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Understanding the substrate specificity of HIV-1 protease plays an essential role in the

prevention of HIV infection. A variety of computational models have thus been developed

to predict substrate sites that are cleaved by HIV-1 protease, but most of them normally

follow a supervised learning scheme to build classifiers by considering experimentally

verified cleavable sites as positive samples and unknown sites as negative samples.

However, certain noisy can be contained in the negative set, as false negative samples

are possibly existed. Hence, the performance of the classifiers is not as accurate as

they could be due to the biased prediction results. In this work, unknown substrate

sites are regarded as unlabeled samples instead of negative ones. We propose a

novel positive-unlabeled learning algorithm, namely PU-HIV, for an effective prediction

of HIV-1 protease cleavage sites. Features used by PU-HIV are encoded from different

perspectives of substrate sequences, including amino acid identities, coevolutionary

patterns and chemical properties. By adjusting the weights of errors generated by

positive and unlabeled samples, a biased support vector machine classifier can be built

to complete the prediction task. In comparison with state-of-the-art prediction models,

benchmarking experiments using cross-validation and independent tests demonstrated

the superior performance of PU-HIV in terms of AUC, PR-AUC, and F-measure. Thus,

with PU-HIV, it is possible to identify previously unknown, but physiologically existed

substrate sites that are able to be cleaved by HIV-1 protease, thus providing valuable

insights into designing novel HIV-1 protease inhibitors for HIV treatment.

Keywords: HIV-1 protease, cleavage site prediction, positive-unlabeled learning, biased SVM, substrate specificity

1. INTRODUCTION

As the causative agent of acquired immunodeficiency syndrome (AIDS), human immunodeficiency
virus type 1 (HIV-1) is able to destroy the immune system of human body by spreading in a
cell-free system or from cell to cell (Abela et al., 2012). A series of laboratory-based experiments
have been conducted in order to better understand the mechanisms of HIV-1 replicative cycle.
Their results indicate that HIV-1 protease (PR) plays an essential role in producing mature and
infectious virions (Sadiq et al., 2012). In particular, HIV-1 PR guarantees the maturation of HIV
virions by cleaving the viral precursor Gag and Gag-Pol polyproteins into infectious virus particles
with aberrant structure (Weber et al., 1989). Hence, for the purpose of HIV treatment, an efficient
way is to prevent the HIV-1 replication by inhibiting the activity of corresponding PR.
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A variety of HIV-1 PR inhibitors have thus been developed.
Due to their capability of tightly binding to HIV-1 PR, these PR
inhibitors make it possible for peptide substrates to avoid being
cleaved by HIV-1 PR. Obviously, the substrate specificity of HIV-
1 PR is of great significance for designing novel and reliable HIV-
1 PR inhibitors, thus considerably minimizing the side effects
caused by them (Devroe et al., 2005). Certain efforts have been
made by laboratory-based experiments to identify the cleavage
sites targeted by HIV-1 PR. Although promising, they have
the disadvantages of being time-consuming and labor-intensive
(Wagner et al., 2015). Moreover, since both sequence homology
and binding motif are rarely observed for the cleavage sites in
the viral polyproteins (Kontijevskis et al., 2007), the substrate
specificity of HIV-1 PR could be only partially understood at
present. In this regard, the problem of effectively identifying
HIV-1 PR cleavage sites is still challenging.

With the development of machine learning techniques in
the last few decade years, many computational models have
been proposed to overcome the aforementioned disadvantages
of laboratory-based experiments from an alternative view. These
models normally consider the identification of HIV-1 PR cleavage
sites as a typical prediction problem, which is then addressed by
integrating different features of substrate sequences with various
classifiers. Although the substrate specificity of HIV-1 PR is
more likely to be determined by shape complementarity between
substrates and HIV-1 PR instead of simply relying on a particular
amino acid sequence (Prabu-Jeyabalan et al., 2002), the sequence
information of substrates are primarily adopted to perform the
prediction task due to its wide availability, low cost and generally
satisfactory performance especially for the large-scale prediction
of HIV-1 PR cleavage sites.

Since HIV-1 protease specifically binds with a precursor
protein in octapeptide length before cleavage, susceptible sites in
a substrate are considered as octapeptide regions, each of which
is sequentially composed by eight amino acids. Two problems
have to be addressed for achieving an accurate prediction of
HIV PR cleavage sites. The first problem is feature extraction
where a set of relevant features is generated to encode octamer
sequences, and the other one is the selection of an appropriate
classifier used to determine the substrate specificity of HIV-1
PR. Existing prediction models develop different solutions to
address these two problems, and some representative works are
presented as follows.

In the earlier stage, many researchers concentrated on
employing different classification models to predict HIV-1 PR
cleavage sites. In particular, Thompson et al. (1995) applied an
artificial neural network (ANN) with a standard feed-forward
multilayer perceptron to classify cleavage sites from a small set
of octapeptides. Narayanan et al. (2002) constructed a decision
tree model to extract useful rules for HIV-1 PR cleavage site
prediction, but found that the performance of decision tree was
not as well as that of ANN. After that, Cai et al. (2002) made use
of support vector machine (SVM) with different kernels to solve
the prediction problem, and the experiment results indicated that
among all kernels a Gaussian kernel yielded the best accuracy.
Kontijevskis et al. (2007) integrated rough set theory with genetic
algorithms to extract rules related to the existence of cleavage

sites and concluded that a cleavage event occurred with a greater
chance if at least three amino acids were combined in the
substrate. As a web-server, HIVcleave (Shen and Chou, 2008)
was established by combining discriminant function algorithm
and vectorized sequence-coupling model. One should note that
most of previous works considered the prediction of HIV-1 PR
cleavage sites as a non-linear problem, but Rögnvaldsson and You
(2004) argued that this problem ought to be linear and could be
solved with a simple linear model, such as linear SVM (LSVM). A
possible reason for the lack of evidence supporting the non-linear
nature of the prediction problem was ascribed to the insufficient
data used for training and testing.

Regarding the linear separability observed in the octamer
sequences, the problem of how to encode octapeptides with
features distinguishing such separability has attracted much
attention recently. Gök and Özcerit (2013) used the OETMAP
coding scheme based on amino acid features and integrated
it with a linear classifier. An cross-validation comparison with
standard coding schemes was performed and the experiment
results showed that the OETMAP coding scheme improved
the prediction performance. Rögnvaldsson et al. (2015) further
adopted a LSVM model combined with orthogonal coding, and
claimed that the proposed model achieved a better performance
in predicting the cleavage sites of HIV-1 protease when
compared with state-of-the-art prediction models. PROSPERous
(Song et al., 2018) was developed as a reliable integrated
system by using different scoring functions to construct
feature vectors for octapeptides. iProt-Sub (Song et al., 2019)
integrated heterogeneous sequence and structural features, and
then used a two-step feature selection procedure to further
remove redundant and irrelevant features, thereby improving the
prediction accuracy of cleavage sites. As the latest attempt in this
direction, Hu et al. (2020a) proposed an novel feature extraction
method, namely EvoCleave, to identify coevolutionary patterns
from substrate sequences with the ability of providing certain
evidence to support or refute the existence of cleavage site in
a substrate. DeepCleave (Li et al., 2020) used deep learning to
extract high-quality cleavage site features from protein substrate
sequences, and employed a convolutional neural network with
transfer learning function to train prediction models.

