIRC) with high frequency, and it may play
a crucial role in the diagnosis of kidney carcinoma. It also robustly
discriminated between malignant and non-malignant tissues, and
inhibiting it in normal renal proximal tubule epithelial cells
(RPTEC) induced pro-cancerous characteristics (Dasgupta et al.,
2020). It also acted as a potential biomarker for discriminating
renal clear cell carcinoma (ccRCC) from normal tissues, and
it acted as a crucial suppressor of ccRCC cell proliferation
and metastasis by modulating the EphA2/p-FAK/p-AKT/MMPs
signaling cascade (Chen et al., 2014).

The external evaluation in the 10 cancer datasets implied that
practical risk biomarkers (miRNA-mediated subpathways) could
be detected using our method. Moreover, the key target genes
of the identified miRNAs were located in multi-pathway core
regions. Identification of these regions provides opportunities to
explore the interactions among genes, miRNAs, and pathways
during cancer development.

Case Study
Applying our method to the “PRAD-TCGA” dataset, we
obtained 10 miRNA-mediated subpathways (miRNAs) and their
721 differently expressed target genes. The miRNA-mediated
subpathway activity profile was inferred based on the SDE
target gene expression and topological weights. Thus, the risk
biomarkers (miRNA-mediated subpathways) had a stronger
classification capacity.

We identified the shared miRNA-mediated subpathway
biomarkers by comparing the results between the “PRAD-
TCGA,” GSE21036, and GSE14794 datasets. The hsa-miR-106b
and hsa-miR-20b were the biomarkers that were shared among
the three datasets. For the former miRNA, there were 273
miRNA–SDE target gene pairs, and for the latter, there were
277. The SDE target genes of these two miRNAs were annotated
to several pathways, including “Metabolic pathways” (hsa01100)
and “Protein processing in endoplasmic reticulum” (hsa04141).
These pathways were ranked first and second, respectively, in
the pathway list based on p-values (FDR < 0.05, Benjamini
and Hochberg method). Previous gene expression research
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FIGURE 4 | Classification performances of our SVM model in within-dataset analyses. (A) Average AUC and (B) average Accuracy of the eight methods, including
our method, which was calculated based on 150 SVM classifiers in each within-dataset analysis. (C) Average AUC and (D) average Accuracy of the eight methods,
including our method, which was calculated based on 50 SVM classifiers in the “TCGA–GSE21036” and “TCGA–GSE14794” cross-dataset analyses.
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FIGURE 5 | Classification performances of our SVM method based on 10 other cancers. (A) Average AUCs and (B) average Accuracies of the eight methods,
including our method.

has shown that metastasis in prostate cancer is related to
metabolic pathway dysregulation (Rhodes et al., 2002) and
dysregulated transcriptional programs (LaTulippe et al., 2002).
Research has also shown that, in androgen-independent prostate
cancer cells, several small-molecule modulators of Sigma1
altered the endoplasmic reticulum (ER)-associated protein
homeostasis pathways, including the unfolded protein response
and autophagy (Maher et al., 2018). Furthermore, the SDE target
genes of the two abovementioned miRNAs were also annotated
to the “TGF-beta signaling pathway” (hsa04350), which was one
of the top 10 pathways in the pathway list. Research has shown
that induction of miR-106b plays a crucial role in the suppression
of the proliferation of prostate cancer cells in a process that
involves the TGF-beta signaling pathway (Zhang et al., 2012).
Additionally, in human prostate cancer, miR-20b targets and
downregulates TGFBR2, which in turn affects Smad2 activation
and E2F1 expression, dysregulating the miR-20b-5p expression
and contributing to TGF-β-induced epithelial-to-mesenchymal
transition (Qi et al., 2019).

Notably, several miRNAs (such as hsa-miR-98, which was
identified as a biomarker in the “PRAD-TCGA” analysis, and
hsa-miR-301a, which was identified as a biomarker in both
the “PRAD-TCGA” and GSE14794 analyses) play important
roles in prostate cancer by regulating their target genes and
thereby regulating pathways related to cancer. For example,
hsa-miR-98 (which was annotated to 186 pathways) targeted
nine differentially expressed genes in the “TGF-β signaling
pathway” (hsa04350; E2F5, CDKN2B, MYC, BMP6, ACVR2B,
SMAD7, ZFYVE16, RPS6KB2, and CHRD), and TGF-β affects
multiple cellular responses via the canonical SMAD pathway and
noncanonical pathways like the MAPK and PI3K-AKT pathways
(Hamidi et al., 2017). Regarding E2F5, the E2F5/p38 axis plays