Most of prediction models mentioned above usually construct
a binary classification model by considering cleavable and non-
cleavable octapeptides as positive and negative training sets,
respectively. Although cleavable octapeptides are experimentally
confirmed, non-cleavable octapeptides are artificially generated
by adopting different strategies. For example, Rögnvaldsson et al.
(2015) shifted two positions toward either side of the cleavage
site along the peptide and labeled the resulting octamers as non-
cleavable. Obviously, the artificial generation of non-cleavable
octapeptides are prone to encounter false negative results, which
in return degrade the prediction accuracy of classifiers. In this
regard, the classification models built on the positive and noisy
negative training sets are not capable of being accurate as they
could in predicting previously unknown, but physiologically
existed HIV-1 PR cleavage sites.

Rather than composing a negative training set with unknown
octapeptides, we treat them as an unlabeled set for training.
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FIGURE 1 | The workflow of PU-HIV.

In this work, a novel positive-unlabeled (PU) prediction
model, namely PU-HIV, is proposed to build a more accurate
classifier for predicting HIV-1 PR cleavage sites based on
positive and unlabeled training sets. To do so, PU-HIV first
uses a comprehensive combination of amino acid identities,
coevolutionary patterns and chemical properties to represent
octapeptides into feature vectors. Such a combination allows PU-
HIV to fully exploit the sequence information of substrates for
the prediction task. Then, PU-HIV adopts a biased formulation
of LSVM to distinguish the penalties of incorrectly classifying
positive and unlabeled octapeptides, as an accurate classifier can
be constructed by maximizing the number of unlabeled examples
classified as negative while constraining the positive examples
to be correctly classified according the PU learning theory (Liu
et al., 2002). Finally, a Biased SVM classifier is built by using
positive and unlabeled training sets for predicting novel HIV-1
PR cleavage sites.

As the first attempt in applying PU learning for HIV-1
PR cleavage site prediction, PU-HIV has been compared
with several state-of-the-art prediction models, including
HIVcleave (Shen and Chou, 2008), Rögnvaldsson et al. (2015),
PROSPERous (Song et al., 2018), iProt-Sub (Song et al.,
2019), EvoCleave (Hu et al., 2020a), and DeepCleave (Li
et al., 2020). Experiment results demonstrated the promising
accuracy of PU-HIV, as it yielded the best scores of AUC,
PR-AUC, and F-measure across almost all datasets used
for evaluation. Hence, we reason that the novel HIV-1 PR
substrate sites predicted by PU-HIV are able to provide

valuable insights into designing new HIV-1 PR inhibitors
for HIV treatment.

2. MATERIALS AND METHODS

PU-HIV is composed of three steps including feature vector
construction, biased SVM classifier training and prediction. In
particular, PU-HIV makes use of a combination of amino acid
identities, coevolutionary patterns, and chemical properties to
construct the feature vectors of octapeptides. After that, a biased
SVM classifier is built to predict novel HIV-1 PR substrate sites
based on positive and unlabeled training sets, and lastly its
performance is evaluated with several metrics. The workflow of
PU-HIV is presented in Figure 1.

2.1. Experimental Datasets
To avoid any potential bias resulted from the selection of
training and testing sets in performance evaluation, we selected
five benchmarking datasets denoted as 301Dataset, 746Dataset,
1625Dataset, impensDataset, and schillingDataset, respectively.
All these five datasets are available to be downloaded from
the UCI machine learning repository (Dua and Graff, 2019).
A detailed description about each of datasets is presented in
Table 1. We noted that all the datasets except for 746Dataset
were imbalanced, as the size of positive set was much less than
that of unlabeled set. Obviously, such an imbalanced distribution
is able to significantly manipulate the training process of a
classifier, thus affecting the predictive accuracy. Moreover, the
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TABLE 1 | Detailed descriptions of five datasets.

Dataset References Total P U

301Dataset Chou (1996) 301 62 239

746Dataset You et al. (2005) 746 401 345

1625Dataset Kontijevskis et al. (2007) 1,625 374 1,251

impensDataset Rögnvaldsson et al. (2015) 947 149 798

schillingDataset Rögnvaldsson et al. (2015) 3,272 434 2,838

The column of References gives the original source of corresponding dataset. The column

of Total is the number of all octapeptides in the dataset. The columns of P and U are the

sizes of positive and unlabeled sets, respectively.

robustness of PU-HIV could also be indicated by its performance
on these datasets.

2.2. Feature Vector Construction
Each octapeptide is a sequence composed of eight amino acids. In
particular, given an alphabet set 3 = {λi}(1 ≤ i ≤ n3, n3 = 20)
representing a set of 20 distinct amino acids, an octapeptide is

represented as P = P4P3P2P1P
′

1P
′

2P
′

3P
′

4 where Pi, P
′

j ∈ 3(1 ≤

i, j ≤ 4). The cleavage site is located between P
′

1 and P1. To
fully exploit the sequence information of octapeptides, we decide
to use a combination of three different features, i.e., amino
acid identities, coevolutionary patterns and chemical properties,
for feature vector construction. The details of extracting these
features are presented as follows.

2.2.1. Amino Acid Identities
To distinguish amino acids in the feature space, we adopt
an orthogonal encoding scheme where each amino acid is
represented by a orthogonal vector with 20 bits. Taking λi ∈ 3 as
an example, the i-th element in its corresponding vector is set
to 1 while the other elements are set to −1. In dong so, each
octapeptide is thenmapped to 160-dimensional vector in a sparse
orthogonal representation. Moreover, since the value of the last
element in an orthogonal vector is constrained by the values of
the other seven elements, the dimensionality could further reduce
from 160 to 152 by simplifying removing the constraints for all
the eight amino acids in an octapeptide.

However, due to the shift-variant property of cleaved
octapeptides, it is possible that the vectors of two cleaved
octapeptides are located very distantly in the orthogonal space.
Taking two octapeptides ADIYTEHA and YSAFLVAD as an
example, these two octapeptides are verified to be cleaved in
the schilling dataset, but their amino acids at the same position
are different. In this regard, the Hamming distance between
them is the largest in the orthogonal space, and accordingly it
is difficult for classifiers to group them into the same category.
To minimize the effect of shift-variance, we also incorporate the
other two kinds of features into constructing the feature vectors
of octapeptides.

2.2.2. Coevolutionary Patterns
In HIV envelope proteins, the change in amino acid at one
residue sometimes may give rise to the change at another residue

(Travers et al., 2007). Motivated by this observations, EvoCleave
targets to discover the knowledge of coevolving between pairwise
amino acids that are capable of providing certain evidence to
support or refute the existence of cleavage site in substrates by
HIV-1 PR. Assuming that (λi, λj)k denotes that λi is followed by
λj at k− 1 positions later, EvoCleave determines whether (λi, λj)k
is a coevolutionary pattern by (1).

diff
(

(λi, λj)k
)

=

p
(

(λi, λj)k
)

− p
(

(λi, ∗)k
)

p
(

(∗, λj)k
)

√

p
(

(λi ,∗)k
)

p
(

(∗,λj)k
)

n1

(

1− p
(

(λi, ∗)k
)

)(

1− p
(

(∗, λj)k
)

)

(1)

In the above equation, p
(

(λi, λj)k
)

, p
(

(λi, ∗)k
)

, and p
(

(∗, λj)k
)

are
the respective probabilities of observing (λi, λj)k, λi, and λj in
octapeptides, and n1 is the number of octapeptides. The purpose
of (1) is to verify whether (λi, λj)k is significantly frequently
observed. Hence, (λi, λj)k is considered as a coevolutionary
pattern at a confidence level of 95% if diff

(

(λi, λj)k
)

≥ 1.96.
For each coevolution pattern, EvoCleave further utilizes (2) to
quantify the amount of evidence provided by this pattern from
the perspective of mutual information.

weight
(

(λi, λj)k
)

=

log
p
(

(λi, λj)k
)

p
(

(λi, ∗)k
)

p
(

(∗, λj)k
) − log

p
(

(λi, ∗)k
)

− p
(

(λi, λj)k
)

p
(

(λi, ∗)k
)

(1− p
(

(∗, λj)k
)

(2)

Given (1) and (2), EvoCleave is able to extract all coevolutionary
patterns from a set of octapeptides. Assuming that there are
total n2 coevolution patterns, each octapeptide, i.e., P, is then
mapped to a n2-dimensional feature vector. For each element in
the feature vector, its value is set to the weight of corresponding
coevolutionary pattern if this pattern and 0 otherwise. One
should note that since the negative set is considered as unlabeled
in the PU learning, we only apply EvoCleave to extract the
coevolutionary patterns from cleaved octapeptides.

2.2.3. Chemical Properties
Apart from amino acid identities and coevolutionary patterns,
the chemical properties of amino acids are additionally
considered for feature vector construction. In particular, all
amino acids in 3 can be divided into eight different groups
according to their chemical/structural properties (Dang et al.,
2008). The grouping information is shown in Table 2. Similar
to the procedure of handling amino acid identities, each amino
acid is mapped into an orthogonal vector with only 8 bits. Taking
λi ∈ 3 as an example, if λi belongs to the k−th chemical group,
the k−th (1 ≤ k ≤ 8) element in its corresponding vector is set to
1 while the other elements are set to−1. Hence, each octapeptide
can be encoded with a 64-dimensional vector. By removing the
eight constraints, the dimensionality could be further reduced
from 64 to 56.

Although both chemical properties and amino acid identities
encode octapeptides by following the orthogonal encoding
scheme, the major difference lying between them is that
orthogonal vectors encoded by chemical properties could, to
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TABLE 2 | The chemical classes to which the 20 amino acids belong.

Chemical group Amino acids

Sulfur-containing C, M

Aliphatic 1 A, G, P

Aliphatic 2 I, L, V

Acidic D, E

Basic H, K, R

Aromatic F, W, Y

Amide N, Q

Small hydroxy S, T

some extent, moderate the effect of shift-variance. Still taking
the two octapeptides ADIYTEHA and YSAFLVAD as an example,
we note that the fourth amino acids, i.e., Y and F, are in the
same chemical group of Aromatic. Hence, the Hamming distance
between them in the orthogonal space of chemical properties is
not as large as in the orthogonal space of amino acid identities.

In sum, after combining the features of amino acid identities,
coevolutionary patterns and chemical properties, we finally are
able to construct a (208 + n2)-dimensional feature vector for
each octapeptide. Next the details of how to apply a biased SVM
classifier for the prediction task are presented.

2.3. Biased SVM Classifier
A classical SVM classifier is to select a hyperplane that can
best separate the positive and negative examples. Even though
it has been argued that a LSVM classifier can achieve a superior
predictive performance (Rögnvaldsson et al., 2015), we are not
able to apply a LSVM classifier to explicitly solve the PU
learning problem involved in this work, as the objective function
formulated for a LSVM classifier fails to distinguish the training
errors resulted from positive and unlabeled octapeptides. It is
for this reason that we adopt a biased formulation of LSVM to
complete the prediction task of HIV-1 protease cleavage sites.

Assuming that D =
{

(xi, yi)
}

(1 ≤ i ≤ n) is the training
set, where xi denotes the feature vector of Pi and yi ∈ {−1, 1}
is the label of Pi, the first m − 1 octapeptides are verified to
be cleaved by HIV-1 PR and they are positive examples labeled
as yi = 1(1 ≤ i ≤ m − 1), while the rest are unlabeled
octapeptides whose labels are set to yi = −1(m ≤ i ≤ n).
Following Glasmachers and Igel (2010), we introduce two soft
margin parameters, i.e., C1 and C2, to indicate the different
tolerances on the training errors generated by positive and
unlabeled octapeptides, respectively. These two parameters are
also capable of learning from noisy unlabeled set that might
contain cleaved octapeptides. The biased formulation of SVM
with two L1-norm soft margins is defined by (3).

Minimize :
1

2
ωTω+C1

m−1
∑

i=1

ξi + C2

n
∑

i=m

ξi

s.t. yi(ω
Txi + b) ≥ 1−ξi, ξi ≥ 0, i = 1, 2, . . . , n

(3)

In (3), ω is the normal vector of hyperplane separating positive
and unlabeled octapeptides, ξi refers to the corresponding slack
variable used to calculate the error cost for each octapeptide, and
b denotes the offset of hyperplane from the origin along ω. Based
on the biased formulation of SVM, a biased LSVM can be built by
incorporating the linear kernel function defined by (4) into (3).

kernel(xi, xj) = xTi · xj (4)

The performance of a biased LSVM can be fine-tuned by
adjusting the values of C1 and C2, and we intend to assign a
larger value to C1 and a smaller one to C2. There are two reasons
for such an intention. First, a larger value of C1 means a greater
penalty to false positive predictions, thus ensuring that positive
examples, i.e., cleavable octapeptides, are correctly classified as
much as possible. The second reason is that a smaller value of
C2 is able to maximize the number of unlabeled octapeptides as
non-cleavable, but does not reject the possibility of containing
cleavable octapeptides in the unlabeled set.