a major role in uncontrolled prostate cancer cell proliferation
via pSMAD3L activation, which provides strong support for
using E2F5 as a biomarker for early detection of prostate cancer
(Majumder et al., 2016). Additionally, regarding CDKN2B,
upregulation of inhibitor of differentiation (Id1 and Id3)
proteins attenuates all three cyclin-dependent kinase inhibitors
(CDKN2B, -1A, and -1B), resulting in a more aggressive prostate
cancer phenotype (Sharma et al., 2012). Moreover, regarding
MYC, MYC-regulated fatty acid synthesis has been reported to
be a valid target for treatment and/or prevention of prostate
cancer. Not only are these three genes (E2F5, CDKN2B, and
MYC) known to be associated with prostate cancer, but the six
other target genes of hsa-miR-98 (BMP6, ACVR2B, SMAD7,
ZFYVE16, RPS6KB2, and CHRD) have also been reported to
be relevant to prostate cancer, according to previous studies
(Supplementary Table 1-Genes). Moreover, hsa-miR-301a was
annotated to the “p53 signaling pathway” (hsa04115), which can
play a key role in the effectiveness of certain prostate cancer
treatments. The ATM-CHEK2-p53 axis acts as a backbone for
the DNA damage response (DDR) and is hypothesized to act as
a barrier to cancer initiation (Stolarova et al., 2020). Significant
associations with familial prostate cancer risk have been reported
for both CHEK2 and ATM (Wokolorczyk et al., 2020).

The case study indicated that our SVM model could identify
the key miRNAs, which may be useful as classification biomarkers
for prostate cancer.

DISCUSSION

Prostate cancer is a complicated cancer that has a high
level of heterogeneity, many symptoms, and multiple subtypes.
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In fact, prostate cancer has a lack of clear classification
biomarkers because of its high heterogeneity and molecular
instability. Clinically, age, prostate-specific antigen level, and
Gleason score are generally used to diagnose this cancer
among males. The miRNAs in blood and urine represent a
convenient source of biomarkers for prostate cancer diagnosis
and assessment of treatment efficacy due to their high stability
and the low invasiveness of the sample collection process
(Konoshenko et al., 2020).

Using machine learning to identify risk classification
biomarkers of prostate cancer is a challenging task. With the
increasing amount of high-throughput sequencing data, more
and more miRNAs that are closely related to prostate cancer,
such as hsa-miR-134 (Pelka et al., 2020), hsa-miR-504 (Katoh
et al., 2013), and the hsa-let-7 family (Liu et al., 2012; Rong
et al., 2020), have been discovered. Many researchers are now
putting effort into identifying robust miRNA biomarkers of
prostate cancer. However, there are no previously published
sets of specific miRNA biomarkers for classifying samples
into normal and prostate cancer groups, and the results of
studies on miRNA biomarkers in other cancers often report
conflicting results.

Due to advances in high-throughput multi-omics
technologies, integrating multi-omics data into a special
score is a promising approach to identifying biomarkers that
can classify normal and cancerous samples. This integration
strategy eliminates the dependence of machine learning on
single types of data, such as gene or miRNA expression data.
Thus, the approach provides an opportunity to detect robust
classification biomarkers.

As is well known, the causes of cancers are complicated.
Some researchers are convinced that biological pathways are
disrupted by the target genes of miRNAs. Moreover, the target
genes of single miRNAs can be found in several pathways.
Pathways, miRNAs, and their target genes are involved in the
occurrence, development, and metastasis of cancer, with the
miRNAs playing a bridging role between pathways and genes.
Also, many researchers believe that disease phenotypes are highly
related to key local subpathways, rather than entire pathways
(Li et al., 2013). We hold the opinion that our method is
a promising way to detect classification biomarkers and to
understand the biological mechanisms of cancer. The topological
structure of biological networks should be considered when
identifying risk biomarkers.

The purpose of our study was to identify robust classification
biomarkers, and our method precisely classified samples. The
method involved five steps: merge pathways and construct
network; perform DRW; infer miRNA-mediated subpathway
activity; select features and evaluate classification method;
and obtain risk biomarkers. Each classification biomarker
was composed of multiple types of integrated data, which
included the GDPN topological information and the expression
levels of miRNAs and their target genes. We reassigned
new topological weights to the gene nodes using a DRW-
based method. More topological weight was assigned to

the gene nodes that exhibited topological importance.
We amplified the signal of dysregulated hub genes and
reassigned them larger topological weights because the
expression of hub genes tends to vary only weakly between
cases and controls (Lu et al., 2007). The miRNA-mediated
subpathway activities were robust, and they may lead to
better classification.
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