Regarding the implementation of a biased LSVM, we adopt
the svm.SVC library provided by the sklearn package (Pedregosa
et al., 2011). When determining the values of C1 and C2, we
additionally introduce a parameter β to control the difference
between C1 and C2 by using (5).

C2 =
C1

β
(5)

During the fine-tuning phase, the values of C1 and β are varied
from the sets {0.03123, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32}
and {2, 5, 10, 20, 30, 50, 100, 200}, respectively. Since β is larger
than 1, the value of C2 is always less than C1 according to (5),
thus satisfying our intention regarding the setting of C1 and
C2. After evaluating all possible combinations of C1 and C2,
we use the combination with the best performance as the final
setting to train the biased SVM classifier for predicting HIV-1 PR
cleavage sites.

3. RESULTS

In order to evaluate the performance of PU-HIV, we conducted a
series of extensive experiments and also compared PU-HIV with
several state-of-the-art prediction models including EvoCleave
(Hu et al., 2020a), Rögnvaldsson et al. (2015), HIVcleave (Shen
and Chou, 2008), PROSPERous (Song et al., 2018), iProt-Sub
(Song et al., 2019), and DeepCleave (Li et al., 2020). Among them,
EvoCleave, Rögnvaldsson et al. (2015), HIVcleave, PROSPERous,
and DeepCleave (Li et al., 2020) are sequence-based models while
iProt-Sub integrates different sources of biological information to
complete the prediction task.

3.1. Evaluation Metrics
Three independent evaluation metrics, i.e., the area under the
receiver operating characteristics curve (AUC), the area under
the Precision-Recall receiver operating characteristics curve (PR
ROC), and F-measure, were adopted to evaluate the accuracy of
each algorithm, and their brief descriptions are given as follows:

Frontiers in Genetics | www.frontiersin.org 5 March 2021 | Volume 12 | Article 658078

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Li et al. HIV-1 Protease Cleavage Site Prediction

The receiver operating characteristics (ROC) analysis
considers the prediction accuracy as a trade-off between
sensitivity and specificity, and the area under the ROC curve
(AUC) is commonly used as a summary measure of the ROC
curve. The AUC scores are within the range [0, 1]. The prediction
performance of an algorithm is better if the corresponding AUC
score is closer to 1 and vice versa. Similar to the ROC analysis,
the Precision-Recall ROC (PR ROC) analysis concentrates on
the trade-off between precision and recall by drawing a curve
of precision vs. recall given different thresholds. The PR-AUC
scores are computed by trapezoidal integral for the area under
the precision-recall curve. The reason why we additionally
adopted PR-AUC was that according to Table 1, most of datasets
were imbalanced, as the number of cleaved substrates was much
less than that of uncleaved ones. The PR ROC analysis has
shown to be better than ROC for imbalanced datasets (Davis and
Goadrich, 2006).

F-measure is the harmonic mean of precision and recall, and
it has been widely adopted for performance valuation in different
bioinformatics applications (Hu et al., 2020b). Its definition is
given as follows.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-measure =
2× Precison× Recall

Precision+ Recall

(6)

In (6), TP is the number of correctly predicted octapeptides in the
positive set, FP is the number of unlabeled octapeptides predicted
to be cleavable, and FN is the number of cleavable octapeptides
predicted to be uncleavable. In the experiments, the F-measure
scores were computed at 50% threshold. In other words, an
octapeptide is predicted to be cleavable if its probability obtained
by PU-HIV is larger than 0.5.

3.2. 10-Fold Cross Validation
Results of the 10-fold cross validation (CV) experiment are
presented in Table 3. In particular, each dataset was randomly
divided into 10 equal-sized parts, we then alternatively used nine
parts to train the PU-HIV classifier and evaluated it with the
rest part.

Regarding the performance of PU-HIV in terms of AUC,
we found that PU-HIV yielded the largest AUC scores in all
the datasets except for 301Dataset where PU-HIV ranked as
the second best algorithm and was only worse than HIVcleave.
The average AUC score obtained by PU-HIV was better by
7.83, 2.38, 10.71, 36.7, 31.48, and 105.95% than EvoCleave,
Rögnvaldsson et al. (2015), PROSPERous, HIVcleave, iProt-Sub,
and DeepCleave, respectively. Another point worth to noting
was the performance of HIVcleave in terms of AUC, as the
performance of HIVcleave in the other datasets was not as
good as in 301Dataset. In particular, HIVcleave performed the
worst in impensDataset and schillingDataset, and it was the
second worst algorithm in 746Dataset and 1625Dataset. To

explain the reason for the contrasting performance of HIVcleave
between 301Dataset and the other datasets, we conducted an
in-depth investigation to the prediction results of HIVcleave
and two things were observed. First, HIVcleave only provided
the prediction results for 69 octapeptides in 301Dataset and
accordingly the rejection rate of HIVcleave was as large as 77%.
Second, for cleavable octapeptides that were correctly predicted
by HIVcleave, the probabilities for most of them were below
0.5, thus yielding a smaller score of Recall as indicated in
Table 3. Hence, HIVcleave was only able to make a prediction
for octapeptides it could handle and moreover the confidence
of HIVcleave on its prediction results was not as strong as
that of PU-HIV.

We also noted that the Recall performance of PU-HIV was
not as good as its Precision performance. Since the biased
SVM classifier adopted by PU-HIV considers the unknown
octapeptides as unlabeled samples instead of negative ones,
it is difficult for PU-HIV to misclassify known cleavable
octapeptides as negative due to the higher risk posed by
the tolerance on the training errors generated by unlabeled
octapeptides. In this regard, PU-HIV is very careful about
the prediction of cleavable octapeptides and thus less known
cleavable octapeptides are identified by PU-HIV. As a result,
the Recall performance of PU-HIV performed worse than the
Precision performance of PU-HIV.

The performance of PU-HIV in terms of PR-AUC and
F-measure could be a strong indicator to demonstrate the
promising accuracy of PU-HIV in predicting HIV-1 PR cleavage
sites, as PU-HIV yielded the largest PR-AUC and F-measure
scores for each dataset. Moreover, when compared with the
AUC scores, a bigger margin was generated by PU-HIV for
the PR-AUC and F-measure scores. A possible reason for that
phenomenon was ascribed to the imbalance between positive
and unlabeled octapeptides in most of datasets. Recall that the
intuition of adopting the PR ROC analysis was to objectively
measure the performance of each algorithm in imbalanced
datasets. The superior performance of PU-HIV in terms of PR-
AUC further verified that PU-HIV was more robust to the
imbalance situation encountered in the training.

Moreover, comparing PU-HIV with iProt-Sub that
integrated heterogeneous sequence and structural features,
we noted that PU-HIV was never worse than any of them.
Hence, the consideration of PU learning theory could allow
prediction models solely resting on substrate sequences
outperform those integrating different sources of biological
information. On the other side, a possible reason for the
poor performance of iProt-Sub was that combining different
sources of biological information may, to some extent, confuse
the prediction model, thus negatively affecting the accuracy
performance. In this regard, an effective combination of
features extracted from a single biological source, such as
the sequence information considered in this work, was more
useful for improving the performance of predicting HIV-1 PR
cleavage sites.

To better indicate the improvement resulted from the
adoption of biased SVM, we additionally developed a variant of
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TABLE 3 | Experiment results of 10-fold CV.

Dataset Model AUC PR-AUC
F-measure

Precision Recall F-measure

301Dataset

PU-HIV 0.96 0.89 0.87 0.76 0.81

PU-HIV with standard SVM 0.96 0.88 0.86 0.77 0.81

EvoCleave 0.91 0.81 0.37 0.94 0.53

Rögnvaldsson et al. (2015) 0.93 0.86 0.85 0.74 0.79

PROSPERous 0.94 0.45 0.21 1 0.34

HIVcleave 1 0.61 1 0.55 0.71

iProt-Sub 0.78 0.53 0.63 0.32 0.43

DeepCleave 0.45 0.2 0.13 0.19 0.16

746Dataset

PU-HIV 0.96 0.95 0.91 0.91 0.91

PU-HIV with standard SVM 0.94 0.93 0.89 0.87 0.88

EvoCleave 0.93 0.92 0.9 0.8 0.85

Rögnvaldsson et al. (2015) 0.92 0.91 0.85 0.9 0.87

PROSPERous 0.84 0.53 0.54 1 0.7

HIVcleave 0.74 0.81 0.92 0.7 0.8

iProt-Sub 0.7 0.71 0.71 0.25 0.37

DeepCleave 0.44 0.49 0.41 0.14 0.21

1625Dataset

PU-HIV 0.98 0.95 0.9 0.9 0.9

PU-HIV with standard SVM 0.98 0.94 0.89 0.86 0.88

EvoCleave 0.93 0.84 0.85 0.74 0.8

Rögnvaldsson et al. (2015) 0.97 0.9 0.85 0.8 0.83

PEOSPERous 0.82 0.33 0.23 1 0.38

HIVcleave 0.73 0.61 0.69 0.67 0.68

iProt-Sub 0.68 0.41 0.41 0.26 0.32

DeepCleave 0.46 0.21 0.13 0.14 0.13

impensDataset

PU-HIV 0.92 0.75 0.73 0.65 0.69

PU-HIV with standard SVM 0.92 0.74 0.71 0.62 0.67

EvoCleave 0.88 0.64 0.77 0.42 0.54

Rögnvaldsson et al. (2015) 0.9 0.7 0.69 0.62 0.65

PROSPERous 0.83 0.17 0.16 1 0.27

HIVcleave 0.56 0.29 0.29 0.45 0.35

iProt-Sub 0.72 0.36 0.43 0.34 0.38

DeepCleave 0.45 0.14 0.14 0.34 0.2

schillingDataset

PU-HIV 0.94 0.75 0.73 0.67 0.7

PU-HIV with standard SVM 0.92 0.7 0.62 0.68 0.65

EvoCleave 0.78 0.36 0.5 0.2 0.28

Rögnvaldsson et al. (2015) 0.93 0.68 0.66 0.66 0.66

PROSPERous 0.88 0.15 0.14 0.95 0.24

HIVcleave 0.59 0.34 0.31 0.41 0.35

iProt-Sub 0.75 0.37 0.39 0.34 0.37

DeepCleave 0.52 0.13 0.13 0.43 0.2

*For each dataset, the best results are bolded.

PU-HIV with a standard SVM to perform the prediction task.
According to Table 3, we noted that the average scores of AUC,
PR-AUC, and F-measure obtained by PU-HIV were better by
0.86, 2.57, and 3.27%, respectively than those obtained by the
standard version of SVM. This could also be a strong indicator

that the performance of HIV-1 cleavage site prediction can be
improved by considering the unknown octapeptides as unlabeled
samples instead of negative ones.

Overall, across all datasets, the experiment results
demonstrated the promising accuracy of PU-HIV in
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TABLE 4 | Experiment results of crossdata.

Training set Testing set AUC PR-AUC F-measure

301Dataset

746Dataset 0.94 0.94 0.87

1625Dataset 0.93 0.78 0.76

impensDataset 0.81 0.55 0.54

schillingDataset 0.84 0.44 0.49

746Dataset

301Dataset 0.99 0.98 0.98

1625Dataset 0.99 0.97 0.9

impensDataset 0.84 0.63 0.6

schillingDataset 0.89 0.56 0.56

1625Dataset

301Dataset 0.99 0.98 0.97

746Dataset 0.98 0.98 0.96

impensDataset 0.82 0.59 0.5

schillingDataset 0.88 0.54 0.44

impensDataset

301Dataset 0.94 0.8 0.7

746Dataset 0.89 0.9 0.75

1625Dataset 0.89 0.71 0.63

schillingDataset 0.94 0.71 0.66

schillingDataset

301Dataset 0.96 0.88 0.77

746Dataset 0.93 0.94 0.87

1625Dataset 0.94 0.8 0.72

impensDataset 0.9 0.75 0.64

predicting HIV-1 PR cleavage sites, as it yielded the
best average performance in terms of AUC, PR-AUC,
and F-measure.

3.3. Cross Data Validation
To investigate the prediction accuracy of PU-HIV across
different datasets, we conducted the experiments by alternatively
training PU-HIV from one dataset and testing it on the
other four datasets. The experiment results are given
in Table 4.

It was seen from Table 4 that the performance of PU-HIV
taking 301Dataset, 746Dataset, and 1625Dataset as the training
set was better than that using the other two datasets for training.
To investigate the reason of that phenomenon, we compared
the octapeptides in these datasets and found that there was a
large overlap among the datasets of 301Dataset, 746Dataset, and
1625Dataset. In particular, 299 octapeptides in 301Dataset was
found in 746Dataset while 659 octapeptides in 746Dataset were
covered by 1625Dataset. That is to say, the PU-HIV classifier
trained by using one of 301Dataset, 746Dataset, and 1625Dataset
could perfectly separate cleavable and non-cleavable octapeptides
in the other two dataets, but it may possibly misclassify new
octapeptides. It was also for this reason that the prediction
performance of PU-HIV for impensDataset and schillingDataset
was worse, as these two datasets shared few octapeptides with the
other three datasets.

Besides, the performance of PU-HIV presented in Table 4 also
indicated that it was of great significance to choose appropriate

datasets for training and testing. The PU-HIV classifier could
be overfitting if the training set shared many octapeptides
with the testing set, and accordingly the prediction accuracy
was not evaluated objectively. For all the five datasets used
in the experiments, 301Dataset, 746Dataset, and 1625Dataset
were generated by replacing individual amino acids in cleaved
octapeptides with other amino acids while impensDataset and
schillingDataset were derived from human proteins. Moreover,
we noted that PU-HIV performed the worst on impensDataset
and schillingDataset by using 1625Dataset and 301Dataset for
training. In this regard, we should avoid using 1625Dataset
and 301Dataset as the training set when studying the substrate
specificity in human proteins. Lastly, if we would like to combine
datasets to compose a larger one where more relevant sequence-
based features can be learned by PU-HIV, it is suggested to merge
746Dataset, impensDataset, and schillingDataset. There were two
reasons for this suggestion, one was that the performance of PU-
HIV trained by using these three datasets was generally better
than using the other datasets, and the other was the considerably
less overlap among these three datasets.

3.4. Analysis of Feature Significance and
Contribution
As mentioned before, three different feature sets (amino acid
identities, coevolutionary patterns, and chemical properties)
were used by PU-HIV to predict HIV-1 cleavage sites. To
investigate the respective contributions made by these features
as well as which features were more significant than others,
we performed an in-depth analysis to these features, and then
evaluated the significance of these features for improving the
performance of PU-HIV.

For the sake of simplicity, the feature sets of amino acid
identities, coevolutionary patterns and chemical properties
were denoted as AAI, CoP, and CheP, respectively. Then we
constructed feature vectors for octapeptides under different
combinations of AAI, CoP, and CheP and recorded the average
AUC, PR-AUC, and F-measure scores obtained by PU-HIV in
the 10-fold CV. The results are given in Table 5. Regarding the
performance of PU-HIV for individual feature sets, we noted
that the variant of PU-HIV that only considered AAI yielded
the best performance in terms of all metrics. That is to say, the
orthogonal encoding of amino acid identities was more effective
in capturing the characteristics of substrate specificity and this
observation was also consistent with the conclusion made by
Rögnvaldsson et al. (2015).Whenmore than one feature sets were
combined, the performance of PU-HIV was further improved.
Among all the combinations of two feature sets, AAI + CheP
outperformed the other two combinations. Even though PU-
HIV yielded the best performance when combining all the three
feature sets, we noted that the difference in the performance of
PU-HIV between AAI + CheP and AAI + CheP + CoP was rather
small, as AAI + CheP + CoP only achieved 1.06, 1.18, and 1.26%
relative gains in AUC, PR-AUC, and F-measure, respectively
compared to AAI + CheP. The prediction accuracy of CoP was
not as remarkable as claimed in Hu et al. (2020a). A possible
reason for such a considerable difference could be ascribed to the
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TABLE 5 | Experiment results of feature analysis.

Feature AUC PR-AUC F-measure

AAI 0.94 0.82 0.77

CheP 0.91 0.76 0.7

CoP 0.82 0.63 0.54

AAI + CheP 0.94 0.85 0.79

AAI + CoP 0.94 0.83 0.78

CheP + CoP 0.91 0.79 0.71

AAI + CheP + CoP 0.95 0.86 0.8

Three different types of features are used in different combinations to construct feature

vectors, and then cross-validation is performed on five independent data sets. The

experimental result is the average of five independent data sets.

fact that only coevolutionary patterns extracted from cleavable
octapeptides were used by PU-HIV to construct feature vectors
of octapeptides.

Another point worth noting was that the difference in
AUC between AAI and AAI + CheP + CoP was not as
significant as the difference in either PR-AUC or F-measure.
In particular, both PR-AUC and F-measure are concentrated
on measuring the performance from the perspective of known
cleavable octapeptides. Regarding the features of CoP, we only
applied EvoCleave to extract the coevolutionary patterns from
known cleavable octapeptides. This strategy made PU-HIV
more accurate in predicting known cleavable octapeptides, thus
yielding a better performance in both PR-AUC and F-measure
when compared with AUC.

Overall, for these three feature sets, the consideration of AAI
was the more significant factor to improve the performance of
PU-HIV while CoP contributed the least to separate cleavable
and uncleavable octapeptides.

4. DISCUSSION

To predict HIV-1 PR cleavage sites, traditional machine
learning models typically train a binary classifier using cleavable
octapeptides as positive set and unknown octapeptides as
negative set. It is possible for the negative set that some
cleavable, yet unknown, octapeptides may be contained in
the negative set. Hence, the practical performance of trained
classifiers does not perform as well as they could have due to
the noisy in negative set. In this work, we have proposed a
novel PU learning algorithm PU-HIV by considering unknown
octapeptides as unlabeled set instead of negative one. PU-
HIV first uses a comprehensive combination of three different
feature sets extracted from substrate sequences to represent
octapeptides into feature vectors. After that, PU-HIV adopts
a biased formulation of LSVM to distinguish the penalties
of incorrectly classifying octapeptides in the positive and
unlabeled sets. Experiment results demonstrated that PU-
HIV could better model the classification problem for HIV-
1 PR cleavage site prediction as it achieved significantly
better results than the state-of-the-art prediction models. Thus,
the novel HIV-1 cleavage sites predicted by PU-HIV may

contribute to develop HIV-1 PR inhibitors for the purpose of
AIDS treatment.

There are several reasons for the superior performance of PU-
HIV. First, our motivation is based on the fact that there may
exist some cleavable octapeptides that have not been verified
by laboratory experiments but categorized in the negative set.
This fact is widely observed in many problems of bioinformatics,
such as disease gene identification (Yang et al., 2012), kinase
substrate prediction (Yang et al., 2016), and protein-protein
interaction prediction (Hu and Chan, 2015, 2017) and the
successful applications of PU learning in solving these problems
have verified the advantage of PU learning when handling
the unlabeled data. It is also for this reason that we decided
to adopt the PU learning theory for predicting HIV-1 PR
cleavage sites more accurately. As such, a biased formulation of
LSVM is implemented to maximize the number of unlabeled
octapeptides classified as negative. On the other hand, the error
of misclassifying cleavable octapeptides in the positive set could
be further constrained by assigning a larger penalty, i.e., C1.
Secondly, an integration of feature sets from a single source was
verified to be more useful than that from multiple sources. PU-
HIV only integrates three different feature sets extracted from
the sequences of octapeptides. According to the results presented
in Table 4, these three feature sets were complementary to
each other, thus overcoming the shift-variance problem existed
in cleaved octapeptides. Furthermore, it was the consideration
of all of them that yielded the best performance of PU-HIV.
However, the iProt-Sub model was restrictive with predicting
HIV-1 PR cleavage sites, as the integration of features from
multiple resources could degrade the accuracy by confusing the
prediction model. Thirdly, the selection of training data was
also essential to determine the performance of PU-HIV. Among
all prediction models used for comparison, we noted that the
generalization ability of PU-HIV outperformed the others. That
is to say, the negative influence induced by the noisy in unlabeled
octapeptides could be minimized by the biased LSVM of PU-
HIV. Lastly, according to Table 3, we realized that only using
the ROC analysis may not be able to precisely indicate the
accuracy of prediction models especially for those trained by
imbalanced dataset. A large AUC score only revealed the ability
of clearly separating cleavable and non-cleavable octapeptides,
but it failed to measure the confidence of such separation.
Taking the prediction model proposed by Rögnvaldsson et al.
(2015) as an example, its performance in terms of AUC was
close to that of PU-HIV, but its PR-AUC and F-measure
scores were much less than those obtained by PU-HIV. After
investigating the prediction results of Rögnvaldsson et al. (2015),
we noted that the probabilities of many cleaved octapeptides
were <0.5 and it was for this reason that the prediction model
proposed by Rögnvaldsson et al. (2015) obtained smaller PR-
AUC and F-measure scores. Hence, in addition to AUC, there
is a necessity to consider the PR-AUC and F-measure for a
more precise evaluation about the ability of predicting HIV-1 PR
cleavage sites.

The computational cost of PU-HIV is composed of two parts,
one is the time taken by feature vector construction and the
other is the computational cost of biased SVM. Given that n is
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the size of the training set, the computational cost of feature
vector construction is O(n), as we have to construct feature
vectors for all samples in the training set. Regarding the biased
SVM adopted by PU-HIV, its minimum computational cost for
training is O(n2), which is identical to LSVM. Hence, the overall
computational cost of PU-HIV is O(n2).

Regarding our future work, we would to incorporate the
ensemble learning framework into PU-HIV. By employing
multiple biased LSVM classifiers and combining their
prediction results in an efficient manner, we expect to
reduce the variance and improve the robustness of PU-
HIV. Considering the different performance of PU-HIV on
these datasets, there may be significant effects from using
different feature encoding methods when we train PU-
HIV on a particular dataset. Hence, we may explore more
complicated machine learning methods for feature extraction
and reduction to better describe the characteristics of cleavable
and unlabeled octapeptides.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: https://github.com/allenv5/PU-HIV.

AUTHOR CONTRIBUTIONS

ZL implemented the algorithms, carried out the experiments,
and drafted the manuscript. LH conceived of the study, and
participated in its design and coordination and helped to draft
the manuscript. ZT and CZ performed the statistical analysis. All
authors read and approved the final manuscript.

FUNDING

This work has been supported by the National Natural Science
Foundation of China (grant number 61602352) and the Pioneer
Hundred Talents Program of Chinese Academy of Sciences.

REFERENCES

Abela, I. A., Berlinger, L., Schanz, M., Reynell, L., Günthard, H. F.,
Rusert, P., et al. (2012). Cell-cell transmission enables HIV-1 to evade
inhibition by potent CD4bs directed antibodies. PLoS Pathog. 8:e1002634.
doi: 10.1371/journal.ppat.1002634

Cai, Y. D., Liu, X. J., Xu, X. B., and Chou, K. C. (2002). Support vector machines
for predicting HIV protease cleavage sites in protein. J. Comput. Chem. 23,
267–274. doi: 10.1002/jcc.10017

Chou, K. C. (1996). Prediction of human immunodeficiency virus
protease cleavage sites in proteins. Anal. Biochem. 233, 1–14.
doi: 10.1006/abio.1996.0001

Dang, T. H., Van Leemput, K., Verschoren, A., and Laukens, K. (2008). Prediction
of kinase-specific phosphorylation sites using conditional random fields.
Bioinformatics 24, 2857–2864. doi: 10.1093/bioinformatics/btn546

Davis, J., and Goadrich, M. (2006). “The relationship between precision-recall
and ROC curves,” in ICML ’06: Proceedings of the International Conference on
Machine Learning (New York, NY), 233–240. doi: 10.1145/1143844.1143874

Devroe, E., Silver, P. A., and Engelman, A. (2005). HIV-1 incorporates and
proteolytically processes human NDR1 and NDR2 serine-threonine kinases.
Virology 331, 181–189. doi: 10.1016/j.virol.2004.10.023

Dua, D., and Graff, C. (2019). UCI Machine Learning Repository. Irvine, CA:
University of California.

Glasmachers, T., and Igel, C. (2010). Maximum likelihood model selection for 1-
norm soft margin SVMs with multiple parameters. IEEE Trans. Pattern Anal.

Mach. Intell. 32, 1522–1528. doi: 10.1109/TPAMI.2010.95
Gök, M., and Özcerit, A. T. (2013). A new feature encoding scheme for HIV-

1 protease cleavage site prediction. Neural Comput. Appl. 22, 1757–1761.
doi: 10.1007/s00521-012-0967-5

Hu, L., and Chan, K. C. (2015). Discovering variable-length patterns in protein
sequences for protein-protein interaction prediction. IEEE Trans. Nanobiosci.
14, 409–416. doi: 10.1109/TNB.2015.2429672

Hu, L., and Chan, K. C. (2017). Extracting coevolutionary features from protein
sequences for predicting protein-protein interactions. IEEE/ACM Trans.

Comput. Biol. Bioinform. 14, 155–166. doi: 10.1109/TCBB.2016.2520923
Hu, L., Hu, P., Yuan, X., Luo, X., and You, Z. H. (2020a). Incorporating

the coevolving information of substrates in predicting HIV-1 protease
cleavage sites. IEEE/ACM Trans. Comput. Biol. Bioinform. 17, 2017–2028.
doi: 10.1109/TCBB.2019.2914208

Hu, L., Zhang, J., Pan, X., Yan, H., and You, Z. H. (2020b). HiSCF: leveraging
higher-order structures for clustering analysis in biological networks.
Bioinformatics btaa775. doi: 10.1093/bioinformatics/btaa775. [Epub ahead
of print].

Kontijevskis, A., Wikberg, J. E., and Komorowski, J. (2007). Computational
proteomics analysis of HIV-1 protease interactome. Proteins 68, 305–312.
doi: 10.1002/prot.21415

Li, F., Chen, J., Leier, A., Marquez-Lago, T., Liu, Q., Wang, Y., et al.
(2020). Deepcleave: a deep learning predictor for caspase and matrix
metalloprotease substrates and cleavage sites. Bioinformatics 36, 1057–1065.
doi: 10.1093/bioinformatics/btz721

Liu, B., Lee, W. S., Yu, P. S., and Li, X. (2002). “Partially supervised classification of
text documents,” in ICML, Vol. 2 (Sydney, NSW), 387–394.

Narayanan, A., Wu, X., and Yang, Z. R. (2002). Mining viral protease
data to extract cleavage knowledge. Bioinformatics 18, S5–S13.
doi: 10.1093/bioinformatics/18.suppl_1.S5

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12,
2825–2830. doi: 10.5555/1953048.2078195

Prabu-Jeyabalan, M., Nalivaika, E., and Schiffer, C. A. (2002). Substrate
shape determines specificity of recognition for HIV-1 protease: analysis
of crystal structures of six substrate complexes. Structure 10, 369–381.
doi: 10.1016/S0969-2126(02)00720-7

Rögnvaldsson, T., and You, L. (2004). Why neural networks should not be used
for HIV-1 protease cleavage site prediction. Bioinformatics 20, 1702–1709.
doi: 10.1093/bioinformatics/bth144

Rögnvaldsson, T., You, L., and Garwicz, D. (2015). State of the art
prediction of HIV-1 protease cleavage sites. Bioinformatics 31, 1204–1210.
doi: 10.1093/bioinformatics/btu810

Sadiq, S. K., Noé, F., and De Fabritiis, G. (2012). Kinetic characterization
of the critical step in HIV-1 protease maturation. Proc. Natl.

Acad. Sci. U.S.A. 109, 20449–20454. doi: 10.1073/pnas.12109
83109

Shen, H. B., and Chou, K. C. (2008). HIVCleave: a web-server for predicting human
immunodeficiency virus protease cleavage sites in proteins.Anal. Biochem. 375,
388–390. doi: 10.1016/j.ab.2008.01.012

Song, J., Li, F., Leier, A., Marquez-Lago, T. T., Akutsu, T., Haffari, G.,
et al. (2018). Prosperous: high-throughput prediction of substrate cleavage
sites for 90 proteases with improved accuracy. Bioinformatics 34, 684–687.
doi: 10.1093/bioinformatics/btx670

Song, J., Wang, Y., Li, F., Akutsu, T., Rawlings, N. D., Webb, G. I., et al.
(2019). iProt-Sub: a comprehensive package for accurately mapping and
predicting protease-specific substrates and cleavage sites. Brief. Bioinformatics

20, 638–658. doi: 10.1093/bib/bby028
Thompson, T. B., Chou, K. C., and Zheng, C. (1995). Neural network

prediction of the HIV-1 protease cleavage sites. J. Theor. Biol. 177, 369–379.
doi: 10.1006/jtbi.1995.0254

Frontiers in Genetics | www.frontiersin.org 10 March 2021 | Volume 12 | Article 658078

https://github.com/allenv5/PU-HIV
https://doi.org/10.1371/journal.ppat.1002634
https://doi.org/10.1002/jcc.10017
https://doi.org/10.1006/abio.1996.0001
https://doi.org/10.1093/bioinformatics/btn546
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1016/j.virol.2004.10.023
https://doi.org/10.1109/TPAMI.2010.95
https://doi.org/10.1007/s00521-012-0967-5
https://doi.org/10.1109/TNB.2015.2429672
https://doi.org/10.1109/TCBB.2016.2520923
https://doi.org/10.1109/TCBB.2019.2914208
https://doi.org/10.1093/bioinformatics/btaa775
https://doi.org/10.1002/prot.21415
https://doi.org/10.1093/bioinformatics/btz721
https://doi.org/10.1093/bioinformatics/18.suppl_1.S5
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1016/S0969-2126(02)00720-7
https://doi.org/10.1093/bioinformatics/bth144
https://doi.org/10.1093/bioinformatics/btu810
https://doi.org/10.1073/pnas.1210983109
https://doi.org/10.1016/j.ab.2008.01.012
https://doi.org/10.1093/bioinformatics/btx670
https://doi.org/10.1093/bib/bby028
https://doi.org/10.1006/jtbi.1995.0254
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Li et al. HIV-1 Protease Cleavage Site Prediction

Travers, S. A., Tully, D. C., McCormack, G. P., and Fares, M. A. (2007). A study of
the coevolutionary patterns operating within the env gene of the HIV-1 group
m subtypes.Mol. Biol. Evol. 24, 2787–2801. doi: 10.1093/molbev/msm213

Wagner, R. N., Reed, J. C., and Chanda, S. K. (2015). HIV-1 protease cleaves
the serine-threonine kinases RIPK1 and RIPK2. Retrovirology 12, 1–16.
doi: 10.1186/s12977-015-0200-6

Weber, I. T., Miller, M., Jaskolski, M., Leis, J., Skalka, A. M., and Wlodawer, A.
(1989). Molecular modeling of the HIV-1 protease and its substrate binding
site. Science 243, 928–931. doi: 10.1126/science.2537531

Yang, P., Humphrey, S. J., James, D. E., Yang, Y. H., and Jothi, R. (2016).
Positive-unlabeled ensemble learning for kinase substrate prediction
from dynamic phosphoproteomics data. Bioinformatics 32, 252–259.
doi: 10.1093/bioinformatics/btv550

Yang, P., Li, X. L., Mei, J. P., Kwoh, C. K., and Ng, S. K. (2012). Positive-unlabeled
learning for disease gene identification. Bioinformatics 28, 2640–2647.
doi: 10.1093/bioinformatics/bts504

You, L., Garwicz, D., and Rögnvaldsson, T. (2005). Comprehensive bioinformatic
analysis of the specificity of human immunodeficiency virus type 1
protease. J. Virol. 79, 12477–12486. doi: 10.1128/JVI.79.19.12477-12486.
2005

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Li, Hu, Tang and Zhao. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 11 March 2021 | Volume 12 | Article 658078

https://doi.org/10.1093/molbev/msm213
https://doi.org/10.1186/s12977-015-0200-6
https://doi.org/10.1126/science.2537531
https://doi.org/10.1093/bioinformatics/btv550
https://doi.org/10.1093/bioinformatics/bts504
https://doi.org/10.1128/JVI.79.19.12477-12486.2005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Predicting HIV-1 Protease Cleavage Sites With Positive-Unlabeled Learning
	1. Introduction
	2. Materials and Methods
	2.1. Experimental Datasets
	2.2. Feature Vector Construction
	2.2.1. Amino Acid Identities
	2.2.2. Coevolutionary Patterns
	2.2.3. Chemical Properties

	2.3. Biased SVM Classifier

	3. Results
	3.1. Evaluation Metrics
	3.2. 10-Fold Cross Validation
	3.3. Cross Data Validation
	3.4. Analysis of Feature Significance and Contribution

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References


